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Abstract

A method of model evaluation is presented which utilises a comparison with a benchmark model. The proposed benchmarking concept is one
that can be applied to many hydrological models but, in this instance, is implemented in the context of an in-stream water quality model. The
benchmark model is defined in such a way that it is easily implemented within the framework of the test model, i.e. the approach relies on two
applications of the same model code rather than the application of two separate model codes. This is illustrated using two case studies from
the UK, the Rivers Aire and Ouse, with the objective of simulating a water quality classification, general quality assessment (GQA), which is
based on dissolved oxygen, biochemical oxygen demand and ammonium. Comparisons between the benchmark and test models are made
based on GQA, as well as a step-wise assessment against the components required in its derivation. The benchmarking process yields a great
deal of important information about the performance of the test model and raises issues about a priori definition of the assessment criteria.
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Introduction

A long-standing concern with all hydrological modelling is
whether the model used in a particular application is suitable
for the purpose intended. Addressing this concern involves
specific characteristics of the application (e.g. physical
characteristics, spatial and temporal scales of relevance, data
availability), the purpose that underlies the modelling
exercise (e.g. river basin planning, scientific research,
investigation of observed impacts), and some understanding
of what constitutes suitability (e.g. achievable within budget,
most accurate simulation of key variables, usable by the
personnel available). However, the use of models continues
as they are generally thought to be the best way to advance
both catchment management and science. Furthermore, the
requirements of Directive 2000/60/EC of the European
Union (2000), the so-called ‘Water Framework Directive’,
are likely to generate an increase in the use of models.
The project Benchmark Models for the Water Framework
Directive (BMW, project website address http://
www.environment.fidefault.asp?contentid=61465&lan=en),
aims to assist potential modellers in their selection of a
‘suitable’ modelling tool and, then, to provide a means for
assessing the quality of the model for the particular
application. This latter process is ‘benchmarking’. The

BMW project considers models, primarily of water quality,
categorised into a number of domains (e.g. river, lake,
groundwater), in addition to integrated models that represent
two or more domains. This paper applies this benchmarking
process in the context of the river domain, using an in-stream
water quality model.

Defining a benchmark

To be useful, a benchmark must represent a test, or
methodology, that is freely available and, preferably, easy
to apply. One approach would be to say that a particular
goodness-of-fit statistic should exceed a specified
‘benchmark’ value. The problem would be in setting the
value prior to applying the model. If the application is a
case study with numerous high quality data, then a high
standard would be expected, whereas in a case study with
few or poor data, a lower standard would be appropriate.
One way around this problem is to say that the benchmark
goodness-of-fit value is that achieved on the case study
application using a particular model (the benchmark model).
If the model under consideration (the test model) matches
or exceeds the benchmark model’s goodness-of-fit, it passes
the benchmark evaluation. Such an approach would allow
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for the differences in data quality between case studies, but
it has two difficulties: firstly, it requires a choice of
benchmark model, and secondly, two models would have
to be applied in each case study. While the latter has obvious
resource implications, the former is more difficult to address
since it would require the agreement of many modellers on
which model should be the benchmark model. In practice,
it is hard to see such an approach to benchmarking being
usable.

To overcome these problems, in this paper the same model
code is used to implement both the test and benchmark
models. The benchmark model is the least complex (or most
simple) implementation of the model code that can address
the issue in the case study. This corresponds to the
recommendation of Crabtree ef al. (1986) that “using the
simplest model to yield adequate results” is a key aspect of
good modelling. The test model is the modeller’s attempt to
improve the quality of the model application by introducing
greater complexity, or realism. The increase in complexity
could be in terms of, for example, spatial and temporal
resolution, and addition or representation of processes. This
approach obviates the requirement for modellers to agree
on a single benchmark model: the benchmark model can
change with time; only one model code has to be applied;
and the goodness-of-fit is dependent on the particular case study.

However, for this comparison to be helpful, certain criteria
should be met. Firstly, the model code must be one that all
those involved in the case study agree is appropriate, based,
say, on its characteristics and prior usage. Secondly, the
benchmark model must be capable of addressing the
objective of the case study. Thirdly, the goodness-of-fit
measure should be agreed prior to applying the model. There
is, of course, no guarantee that the test model will perform
better than the benchmark; this will depend on the particular
characteristics of the case study. If this is indeed the outcome,
then the results from the benchmark model, which all parties
have agreed is suitable for the case study, can be used directly
and the reasons for the failure of the test model to be an
improvement over the benchmark will have to be explored
by the modeller.

This concept is illustrated in an application of an in-stream
water quality model. The difference between the test and
the benchmark models is in the representation of in-stream
bio-chemical processes. Thus, while the transportation of
water, chemical determinands and heat is the same in both
models, the benchmark model represents only the mixing
of inputs, whereas the test model includes bio-chemical
processes.
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Methodology

This assessment of the proposed benchmarking process
requires:

(i) an objective for the modelling exercise,
(ii) case study rivers,

(iii) a test model, and

(iv) a protocol for the assessment.

These are described in the following sections.

OBJECTIVE

The objective selected was to represent the General Quality
Assessment (GQA) classification within a river network.
In the 1990s, GQA was used by the England and Wales
National Rivers Authority (NRA) (now the England and
Wales Environment Agency). The GQA system has six
classes from A (‘good’) to F (‘bad”) based on percentiles of
dissolved oxygen (DO expressed as a percentage of
saturation, DO%), biochemical oxygen demand (BOD), and
ammonium (NH,). It is clear from the values defining the
classification that the system is not linear in terms of
chemical components (Fig. 1).

The means of estimating the percentiles from data is
prescribed as the method of moments, which requires an
assumption about the underlying distribution of the data.
For DO% this is assumed to be normal while for BOD and
NH,, a log-normal distribution is assumed. To ensure that
enough samples were available from their routine sampling
programme to give reliable estimates of the distribution
percentiles, the NRA usually based the calculation of the
GQA class on three-year periods (see Table 1).

This type of quality classification assessment is relevant
to the WFD since the general chemical status it requires
will probably be based on a system of this type, although it
may well contain different parameters.

CASE STUDY RIVERS

Two English rivers, the Aire (catchment area 1932 km? above
the tidal limit) and Ouse (3315 km?), were selected for the
study; both drain to the top of the Humber estuary on the
north-east coast of England. The Aire contains major urban
areas, notably Leeds, as well as many traditional (i.e. older
and dirtier) industrial sites, while the Ouse has less
urbanisation and more extensive areas under agriculture.
Both rivers rise in the Pennines, which are largely covered
by moorland with rough grazing.

Both rivers have been used in other water quality
modelling studies, notably in the Land Ocean Interaction
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Diagrammatic representation of the GQA classification indicating its non-linear nature (DO- solid black bars; BOD — horizontal

shading; NH ,— diagonal shading).

Table 1. GQA chemical grading for rivers and canals, reproduced from National Rivers Authority, 1991.

Water quality Grade Dissolved oxygen Biochemical Oxygen Ammonium
(% saturation) Demand (ATU") (mgN I!)
(mg )
10-percentile 90-percentile 90-percentile
Good A 80 2.5 0.25
B 70 4 0.6
Fair C 60 6 1.3
D 50 8 2.5
Poor E 20 15 9.0
Bad F? - - -

'as suppressed by adding allyl thio-urea

%i.e. quality which does not meet the requirements of grade E in respect of one or more determinands.

Study of the UK Natural Environment Research Council,
NERC (Proctor et al., 1999; Tappin et al., 2002; Boorman,
2002b). In addition, the Ouse has been used in studies in
Climate Hydrochemistry and Economics of Surface-water
Systems (CHESS), funded by the European Commission
and NERC (Boorman, 2003), and in a modelling study of
the fate of agricultural pollutants, funded by the UK
Department of Environment, Food and Rural Affairs
(Ministry of Agriculture Fisheries and Food, 2002).

Ten years of data were available for the period 1986 to
1995, allowing three separate GQA assessments each for
three-year periods: Period I, 1987—1989; Period, 11 1990—
1992; and Period III, 1993—1995. Period II corresponds
exactly with the period considered in NRA (1994).

On the Ouse, eight sites with monitoring data allow the
GQA class to be evaluated for all three periods. On the Aire
there are 50 such sites. On both rivers, but especially on the
Aire, there are concerns about the independence of the data
from all sites, since many are close together. Some of these
sites are on river stretches not included in the modelled
network, but for all sites a GQA assessment was generated
during each study period.

On the Aire the GQA class improved slightly over time
(Table 2). In Period I, 18% of monitoring sites were
classified as F ‘bad’ and 8% as A or B ‘good’ but, by Period
I11, these figures had changed to 0% and 26% respectively.
However, in all three periods the modal class is E ‘poor’.
Between periods, there is also a change in the parameter in
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Table 2. GQA class derived from observed data at in the Aire (50
sites) and Ouse (8 sites).

Class AIRE OUSE

Period Period

I 11 I I 11 111

A Good 0 0 3 0 0 3
B Good 4 9 10 6 5 3
C Fair 7 7 6 0 1 1
D Fair 10 13 10 0 0 0
E Poor 20 17 21 2 2 1
F Bad 9 4 0 0 0 0

the GQA that limits its class (i.e. the individual parameter
falling in the lowest class). In Period I this is equally likely
to be BOD or DO%, and less likely to be NH,, but in
Period III it is most frequently BOD that limits the
classification, although all three parameters play a more
balanced role in the assessment.

For the Aire, the GQA assessment shows that quality
decreases downstream. Many head-water reaches are in

GQA Classification

3700 3800 3900 4000
L L L L

Class B but the lower reaches of the Aire (and of the Calder,
also in the Aire catchment) are classified E. Superposed on
this general trend, a few ‘hot-spots’ of local downgrading
in class are followed by downstream recovery. The GQA
assessments corresponding to Period II as derived for this
study are shown in Fig. 2.

The GQA classes for the monitoring sites on the Ouse
show it to be somewhat cleaner than the Aire (Table 2);
again there is some improvement in quality in the final
period. Within the classification, the limiting parameter is
most frequently BOD. Again, the map in NRA (1994) shows
that the quality decreases downstream, in this instance from
Class A in the headwaters to Class C at the tidal limit and,
subsequently, to Class F in the tidal river. As on the Aire,
some individual reaches are downgraded by one class but
these are generally short reaches and the quality improves
again downstream. The GQA assessments corresponding
to Period II are shown in Fig. 2.

While improving the quality of rivers is one of the
objectives of catchment management, without further
investigation, the improvement over time cannot be said to
be the result of better management, rather than a reflection
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Fig. 2. The modelled networks of the Rivers Ouse (top) and Aire (bottom) showing the GOA classification as derived by the benchmark model
(lines) and from observed data (dots) for Period II.
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of other factors, such as differences in weather between the
periods.

THE TEST MODEL

The test model was the Quality Evaluation and Simulation
Tool for River-systems (QUESTOR) (Eatherall et al., 1998;
Naden et al., 2001; Boorman, 2003); this model had
previously been applied to the catchments studied and
represented the items required for the GQA assessment. The
determinands modelled were flow, temperature, DO, BOD,
NH, and nitrate (NO,). The relevant processes within the
model representation were aeration (at the surface and at
weirs), benthic oxygen demand, DO uptake against BOD
decay, BOD sedimentation, nitrification and denitrification.
Temperature is modelled conservatively.

The modelled networks represent a length of 8§6.3 km on
the Aire and 282 km on the Ouse. Inputs to the river
modelled river network come from tributaries and
discharges, and in both cases were derived where possible
from observations. Where this was impossible, data were
generated from analogous sites, or set to default values
typical of industry types (e.g. food processing, paper
industries, sewage treatment). Similarly, time series were
constructed for abstractions from the rivers. All time series
were daily to correspond with the daily time step used in
the model (although a finer time step can be used where
this is required by the numerical method used in the model
algorithms). Further details of the model and of the input
data are given in Eatherall ef al. (1998), Naden et al. (2001)
and Boorman (2002a).

The process representation within the model is simple and
requires some calibration. The first four years (i.e. until the
end of the first GQA assessment period) were used for
calibration and the last six years for independent evaluation.
The calibration was a manual process using an interactive
graphics interface that allows time series and distributions
to be displayed alongside observations as the model is
running. The interface allows model parameters to be
adjusted on a trial-and-error basis, without formal
optimisation, but it does report root mean square and
efficiency measures.

Above it was noted that, over the whole period of the
investigation, the quality as indicated by GQA has improved
in the basins studied. Also, it is known at the outset that
conditions in the calibration and validation periods differ,
so that the models may be required to extrapolate (slightly)
to represent the later periods. Whether this extrapolation
requires a variation in model processes or if it depends on
input data will be investigated later.

Towards benchmarking an in-stream water quality model

THE ASSESSMENT PROTOCOL

The objective stated above is to estimate the GQA class in
the two rivers. Neither the benchmark nor the test model
does this directly. What the benchmark and test model
applications do is to generate time series of a number of
modelled quantities, from some of which distributions are
derived, key percentiles are abstracted and these are used
to define the GQA class.

The question therefore arises whether the benchmarking
assessment should just be against GQA, or whether it should
consider steps in the modelling process leading to GQA
estimation. The former approach addresses the stated
objective of the modelling directly. It does not, however,
ignore the fact that those other stages exist; they may be
used in calibrating the test model, and in fact have been in
this instance. The second approach requires the intermediate
stages to be considered in both calibration and validation
data sets. While it is hard to imagine that a test model will
perform worse than a benchmark model when judged against
the ultimate criterion, it may perform less well against one
of the intermediate criteria. In such a situation it would be
necessary to decide if this results in the model failing to
achieve the benchmark standard. Regardless of this specific
question relating to the benchmarking procedure, these
intermediate comparisons are likely to be informative and
should be undertaken as part of good modelling practice.

Therefore, as part of the evaluation process, it was decided
to adopt both assessment schemes, i.e. directly against GQA,
and stepwise including DO, BOD, NH,, time series and
percentiles in deriving GQA.

For any of the modelled quantities, including GQA class,
an assessment can be made both subjectively and based on
a number of statistics. The argument in favour of statistics
is their objectivity, but the act of selecting any one statistic
is necessarily subjective. This becomes especially difficult
when a number of variables is being considered at the same
time (as in this case), and where the assessments can be
made at several sites (also as in this case). Such issues have
been widely addressed in the literature (e.g. Nash and
Sutcliffe, 1970; Aitken, 1973; Loague and Green, 1991). In
this study, comparisons made will be made subjectively
using tabulated and graphical results, and objectively using
two indicative statistics, RMSE and bias defined as

RMSE = Z(Xin_ Oi)

bias=7z(x;]_o‘)

where X and O, are the i simulated and observed values
from a set of n values.
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The splitting of data into calibration and validation sets is
used in many hydrological and hydrochemical modelling
studies. During calibration the modeller endeavours to
maximise the goodness-of-fit by adjusting model
parameters, constrained either by physical interpretations
of the parameters, or by previous experience. Validation
checks that the goodness-of-fit is similar when the model is
applied to a second data set from the same case study, and
is intended to reveal whether the calibration has general
applicability to the case study or is tailored overmuch to the
particular characteristics of the data set used for calibration.
In the context of the above discussion on the setting of a
benchmark, calibration is setting a level of performance that
is used to assess model performance during validation. It is
generally recognised that model performance from the
validation data set will be lower than for calibration, but
deciding how much lower is still acceptable is another
subjective element brought to a supposedly objective
process.

Introducing the idea of a benchmark model helps with
these comparisons since, in both calibration and validation,
the performance of the test model can be compared with
the performance of a benchmark model

This comparison between benchmark and test model will
be made for both the calibration and validation periods using
the subjective and objective assessments described above.

Direct comparison of observed and
simulated GQA class

Comparisons below consider the two rivers separately and
refer to results presented in Tables 3-6. For Period II the
results from both rivers are presented graphically, in Fig. 2
for the benchmark model, and in Fig. 3 for the test model.

THE RIVER AIRE

On the Aire catchment 26 of the 50 monitoring sites are on
the modelled river network and can be used to assess the
performance of the two models. Using the benchmark
model, during the first period 11 sites are assessed correctly,
with the remaining 15 being within one class of the
assessment based on monitored data (Table 3). Of the 15,
the model assesses the quality as worse than observed in 11
cases. Through time, the most notable difference between
the assessment made by the benchmark model and that
derived from the data is an increase in the spread of the
differences. The test model correctly estimates a greater
number of GQA classes in the first period, but thereafter
there is increasing divergence from the observed
classification in the same way as for the benchmark model.
Overall both models give an unbiased estimation of class in
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Table 3. Comparison of GQA classes from the benchmark and
test models for each of the 3 sub-periods on the Aire catchment.
(Note: —ve class difference means that the model class is worse
than the class derived from monitored data.)

MobEL BENCHMARK TEsT

Class Period Period
difference I 11 1 I I 11
-3 1 1
-2 3 0 1 0
-1 11 17 7 1 6 4
Correct 11 2 16 17 15 15
+1 4 3 0 8 3 4
+2 1 2 2
+3

Table 4. Comparison of the GQA class derived from the benchmark
and test models for all reaches in the Aire catchment.

MobEL BENCHMARK TEsT
Class Period Period

1 11 111 1 11 111
A Good 0 0 3 0 0
B Good 2 9 7 2 9 8
C Fair 9 2 1 9 2 3
D Fair 4 8 5 14 12 19
E Poor 50 32 87 72 73 71
F Bad 38 52 0 6 7 0

all three periods.

An assessment of changes through time, as simulated by
the models can be made using all 103 of the modelled
reaches (Table 4). From these, a very slight improvement in
quality is seen, generally by no more than one GQA. Most
notable are the 38 and 58 reaches that are classified as class
F (‘bad’) using the benchmark model in the first and second
periods, respectively; in Period III, these improve to class
E (‘poor’). The test model classifies fewer reaches as class
F in the first two periods but, as with the benchmark model,
no reaches are classed as F in Period I11. With the benchmark
model, in all cases either BOD or NH, was the limiting
parameter in making the GQA assessment. It was on the
basis of high BOD values that all assessments as class F
were made. Using the test model, all three GQA parameters
act in limiting the allocated class.

THE RIVER OUSE

All eight of the monitoring sites in the Ouse catchment that
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showing the GQA classification as derived by the test model (lines)

and from observed data (dots) for Period I1.

can be used to derive GQA classes are on the modelled
network, and can therefore be used to compare assessments
based on data and those derived from the models. The
benchmark model always assesses the class as the same, or
worse than, that derived from observed data, i.e. never better
(Table 5). Although based on just eight sites, it appears that
misclassification is greatest in better quality waters (i.e. it
seems likely that a ‘good’ quality as assessed from monitored
data, may be downgraded to ‘fair’ or even ‘poor’ by the

Table 5. Comparison of GQA classes from the benchmark and
test models for each of the 3 sub-periods on the Ouse catchment.
(Note: —ve class difference means that the model class is worse
than the class derived from monitored data.)

MobEL BENCHMARK TesT

Class Period Period
difference I 11 I I 11 il
-3 1 1 3

-2 3 3 3

-1 2 1 1 3 2 5
Correct 2 3 1 4 4

+1 1 2 2
+2

+3

benchmark model). The test model provided a good central
estimate of GQA class, and was always within one class of
the value derived from monitored data (Table 5). In the last
period, there appeared to be a bias towards underestimation
of quality but only by one class and this was based on a
small number of comparisons.

Changes in water quality between the three periods can
be reviewed based on the classification of all reaches within
the modelled network, i.e. 155 reaches (Table 6). Using the
benchmark model it suggests that water quality decreased
slightly between the first and second periods, but then
improved to be slightly better than originally in the third

Table 6. Comparison of the GQA class derived from the
benchmark and test models for all reaches in the Ouse catchment

MobEL BENCHMARK TesT
Class Period Period

1 11 111 1 11 111
A Good 7 3 12 20 16 53
B Good 21 25 22 101 107 76
C Fair 33 19 28 13 10 10
D Fair 76 77 78 9 9 11
E Poor 18 31 15 12 13 5
F Bad 0 0 0 0 0 0
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period. In almost all cases, NH, was the limiting parameter
within the GQA classification. The simulated changes
through time in the GQA classification using the test model
show a distinct improvement in the Period III, with many
reaches, 53, being placed in the highest class compared with
20 and 16 in the earlier periods (Table 6). DO is rarely the
limiting parameter within the GQA assessment, while BOD
and NH, values limit the classification approximately
equally.

DISCUSSION

On the Ouse, the test model assessment of GQA class is
more accurate than that of the benchmark model, whereas
on the Aire the test model offers relatively little improvement
in accuracy over the benchmark model.

For the Ouse, the relative performance of the models can
be explained by the absence of processes from the
benchmark model. In the benchmark model relatively small
amounts of BOD and NH, entering the river are transported
conservatively, and in the lower reaches of the river network
result in a classification as Class D, when the observed class
is B. The inclusion of processes within the test model ensures
a better estimate of the observed class, although some
uncertainty in the model gives some misclassification when
compared with the observed class. There is a suggestion
that model performance is slightly poorer in the third than
in the earlier two periods. Perhaps some changes in actual
discharges are not reflected in model input data, or the model

Table 7. RMSE for DO (not DO%), BOD and NH, at three sites
(upper, middle and lower) on the River Aire (Note the bold values
indicate where the benchmark model gives a lower RMSE value
than the test model.)

MoDEL BENCHMARK TEsT
Variable Period Period
1 11 111 1 1T 111
DO
Upper 2.0 29 2.1 1.9 27 1.8
Middle 4.8 39 27 2.0 33 3.1
Lower 3.3 3.1 3.0 2.0 29 27
BOD
Upper 2.7 39 37 22 31 29
Middle 7.3 6.1 3.8 43 29 29
Lower 6.1 6.8 5.1 2.0 29 22
NH,
Upper 0.7 0.7 0.3 0.3 05 0.2
Middle 1.2 0.7 04 1.2 02 04
Lower 1.3 1.7 1.1 1.0 03 0.5
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calibration is biased towards the earlier period.

For the Aire, two other factors are important. Firstly, the
explanation for the benchmark model indicating a better
quality than that observed in the river can be attributed to
the model’s boundary conditions. If these have been set
slightly too ‘high’ then, in the first reaches of the river, they
will remain high. With the large number of monitoring sites
on the Aire, such over-estimation of quality gets included
in the assessment, whereas this is not the case on the Ouse.
This over-estimation of quality is seen in both the benchmark
and test models, although in the latter case it could be caused
by the process representation. Secondly, much of the lower
part of the Aire is classified by observations as Class E. If,
as on the Ouse, the quality is underestimated by the
benchmark model, the maximum error is just one class since
Class F is the lowest possible state in the GQA system.

Stepwise assessment of benchmark
and test model performance

THE RIVER AIRE

The test and benchmark models simulate time series of DO,
BOD and NH, that can be compared with the observed time
series of these variables. For the Aire, this assessment can
be made at the 26 sites with data in each of the three periods.
Three sites have been chosen to represent the upper, middle
and lower reaches of the Aire, and for each site, and all
periods, the root mean square error (RMSE) has been derived
(Table 7). A summary of these is:

(1) RMSE values from the test model are in all but one
instance less than or equal to those from the benchmark
model,

(2) the largest RMSE values occur in the middle and lower
reaches, especially in the benchmark model, and

(3) thatin the benchmark model RMSE decreases with time.

The RMSE values provide a figure of the goodness-of-fit
relevant to continuous simulation of each of the variables
at each site. The next step towards deriving a GQA class
from the simulated results is to fit distributions, as described
above in the context of the monitored data. A next stage in
comparing the observed and simulated values would be to
generate a RMSE value from an ordered set of values as
this would assess the goodness-of-fit across the whole
distribution of observed and simulated values. A RMSE
derived in this way from ordered data will always give a
lower RMSE than using unordered data. While this would
generally be a sensible assessment, in this case the
classification depends on a specific value in the distribution,
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Table 8. RMSE and bias (in brackets) derived from 25 sites on the River Aire. (Note the bold values indicate where the
benchmark model gives a lower RMSE and bias value than the test model.)

MoDEL BENCHMARK TEsT
Variable Period Period

I 11 111 1 11 111
10%ile DO% 59.5 (56.4) 41.7(40.7) 42.9 (38.6) 17.8 (9.8) 15.4 (-7.4) 23.9 (-3.4)
90%ile BOD 5.5(3.2) 5.6 (4.1) 4.0 (2.6) 3.0 (-0.9) 2.4 (-0.4) 2.4 (-0.9)
90%ile NH, 1.1 (-0.1) 1.1 (0.8) 0.6 (0.4) 1.7 (-1.0) 0.8 (-0.1) 0.4 (-0.1)

and so the required percentiles have been abstracted from
the observed and simulated data. RMSE and bias based on
all 25 sites have been derived and are presented in Table 8.
The test model clearly performs better in terms of RMSE
than the benchmark model for both DO% and BOD. For
NH,, the benchmark model performs better than the test
model in the calibration period, but slightly less well in the
two validation periods. This result will be discussed later.

Comparing the RMSE values from all data at selected
sites (Table 7), with RMSE values for the target percentiles
at all sites (Table 8) indicates that for both BOD and NH,
the errors are broadly similar, i.e. estimation of an extreme
value is no less accurate than the estimation of the complete
data set. Although the figures in Tables 7 and 8 are not
directly comparable, since the former has DO and the later
DO0%, in both models extremely low values of DO are less
well estimated than the data set as a whole. This is
particularly true for the benchmark model in which the in-
stream processes that contribute to the low DO values are
omitted.

The bias values for the benchmark model indicate that
the model almost always overestimates the actual value
(Table 8). In the case of DO% this represents a better
environmental value than is observed; for BOD and NH,
the opposite is the case. Since for the benchmark model the
bias in many cases is similar to the RMSE, then almost the
whole of the error is the result of model bias. This is an
expected outcome since in the benchmark model BOD and
NH, are determined by dilution alone, i.e. likely sinks of
both are not represented. In contrast, for the test model the
bias is always considerably less than the RMSE. The bias is
in all but one case towards underestimation of observed
values. This suggests a small bias in the calibration process,
using Period I, which is perpetuated in Periods II and III.

THE RIVER OUSE

Three sites representing the upper and lower reaches of the
Ouse, and a small tributary have been selected and RMSE

values derived (Table 9). The Ouse is a cleaner river than
the Aire with lower values of BOD and NH, and there are,
therefore, smaller errors in estimating these variables than
on the Aire. However, the values of DO are also better
estimated for the Ouse than for the Aire, which implies that
the benchmark model (i.e. saturated DO) is a better starting
point on the Ouse than it was on the Aire. This is confirmed
by the relatively modest improvement in performance by
the test model over the benchmark model.

For both BOD and NH , the RMSE from the test model is
less than the corresponding value from the benchmark
model. However, although the errors are small, the values
from the test model are roughly half of the corresponding
values from the benchmark model and, given the non-linear
nature of the GQA scheme, there is likely to be a miss-
classification on a clean river. The RMSE values show no
great difference between sites or between assessment
periods.

Table 9 RMSE for DO (not DO%), BOD and NH, at three example
sites on the River Ouse.

MoDEL BENCHMARK TEST
Variable Period Period
1 11 111 1 1T 111
DO
Upper 1.2 0.7 0.8 1.1 0.6 0.7
Tributary 3.1 35 35 2.4 23 28
Lower 1.7 1.4 1.5 1.3 1.1 14
BOD
Upper 2.0 19 22 1.0 09 1.0
Tributary 3.6 39 36 1.5 1.5 1.2
Lower 1.8 2.0 1.8 0.9 0.8 0.7
NH,
Upper 1.2 1.2 1.3 0.1 0.2 0.1
Tributary 2.4 23 23 1. 09 09
Lower 1.0 1.0 1.0 0.1 0.1 0.1
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Table 10. RMSE and bias (in brackets) derived from eight sites on the River Ouse.

MobEL BENCHMARK TesT
Variable Period Period

1 11 1 I 11 11
10%ile DO% 26.2 (21.4) 26.4 (21.7) 19.9(17.4) 9.6 (2.3) 7.1 (1.8) 7.0 (-0.5)
90%ile BOD 2.8 (1.7) 3.4 (1.8) 2.4 (1.9) 1.0 (-0.2) 1.3 (-0.5) 0.8 (0.1)
90%ile NH, 1.9 (1.0) 2.0(1.4) 2.0 (1.0) 1.1 (-0.3) 0.7 (0.3) 1.2 (-0.2)

As on the Aire, the RMSE values from the selected sites
on the Ouse are similar to the values for the 90 percentile
values of BOD and NH,, whereas the error in estimation of
the extreme low values of DO distribution is greater than
the mean error.

RMSE and bias statistics based on the eight monitoring
sites on the Ouse (Table 10) indicate that the test model
performs better than the benchmark model for all variables
and periods. As on the Aire the benchmark model is seen to
be biased towards overestimation of all three variables,
whereas the test model appears relatively unbiased.

Discussion

Examining the simulation of the benchmark and test models
in terms of statistics based on time series at selected sites
and distribution percentiles of the variables at all sites, has
given a clearer idea of how the models perform. The
benchmark model gives results that are greatly biased with
respect to the observed data, and the removal of this bias is
certainly one positive aspect of the performance of the test
model.

However, the insights into model performance come at
the expense of having to generate and examine a great many
intermediate data sets and statistics. Within those statistics
presented above were two instances where the benchmark
model performed better than the test model. The question
of whether this constitutes a failure of the benchmarking
process should not be addressed only after the results have
been obtained. At the outset, the objective was stated as
simulating GQA class, rather than the simulation of the time
series of each variable, and therefore in this instance this
should not be seen as failure.

There is of course no reason why it cannot be stated a
priori that the benchmark comprises multiple criteria, and
that to achieve the benchmark each of these must be satisfied
in turn. Care would need to be taken, however, in defining
exactly how to apply such criteria, since the rigorous
application of intermediate criteria may lead either to
unnecessary additional effort, or to the rejection of a model
that actually performs well against the ultimate objective.
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It is the difficulty of addressing such multiple criteria that
leads to the test model performing less well than the
benchmark model in two of the above comparisons. The
calibration of the test model was a subjective process that
sought to balance the fit between DO, BOD and NH, at
individual sites in terms of both time series and distributions.
In adjusting model parameters, there were instances where
achieving a good fit against one variable necessitated
compromising the fit of one of the other variables. In
addition, maximising the fit at an upstream site could
compromise the fit downstream. It was, therefore, quite
likely that, given the degree of compromise that had to be
adopted during calibration and the many comparisons made,
there would be a few instances in which the benchmark
model would perform better than the test model.

Two issues that emerge from this are the parameterisation
of the model and the subjectivity of the calibration process.
To a large extent both of these should be addressed by the
model developer, i.e. the developer should provide advice
on, or tools to explore, parameter sensitivity and, similarly,
advice, or tools, to assist model calibration. However,
providing such advice, or tools, is far from straightforward
for the model developer since a general purpose model is
being used to fulfill a specific requirement (i.e. estimating a
quality class based on three variables, for many reaches).
Further understanding of these issues is an obvious objective
of further research.

Conclusion

A particular concept of a benchmark against which model
performance can be assessed has been presented; it takes
the form of a benchmark model against which a test model
can be compared. Because of the definition adopted, the
two models are in fact different versions of the same model.
Introducing such a benchmark model was, therefore, a
straightforward process using existing modelling software,
and requires no more data than the test model.

Using the benchmark model, by definition, enables the
performance of the test model to be compared with another
modelling approach, albeit one that is almost certainly biased



in its results. Any alternative form of model comparison is
likely to involve a second model, which may require
additional expertise and data. However, inevitably,
introducing any second model into a modelling study
introduces the possibility of very many more comparisons
of model performance (i.e. not just model with data, but
also model with model).

From the application described above, it is clear that to
adopt the benchmarking approach requires more than
defining a benchmark model. It is equally necessary to have
an a priori description of the objectives and how they will
be implemented. Given these two components, it seems that
the benchmarking process can make a positive contribution
to a modelling exercise. In this example, a great deal about
the rivers, classification and model processes could be
gained without delving into the intermediate simulations
required to produce the GQA assessment. It is, however,
only by exploring these intermediate simulations that it is
possible to see if a correct GQA assessment is in fact being
produced by a poor model.

From the two applications it is obvious that the
benchmarking process is catchment- and data-dependent.
The conclusion from this is that the results of benchmarking
on one study may have little or no relevance to another
application. However, by its very nature, it is easy to repeat
the benchmarking for a new application. This is in contrast
to conventional model comparisons, where the greater effort
involved may encourage the wider extrapolation of the
results.

The benchmark model, even within a single domain such
as in-stream modelling, need not be the same in all situations.
By basing the benchmark model on the test model, it seems
equally valid to allow, for example, the DO simulation to
be set as conservative or as saturated. Clearly some further
applications of the benchmarking process, involving other
models on the same case studies and other case study rivers,
are needed to define better how the concept of a benchmark
model can be applied more generally.

A final conclusion is that the benchmark approach is
probably suited only to those applications with easily defined
objectives. Where the purpose of modelling is, for example,
to gain a better understanding of how a river system
functions, it may be appropriate to adopt some other form
of good modelling practice that considers in greater detail
the processes and intermediate stages within the model.
However, the idea underpinning the benchmarking approach
of beginning with a simple model before introducing
complexity is widely applicable and relevant to the
exploration of catchment management.

While the benchmarking concept as presented in this paper
is easily adopted for use in other model applications, some

Towards benchmarking an in-stream water quality model

next steps in developing this approach to benchmarking are
obvious. They are: to use other models within the same
domain (i.e. rivers); to transfer the concept to other domains
(e.g. lakes, diffuse runoff); to explore the relationship
between calibration and the objective; and to set the
comparison with a benchmark model against model
sensitivity and uncertainty analyses.
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