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Abstract. In this study two approaches are used to predict
winter storm flow coefficients in meso-scale basins (10 km2

to 1000 km2) with a view to regionalization. The winter
storm flow coefficient corresponds to the ratio between direct
discharge and rainfall. It is basin specific and supposed to
give an integrated response to rainfall. The two approaches,
which used the permeability of the substratum and dom-
inating runoff generation processes as basin attributes are
compared. The study area is the Rhineland Palatinate and
the Grand Duchy of Luxembourg and the study focuses on
the Nahe basin and its 16 sub-basins (Rhineland Palatinate).
For the comparison, three statistical models were derived by
means of regression analysis. The models used the winter
storm flow coefficient as the dependent variable; the inde-
pendent variables were the permeability of the substratum,
preliminary derived dominating runoff generation processes
and a combination of both. It is demonstrated that the perme-
ability and the preliminary derived processes carry different
layers of information. Cross-validation and statistical tests
were used to determine and evaluate model differences. The
cross-validation resulted in a best model performance for the
model that used both parameters, followed by the model that
used the dominant runoff generation processes. From the
statistical tests it was concluded that the models come from
different populations, carrying different information layers.
Analysis of the residuals of the models indicated that the per-
meability and runoff generation processes did provide com-
plementary information. Simple linear models appeared to
perform well in describing the winter storm flow coefficient
at the meso-scale when a combination of the permeability of
the substratum and dominating runoff generation processes
served as independent parameters.
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1 Introduction

Regionalization is a widely used procedure in hydrology
(Burn, 1997; Post and Jakeman, 1999; Kokkonen et al., 2003;
Croke and Norton, 2004; Merz and Blöschl, 2004; Parajka
et al., 2005; Merz et al., 2006), regionalization being de-
fined as the transfer of information from one basin to an-
other (Bl̈oschl and Sivapalan, 1995). Regression analysis is
the most widely used regionalization technique, although al-
ternative techniques are also used (Kokkonen et al., 2003).
Since a regression needs a dependent and at least one in-
dependent variable, the choice of the variables is usually
a hydrological variable as dependent and one or several
physiographic basin characteristics as independent variables.
Mazvimavi (2003) listed the most commonly used physio-
graphic basin characteristics in regression analyses, which
are: land use, geology, drainage density and basin area. Pfis-
ter et al. (2002) developed a methodology that determines
the qualitative behavior of gauged basins with short histor-
ical data series with a view to regionalization, using the
winter storm flow coefficient, or C-value, as the dependent
parameter in a regression analysis. The previously named
basin characteristics served as independent parameters. The
C-value is defined as the ratio between storm flow and rain-
fall, is supposed to be basin specific and to have a strong
seasonal variability, and should be more or less constant dur-
ing winter, expressing the saturated state of the basin (Pfister
et al., 2002). Uhlenbrook et al. (2004) pointed out that in
meso-scale basins processes combine into a more complex
way, producing an integrated runoff response to rainfall. In
this study, the C-value is supposed to represent this response
of meso-scale basins (i.e. basins ranging in size from 10 km2

to 103 km2; Blöschl, 1996) to rainfall during winter. The
permeability of the substratum was found to be an impor-
tant basin characteristic in describing the C-value of basins
in the Grand Duchy of Luxembourg (Pfister et al., 2002) and
it will serve in this study as a single independent parameter
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in a first model, which is based on linear regression, to de-
scribe the C-value with. Since soils form the first medium
between precipitation and runoff generating processes after
the vegetation cover, they will serve in this study as indepen-
dent parameters for a second model.

The impermeability of the substratum, which is used
in this study, is based on a methodology of Zumstein et
al. (1989), who classified the infiltration permeability of the
substratum with respect to its lithology and geohydrologi-
cal characteristics such as fractures and porosity, obtaining
eight different permeability classes. This classification was
adapted and simplified into only three classes: permeable,
semi-permeable and impermeable. The determination of the
three classes in this study was based on the available dig-
itized geological map (GeologischëUbersichtskarte, scale
1:300 000 (G̈UK 300)). Due to this simplification and due
to the coarse scale of the geological map, the thus assessed
permeability should be regarded as an indicator for runoff
production only.

Scherrer and Naef (2003) developed an approach to deter-
mine runoff processes at the plot scale. It uses soil data, geol-
ogy, topography and vegetation for the process identification.
Scherrer (1997) and Faeh (1997) conducted sprinkling exper-
iments in Switzerland on grassland hill slopes with varying
slopes, geology and soils and recorded the soil-water levels,
soil-water content and soil-water tension. The outcome of
this research formed the basis for developing process deci-
sion schemes, which reflect the complex nature of runoff for-
mation to eventually determine the dominating runoff gen-
eration process on a soil profile (Scherrer and Naef, 2003).
Since several runoff processes can occur at the same site, the
one process that contributes most is called the dominating
runoff generation process. Schmocker-Fackel et al. (2007)
used this approach for identifying runoff processes at the plot
as well as at catchment scale and illustrated the potential of
the use of dominating runoff generation processes for defin-
ing the infiltration parameters used in rainfall-runoff mod-
els. However, the approach of Scherrer and Naef (2003) is
time consuming and often, detailed soil data is lacking to ap-
ply it on a smaller scale. The approach has been up-scaled
using an artificial neural network (ANN) model developed
by Steinr̈ucken et al. (2006). This model was applied to the
Nahe basin, resulting in a digitized map that provides the pre-
liminary modelled dominating runoff generation processes
for this basin. The results of Steinrücken et al. (2006) formed
the basis for the derivation of the processes that are used in
this study.

The dominating runoff generation processes obtained from
Steinr̈ucken et al. (2006) are: Saturated Overland Flow
(DSOF), SubSurface Flow (DSSF) and Deep Percolation
(DDP). The SOF and SSF processes are subdivided into
DSOF1, DSOF2andDSOF3andDSSF1, DSSF2andDSSF3. The
numbers refer to the intensity of which the processes react
to rainfall, where 1 has relatively the most abruptly chang-
ing flow reaction and 3 the most gradually changing flow re-

action. The “detailedness” of these processes is supposed
to be larger compared to the permeability assessment of the
substratum due to a larger scale. Furthermore the dominat-
ing runoff generation processes are more heterogeneously
distributed compared to the permeability of the substratum.
Both the permeability of the substratum and the dominating
runoff generation processes will be derived as percentages of
total basin areas in a GIS.

The objective of the study is to compare the information
carried by the simplified permeability of the substratum, the
dominating runoff generating processes and a combination
of both with respect to the winter storm flow coefficient. For
this purpose three models that are based on regression anal-
ysis will be used. Model results will be assessed with cross-
validation, two non-parametric statistical tests and a compar-
ison of their residuals. The use of the permeability of the
substratum as a parameter in a regression model may open
possibilities for predictions in un-gauged basins concerning
their runoff coefficient.

2 Study area

The study area comprises 71 basins located throughout the
Grand Duchy of Luxembourg and the Rhineland Palatinate
(Germany) and it focuses on the Nahe basin (4011 km2, lo-
cated in the Rhineland Palatinate) and its 16 sub-basins,
which are listed in Table 1. The study focuses on the Nahe
basin and its sub-basins, which were chosen for the avail-
ability of a preliminary GIS-based map that provided domi-
nating runoff generating processes as derived by Steinrücken
et al. (2006). All basins have daily discharge measure-
ments for a period of 30 years (1972–2002). Altitudes
range from 84 m a.s.l. at the lowest point of the Rhine val-
ley to 817 m a.s.l. on the Hunsrück middle mountain re-
gion. The study area has an oceanic temperate climate in
the West transforming to a semi-oceanic climate to the East.
The temperate humid climate is influenced by the Atlantic
Ocean. The macro relief influences rainfall patterns as well.
The average annual precipitation ranges from approximately
540 mm/y in the middle part of the study area (Rhine val-
ley) to approximately 1100 mm/y on the higher ridges, with
an average annual precipitation of 820 mm/y for the entire
study area. The study area is located mainly in the Rhen-
ish Massif and consists largely of schist, siltstone, sandstone
and quartzite of Devonian age. The northeastern part is char-
acterized by tectonic dissections of geological strata, hence
displaying a heterogeneous geology in comparison to the re-
mainder of the study area (Sauer et al., 2002). The southeast-
ern part of the study area (Pfalz and Rhine valley) consists
of an alternation of sandstone, conglomerates and clay of
Buntsandstein and of Tertiary sandy, silty deposits and Qua-
ternary Rhine terraces. The overall land use of the study area
is 4% urban area, 28% cropland, 22% grassland and 46% for-
est. However, land use percentages vary between the meso-
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Table 1. The percentages of the permeability of the substratum and of the dominant runoff-producing processes of the Nahe basin (outlet at
Grolsheim) and its 16 sub-basins.

Parameters∗

Basin name Lp [%] Lsp [%] Limp [%] DSOF1[%] DSOF2[%] DSOF3[%] DSSF1[%] DSSF2[%] DSSF3[%] DDP [%]

Altenbamberg 68 0 32 9 5 26 0 14 16 31
Boos 48 2 50 8 6 21 5 12 16 31
Enzweiler 32 0 68 7 4 19 4 18 31 19
Eschenau 47 6 47 9 7 21 6 10 14 34
Gensingen 61 0 39 12 3 18 0 6 10 51
Grolsheim 52 2 46 9 5 21 5 11 15 33
Heddesheim 40 0 60 6 5 12 16 7 20 34
Imsweiler 66 0 34 8 6 19 1 10 15 40
Kallenfels 26 0 74 6 5 20 11 10 13 35
Kellenbach 38 0 62 7 5 21 15 6 9 38
Kronweiler 28 0 72 7 3 20 1 15 29 25
Nanzdietschweiler 53 6 41 8 7 18 11 4 10 42
Obermoschel 47 0 53 7 5 34 0 17 13 25
Odenbach 35 0 65 7 5 40 0 19 10 19
Odenbach Glan 52 5 43 9 7 21 3 11 14 35
Steinbach 68 0 32 5 6 15 19 3 9 43
Untersulzbach 83 0 17 9 10 10 1 4 12 55

∗ Lp: permeable substratum;Lsp: semi-permeable substratum;Limp: impermeable substratum;DSOF1,2,3: Saturated Overland Flow1, 2, 3;
DSSF1,2,3: SubSurface Flow1, 2, 3;DDP: Deep Percolation

scale basins. For the 71 basins, daily discharge series were
available from 1972 until 2002. Rainfall for the same pe-
riod was obtained from 54 meteorological stations located
throughout the study area. In Fig. 1 the permeability of the
study area is given. In Fig. 2 the permeability and the domi-
nating runoff generation processes of the Nahe basin and its
16 sub-basins are given. In Table 1 the percentages of these
parameters of the Nahe basins are given.

3 Methodology

As dependent variable in the regression models, the winter
storm flow coefficient or C-value will be used. The calcula-
tion of the C-values can be summarized as follows: firstly,
calculate the storm flow of basins by using a base flow sepa-
ration technique; secondly, build double mass curves of win-
ter storm flow and winter rainfall for each basin and thirdly,
calculate the slope in the double mass curve, which denotes
the basin specific winter runoff coefficient C. An extensive
description of the derivation of the C-value can be found in
Pfister et al. (2002), who used the Grand Duchy of Luxem-
bourg as study area. As stated in the introduction, the C-
value is supposed to be basin specific, have a strong seasonal
variability and should be more or less constant during win-
ter, expressing the saturated state of the basin (Pfister et al.,
2002). Since measured discharge during winter is used to
calculate the C-values during winter, snowmelt is indirectly
taken into account as well in the C-value.

The current study focuses on relationships between C-
values and permeability on the one hand and C-values and

dominating runoff generation processes on the other hand.
The derivation and comparison of the models can be de-
scribed as follows:

1. Derivation of three regression models: I, II and III. The
models take the C-values of the Nahe basin and its 16
sub-basins as a dependent variable and:

(a) Model I takes the percentage of the impermeabil-
ity of the substratum of the Nahe basins as an in-
dependent variable. To underpin this relationship,
71 basins located throughout the Grand Duchy of
Luxembourg and Rhineland Palatinate, including
the Nahe basin and its sub-basins, will be used in
a linear regression with their C-values as depen-
dent and permeability of their substrata as inde-
pendent variables. Since other basin descriptors
could also serve as possible regressors (Merz et
al. (2006) studied the spatio-temporal variability of
event runoff coefficients in Austria and observed a
high correlation between values of the runoff coef-
ficient and mean annual precipitation), mean annual
precipitation (MAP), mean basin altitude (Hm) and
basin area (Ab) are included as well in the regres-
sion analysis.

(b) Model II takes the percentage of one dominating
runoff generation process or the percentage of a
combination of dominating runoff generation pro-
cesses of the Nahe basins as an independent vari-
able. A Principal Component Analysis (PCA) will
be used to determine the process or combination
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Fig. 1. Permeability map of the Rhineland Palatinate and the Grand
Duchy of Luxembourg, based on the GÜK 300.

of processes that bears the highest correlation with
the C-value. A PCA is a multivariate technique
that produces a set of components (variables) called
principal components, which are weighted linear
contributions of the original variables (Chatfield
and Collins, 1980; James and McCulloch, 1990). In
this case the original variables are the C-value and
126 of the possible 127 combinations of the seven
dominating runoff generation processes (1 combi-
nation combines all seven processes and is there-
fore redundant). Since the sum of the processes
is necessarily 1, only 63 out of the 126 processes
are independent. In this study only the positively
correlated combinations will be used in the model
exercise. However, all 126 combinations have to
be used in the PCA. Therefore, it has to be noticed
that this renders the negatively correlated combina-
tions as dependent.MAP, Hm andAb are included
as well in the regression analysis.

(c) Model III takes the dominating runoff producing
processes and the impermeability of the substra-
tum as independent parameters and is based on a
multiple regression.MAP, Hm andAb are included

Fig. 2. The preliminary defined dominating runoff production pro-
cesses of the Nahe basin and its 16 sub-basins (after Steinrücken et
al., 2006). For the basin numbers see Table 1.

in the regression if they appear to be significant in
model I and/or model II. In order to obtain the most
relevant combination, the five best corresponding
combinations of dominating runoff generation pro-
cesses as derived in step 2, will each be used in a
separate multiple regression. The significance of
the two parameters, which will be finally used in
model III, will be tested with the non-parametric
Mann-Whitney U test.

2. Comparing model performances

(a) The performance of the models will be determined
with cross-validation, using the RMSE as a com-
parator value.

(b) The non-parametric Kruskal-Wallis H test (Kruskal
and Wallis, 1952) will be used to decide if there is
a significant difference between the derived regres-
sion models.

(c) The residuals of the models will be compared in
order to determine internal mutual differences.

The preliminary models I–III are given in Eqs. (1–3):

CI = a × Limp + b × O + r1 (1)
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Fig. 3. Box plots of the C-values of the 17 basins (numbers refer to
Table 2).

CII = c × Dx + d × O + r2 (2)

CIII = e × Limp + f × Dx + g × O + r3 (3)

Where:

– CI , CII , CIII are the modeled runoff coefficients of a
basin [–]

– a, b, c, d, e, f , g andr1,2,3 are constants [–]

– Limp is the percentage of impermeable substratum of a
basin [–]

– Dx is the percentage of the dominating runoff genera-
tion process or combination of dominating runoff gen-
eration processes mostly linked to the C-value of a basin
[–]

– O are other basin descriptors (MAP, Hm andAb) [mm/y,
m, km2]

4 Results and discussion

The calculated C-values of the basins with their standard de-
viation are listed in Table 2 together with their mean annual
precipitation, mean altitude and basin area. In Fig. 3, the box
plots of the C-values are given and as can be seen from this
figure the annual variability of the C-value was for most of
the basins small. The relation between C-values and the per-
centage ofLimp in the 71 basins of the Rhineland Palatinate
and the Grand Duchy of Luxembourg showed a good corre-
lation. It could very well be described as linear with anR2

Fig. 4. Correlation between winter storm flow coefficient and per-
centage of impermeable substratum of Rhineland Palatinate and
Luxembourg basins.

of 0.79 (Fig. 4). The residuals did not indicate a bias, thus
justifying the relationship. These results were in agreement
with the findings of Pfister et al. (2002) for basins located in
the Grand Duchy of Luxembourg concerning basin-specific,
more or less stable winter storm flow coefficients. Pfister et
al. (2002) also found a strong relationship between winter
storm flow coefficients and the permeability of the substra-
tum. Apparently, the winter storm flow coefficient appeared
to be a good general descriptor of the saturated state of meso-
scale basins and well suited to act as a hydrological variable
to be used in regionalization procedures.

Table 3 lists the p-values of the multiple regressions with
Limp andHm, Limp andAb andLimp andMAP as indepen-
dent variables. OnlyHm provided a significant result at the
5% significance level and a non-significant result at the 1%
significance level (Table 3) when used as a regressor in a mul-
tiple regression withLimp. Although the RMSE was 0.100
whenLimp andHm were used in comparison to a RMSE of
0.114 (see Table 4) when onlyLimp was used, the RMSEs
of the cross-validation were 0.128 whenLimp andHm were
used and 0.132 (see also Table 4) when onlyLimp was used.
This latter difference was considered as marginal. The RM-
SEs of the cross-validation, whenAb andMAP were used in
combination withLimp in a multiple regression, turned out to
be higher than 0.132. Since, as mentioned before, the study
focuses on the interaction between the C-value andLimp on
the one hand and the C-value and the dominating runoff pro-
cesses on the other hand and considering the above-described
results it was decided to leaveHm out of the regression.
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Table 2. C-values and their standard deviations of the Nahe basin (outlet at Grolsheim) and its 16 sub-basins for a period from 1972 until
2002 and basin area, mean annual precipitation and mean altitude.

Basin name Basin number C-value St dev Mean annual precipitation Mean basin altitude Basin area
[–] [–] [–] [mm/y] [m] [km 2]

Altenbamberg 4 0.29 0.09 681 340 318
Boos 16 0.50 0.12 773 471 2833
Enzweiler 13 0.74 0.14 870 493 22.7
Eschenau 10 0.51 0.10 801 397 605
Gensingen 17 0.16 0.06 592 291 197
Grolsheim 14 0.50 0.14 714 449 4011
Heddesheim 3 0.68 0.15 628 395 166
Imsweiler 8 0.37 0.11 676 378 172
Kallenfels 12 0.46 0.11 846 488 253
Kellenbach 2 0.52 0.16 704 439 362
Kronweiler 15 0.86 0.10 790 516 65
Nanzdietschweiler 11 0.47 0.12 976 361 195
Obermoschel 5 0.37 0.11 659 327 62
Odenbach 7 0.5 0.11 841 310 85
Odenbach Glan 6 0.44 0.11 780 380 1069
Steinbach 1 0.3 0.16 685 474 46
Untersulzbach 9 0.21 0.06 736 329 217

Table 3. p-values of the regressors mean basin altitude (Hm), basin
area (Ab) and mean annual precipitation (MAP) when used in a mul-
tiple regression with the permeability of the substratum (Limp) and
dominating runoff production processes (Output 1) respectively.

Regressor p-value Regressor p-value
combinations combinations

Limp 0.007 Output 1∗ <0.001
Hm 0.053 Hm 0.637
Limp <0.001 Output 1 <0.001
Ab 0.407 Ab 0.818
Limp 0.002 Output 1 <0.001
MAP 0.352 MAP 0.226

∗ Output 1 is:DSOF1+DSOF2+DSSF1+DSSF2+DSSF3

The correlation between C-values andLimp was less clear
for the Nahe basin and its 16 sub-basins than that for the
entire study area: anR2 of only 0.58 was obtained (Fig. 5).
The linear regression between the C-values of the Nahe basin
and its 16 sub-basins and the percentage ofLimp resulted in
modelCI , which is given in Eq. (4). The residuals of model
CI did not indicate a bias.

CI = 0.865× Limp + 0.043 (4)

Where:Limp is the percentage of impermeable substratum of
a basin [–].

According to the PCA, the combination of the sum of
DSOF1, DSOF2, DSSF1, DSSF2andDSSF3(Output 1) had the

Fig. 5. Correlation between the percentage of impermeable substra-
tum and the C-value for the Nahe basins and its 16 sub-basins.

strongest correlation with the C-value out of the 63 combi-
nations. Table 3 lists the p-values of the multiple regres-
sions with Output 1 andHm, Output 1 andAb and Output
1 andMAP as independent variables. No significant results
at the 5% significance level were obtained. Table 4 lists
this combination together with four more combinations that
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Table 4. The RMSEs of the performance and cross-validation of the regressions ofLimp with Hm, Ab andMAP and Output 1 withHm,
Ab andMAP, the performance and cross-validation of the five combinations of dominating runoff generation processes (drp) that correspond
most with the C-value according to the PCA and the performance and cross-validation of the modelsCI , CII andCIII .

Best correlated to Model performance Cross-validation Cross-validation
C-value according (drp+Limp)

to PCA

Limp and Output 1 in combination RMSE RMSE RMSE
with other basin descriptors

Limp andHm – 0.100 0.128 –
Limp andAb – 0.111 0.133 –
Limp andMAP – 0.111 0.139 –
Output 1 andHm – 0.086 0.112 –
Output 1 andAb – 0.086 0.106 –
Output 1 andMAP – 0.082 0.163 –

Combination of drp Output

DSOF1+ DSOF2+ DSSF1+ DSSF2+ DSSF3 1 0.086 0.103 0.094
DSOF1+ DSSF1+ DSSF2+ DSSF3 2 0.088 0.105 0.100
DSSF1+ DSSF2+ DSSF3 3 0.102 0.101 0.101
DSOF2+ DSSF1+ DSSF2+ DSSF3 4 0.090 0.103 0.105
DSOF1+ DSSF1+ DSSF2 5 0.141 0.155 0.156

Model

CI – 0.114 0.132 –
CII – 0.086 0.103 –
CIII – 0.071 0.094 –

corresponded best. As can be observed from Table 4 the sum
of DSOF1, DSOF2, DSSF1, DSSF2andDSSF3, performed best
when it was used as a parameter to model the C-value. Ac-
cording to the cross-validation, the combination of the sum
of DSSF1, DSSF2, DSSF3(Output 3), was best. The difference
between the RMSE of the model performance of Output 1
against Output 3 was markedly larger than the difference be-
tween the RMSE of the cross-validation, therefore, in gen-
eral, Output 1 gave the best performance. WhenLimp and
the separate previously determined five most important dom-
inating hydrological runoff producing processes were used in
a multiple regression, Output 1 performed best in the cross-
validation (see Table 4). Therefore, Output 1 was chosen
as a parameter for the modelsCII andCIII . RMSEs of the
cross-validation whenHm, Ab andMAP in combination with
Output 1 were used in a multiple regression were higher than
the RMSE of the cross-validation when only Output 1 was
used (see Table 4).Hm, Ab andMAP were therefore not used
in the model.

The correlation between Output 1 and the C-value had an
R2 of 0.76 and was remarkably better than that betweenLimp
and the C-value (Fig. 6). A linear regression between these
variables resulted in modelCII , which had the C-value as
dependent variable and the sum ofDSOF1, DSOF2, DSSF1,
DSSF2andDSSF3as an independent variable. The equation

of modelCII is given in Eq. (5):

CII = 2.145× [DSOF1+ DSOF2+ DSSF1+ DSSF2+ DSSF3] − 0.485

(5)

Where: DSOF1, DSOF2, DSSF1, DSSF2 andDSSF3 represent
the area percentages of the respective dominating runoff gen-
eration processes of a basin [–].

The residuals of modelCII did not indicate a bias. Since
the C-value can take per definition only values between 0 and
1, extrapolating the winter storm flow coefficient of model
CII when the surface area of the dominating runoff-producing
processes becomes larger than 60%, becomes problematic
(Fig. 6), while this is not the case for modelCI . A mul-
tiple regression between the C-value as dependent andLimp
and Output 1 as independent variables resulted in modelCIII .
The equation of modelCIII is given in Eq. (6):

CIII = 0.408× Limp + 1.559

× [DSOF1+ DSOF2+ DSSF1+ DSSF2+ DSSF3] − 0.427 (6)

Where:

– DSOF1, DSOF2, DSSF1, DSSF2 and DSSF3 are the area
percentages of the respective dominating runoff genera-
tion processes of a basin [–]
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Fig. 6. Correlation between the percentages ofDSOF1, DSOF2,
DSSF1, DSSF2andDSSF3and C-value for the Nahe basin and its
16 sub-basins.

– Limp is the percentage of impermeable substratum of a
basin [–]

Figure 7 depicts the correlation between the modeled win-
ter storm flow coefficients by modelCIII and the calculated
winter storm flow coefficients. The residuals of modelCIII
did not indicate a bias.

It should be noticed that four of the five best combina-
tions (listed in Table 4) all carry the sum of theDSSF1,2,3
processes in combination with eitherDSOF1 and/orDSOF2.
The fifth combination, which is the sum ofDSOF1, DSSF1and
DSSF2(Output 5 in Table 3), performs considerably less for
all performances than the other ones. This indicated that the
DSSF1,2,3 processes played an important role in determining
the C-value during winter. The more or less constant C-value
during winter indicated a saturated state of the basins; there-
fore, presumably a large amount of the soils of the basins
should be saturated. The good correlation between the C-
values and Output 1, as derived from the PCA, indicated that
these processes reflected this saturated state of the basins.

To test the significance of the independent parameters used
in modelCIII , the non-parametric Mann-Whitney U test was
applied, which tests the significance of a difference between
two samples. The null hypothesis is that the two samples
(Limp and sum ofDSOF1, DSOF2, DSSF1, DSSF2andDSSF3)

are taken from a common population, so that there should be
no consistent difference between the two sets of values. In
this case the null hypothesis was rejected with a confidence
level of 95%. This means that both parameters (Limp and
the sum ofDSOF1, DSOF2, DSSF1, DSSF2andDSSF3) used in

Fig. 7. Correlation between the C-values and modelCIII .

the regression analysis for obtaining modelCIII came from
different populations, hence carrying different information.
Model CIII did capture the calculation of the C-value best
(R2 of 0.83) in comparison to modelCI (R2 of 0.58) andCII
(R2 of 0.76) and showed that the combination ofLimp and
the dominating runoff production processes as derived from
the PCA improved the predictability of the C-value.

In order to see if the three modelsCI , CII andCIII differed
substantially from each other (H0 hypothesis: they are from
the same population), the nonparametric Kruskal-Wallis H
test (Kruskal and Wallis, 1952) was applied. The test clearly
indicated an acceptance of the H0 hypothesis, with a confi-
dence level of 95%. This means that it can safely be assumed
that there is no real difference between the samples (i.e. the
modeled values of each model), thus indicating that the three
models did possess the same type of information and could
be regarded as complementary. In Table 5, the residuals for
all three models are given to compare internal mutual differ-
ences.

Table 4 lists the RMSEs of the cross-validation. Model
CIII performed best and modelCI performed worst. The dif-
ferences between the performances were considerable, espe-
cially between modelCI and the modelsCII andCIII . The
difference between modelCI andCII could be attributed to
a lack of basins to establish a good correlation between the
C-value and the permeability of the substratum, since this
correlation when the 71 basins were used was rather good.
Moreover, the question remains whether with a better assess-
ment of the permeability by using more detailed geological
maps a much better performance of modelCI could have
been achieved, rendering the use of the dominating runoff

Hydrol. Earth Syst. Sci., 11, 1673–1682, 2007 www.hydrol-earth-syst-sci.net/11/1673/2007/



H. Hellebrand et al.: Storm flow generation by permeability and soil processes 1681

generation processes at this scale as redundant. The gain in
model performance for modelCIII compared to modelCII
indicated that the parameters of the modelsCI andCII did
possess some complementary information. It therefore can
be argued for that the effort to obtain extra information on
the dominating runoff generation processes pays off against
a considerable increase in model performance (i.e. perfor-
mance of modelCI against the performance of modelCIII ).

It turned out that for the modelsCI and CII the five
worst performing basins were in four cases not the same.
This indicated that for these basins the information level be-
tween the lithology assessment and the dominating runoff
generation processes assessment was apparent. The lithol-
ogy of the Kallenfels basin, the worst performing basin of
modelCI , consists of predominantly claystone and siltstone
with inclusion of sandstone (geological formation of the
Hunsr̈uckschiefer). In this analysis it was classified as im-
permeable bedrock (based on the assumption that schist is an
impermeable bedrock). Nevertheless, the inclusions of sand-
stone, which support sandy soils, allow for deep percolation
and were not exactly known in this study. Also, a weath-
ered zone or saprolite could have developed at the surface,
just beneath the soil, making storage of water possible. The
dominating runoff generation processes indicatedDDP and
DSSF3for large areas of the asLimp classified substratum of
the Kallenfels basin. Therefore, this area was probably as-
sessed wrongly in the permeability assessment. The same
was the case for the Obermoschel basin. In this basin, var-
ious areas consisted of the lower Glan-subgroup, which is
an alternation of predominantly grey, partly red clay with in-
clusions of silt- and sandstone. In the permeability assess-
ment these areas have been classified asLimp, but could well
have been assessed as permeable due to their sandstone in-
clusions. Large areas ofDDP and DSSF3 indicated by the
dominating runoff generation processes again reflected this.
A rise of their percentage of permeable area could therefore
well be argued for. For the least performing basins of model
CII , similar explanations for the assessment of the dominat-
ing runoff generation processes as for the assessment of the
permeability could be found, which means that the dominat-
ing runoff generation processes were assessed as being too
large or too small. Since the assessment of the dominating
runoff generation processes stops at maximum 2 meters be-
low surface level, deeper lying impermeable substrata are not
always taken into account when assessing them. This means
that a permeable soil on top of deeper lying impermeable
bedrock could still result in subsurface flow as defined by
Scherrer and Naef (Scherrer and Naef, 2003).

5 Conclusions

Simple linear models performed rather well to describe
runoff-producing processes during winter at the meso-scale.
The winter storm flow coefficient could be used as a de-

Table 5. Residuals of the three Nahe models: the five worst per-
forming basins of each model are given in bold.

Basin name Residuals model Residuals model Residuals model
CI [–] CII [–] CIII [–]

Altenbamberg −0.030 −0.164 −0.096
Boos 0.025 −0.037 −0.020
Enzweiler 0.109 −0.117 −0.086
Eschenau 0.080 0.049 0.063
Gensingen −0.220 −0.020 −0.055
Grolsheim 0.109 0.052 0.075
Heddesheim 0.118 0.017 0.028
Imsweiler 0.033 −0.009 0.030
Kallenfels −0.223 −0.027 −0.121
Kellenbach −0.059 0.108 0.042
Kronweiler 0.194 0.165 0.136
Nanzdietschweiler 0.072 0.097 0.106
Obermoschel −0.131 −0.038 −0.069
Odenbach −0.105 0.106 0.023
Odenbach Glan 0.025 −0.010 0.012
Steinbach −0.020 -0.116 −0.058
Untersultzbach 0.020 −0.055 0.022

pendent parameter in a regression analysis. Model perfor-
mance using a cross-validated RMSE indicated that the sim-
plest model with only one simplified independent parameter
(i.e. the permeability of the substratum) performed less well
than the model that took into account a more complex in-
dependent parameter (i.e. the sum ofDSOF1, DSOF2, DSSF1,
DSSF2andDSSF3). However, when a model based on multi-
ple regression was used that combined both parameters, the
performance of this model was best. The Mann-Whitney U
test that was applied to test if the parameters came from dif-
ferent populations and therefore could be used in a multiple
regression, gave a negative result.

The non-parametric Kruskal and Wallis H test (Kruskal
and Wallis, 1952) that was applied to test if the models agree
substantially resulted in an acceptance of the null hypothesis,
which proved that the models came form the same popula-
tion, thus carrying the same type of information. This leads
to the conclusion that the permeability of the substratum and
the dominating runoff generation processes are complemen-
tary bearers of information. Furthermore, comparison of the
residuals of the models indicated that badly modeled basins
by using the permeability of the substratum as an indepen-
dent parameter were explained by a lack of information in the
permeability of those basins, which could be provided by the
preliminary determined dominating runoff generation pro-
cesses. Badly modeled basins by using a linear combination
of these latter processes as an independent parameter were
partly explained by a lack of information in the assessment
of the processes. This information could be provided by the
permeability. As a consequence, the third model that com-
bined both permeability and the dominating runoff genera-
tion processes performed better than the other models. To ob-
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tain extra information on dominating runoff generation pro-
cesses paid off against a considerable increase in model per-
formance. However, with a better assessment of the perme-
ability by using more detailed geological maps, a much bet-
ter performance of the model that used only the permeability
of the substratum might have been achieved. Using the per-
meability as a linear estimator for the C-value in combina-
tion with dominating runoff generation processes could de-
termine the winter storm flow coefficient and thereby runoff
production areas very well. The impermeability of the sub-
stratum may perhaps be used as a parameter for predictions
in un-gauged basins. The use of the dominating runoff gen-
eration processes though, is due to its modeled nature, still
limited to areas with sufficient information on the soils. With
the use of GIS-based methods to determine soils (Dobos et
al., 2000; Gaddas, 2001) the dominating runoff generation
processes could possibly be derived from GIS-based data as
well and thereby included for the prediction in un-gauged
basins. Testing this assumption with better geological maps
and for other regions with a different climate and landscape
remains the objective of further study.
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pp., 1997.

Gaddas, F.: Proposition d’une méthode de cartographie des
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