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We would like to thank Jasper Vrugt for his comment on
our recent paper Tang et al. (2006) in which we compare
the Strength Pareto Evolutionary Algorithm 2 (SPEA2), the
Multi-objective Shuffled Complex Evolution Metropolis al-
gorithm (MOSCEM-UA), and the Epsilon Dominance Non-
dominated Sorted Genetic Algorithm II (ε-NSGAII) using a
statistical metrics-based approach. To frame our response,
we will provide a brief synopsis of the issues of concern dis-
cussed in the comment on our paper. Issue 1: Vrugt con-
tends that the exclusion of the recommendation of Vrugt et
al. (2003) that a single objective methodology should be used
to first find the endpoints of the Pareto set to precondition
search for MOSCEM-UA and that our use of initial uniform
random sampling for the three algorithms did not accurately
portray the performance of MOSCEM-UA. Issue 2: Vrugt
contends that our approach in attaining the reference Pareto
front in Fig. 5 using the 15 000 000 model simulations from
all of the runs from all of the algorithms (i.e., 3 algorithms
* 50 random seed trials/algorithm * 100 000 model simula-
tions/random seed trail) is inefficient relative to his assertion
that MOSCEM-UA would reliably identify the true refer-
ence front in approximately 22,000 model evaluations if we
had first used a single objective algorithm to pre-condition
MOSCEM-UA’s search. We will address each of these is-
sues individually and then provide some brief concluding re-
marks.

1 Response to Issue 1

In our comparison of the three algorithms, our computational
experiment was designed to maximize the performances of
MOSCEM-UA and SPEA2 relative to our own algorithm the
ε-NSGAII. As detailed in Sect. 4.1 of Tang et al. (2006),
multiple configurations of both SPEA2 and MOSCEM-UA
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were tested to maximize the algorithms’ performances. As
noted in Sect. 6.1, SPEA2’s performance is highly sensitive
to an appropriately sized archive and we maximized the al-
gorithm’s performance by providing an archive size from the
ε-NSGAII’s results where epsilon dominance (ED) archiv-
ing dynamically sizes the archive without user input. For
all three algorithms our goal was to test their abilities as in-
dependent multiobjective solvers using options and recom-
mendations available in their source codes. In the case of
MOSCEM-UA, the source code provided by Jasper Vrugt
did not provide users with an option for first using single ob-
jective optimization to identify the end points of the Pareto
front and therefore this recommendation requires another
single objective algorithm to augment the search. It was
not the goal of our study to develop dual single objective
and multiobjective tests of SPEA2, MOSCEM-UA, andε-
NSGAII. The study highlights the strengths and weaknesses
of all the algorithms in the context of multiobjective search.
For all three algorithms, a uniform initial distribution is a
standard starting point for applications and provides a full
characterization of their runtime search dynamics.

We do agree that pre-conditioning of search does dramat-
ically enhance the efficiency and reliability of evolutionary
multiobjective optimization methods. This is in fact, a contri-
bution from the work used to develop and test theε-NSGAII
(Kollat and Reed, 2006; Tang et al., 2006, 2007; Kollat and
Reed, 2007). As described in Sect. 2.2.1, theε-NSGAII ex-
ploits dynamic ED archiving and solution injection in a se-
ries of “connected runs” where initial small populations pre-
condition multiobjective search and speed convergence. In
ε-NSGAII, ED archiving and solution injection are the key
defining properties of the algorithm that have been imple-
mented in the algorithm’s source code structure to minimize
user inputs. Epsilon dominance archiving and solution injec-
tion are used to dynamically size the search population and
represent a search enhancement termedtime continuation
(Goldberg, 2002). In the algorithm, after an initial small pop-
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ulation searches and identifies an initial approximation of the
Pareto optimal set using a minimal number of model simu-
lations, the initial ED archive solutions are then injected into
a new search population where they represent 25-percent of
the new population and the remaining 75-percent of the pop-
ulation’s members are generated randomly. The random so-
lutions ensure population diversity and allow theε-NSGAII
to “continue” search without premature convergence. Our
recent work highlights that simple parallelization strategies,
ED archiving, and time continuation can dramatically en-
hance the computational scaling, efficiency, and reliability
of multiobjective search (Kollat and Reed, 2007; Tang et al.,
2007).

2 Response to Issue 2

The development and meaning of Fig. 5 should be clarified
in the context of Vrugt’s comment. In the comment, it is pro-
posed that the dual use of single-objective and multiobjective
optimization would allow MOSCEM-UA to be far more ef-
ficient than our results (i.e., 22 000 model simulations versus
15 000 000). This is not an accurate description of the results
in Fig. 5 since the figure simply provides an illustration of
the best known reference set for the Leaf River test case as
described in Sect. 5.1 of Tang et al. (2006). The reference set
was developed using all search results for all random seeds
for all of the tested algorithms to ensure that the best known
reference set was being used in metric calculations. The key
results that should be interpreted from Fig. 5 are that the Leaf
River test case has large false fronts and that no single al-
gorithm contributed the full reference set (ε-NSGAII found
58% of the reference set, SPEA2 found 42% of the reference
set, and MOSCEM-UA did not contribute any exact refer-
ence solutions). Although none of the algorithms found the
full exact set, all of them found approximations that ranged in
quality as quantified using the hypervolume and epsilon in-
dicator metrics. Figure 6 and Table 5 highlight that all of the
algorithms had some random seed trials that failed to closely
approximate the reference set.

A better portrayal of the potential search efficiencies of
the algorithms for the Leaf River test case is shown in Fig. 7
which shows the runtime performance of the best perform-
ing seeds from each algorithm. There are several relevant
observations that can be made from Fig. 7. First, all of the
algorithms rapidly found approximations to the Leaf River
reference set (i.e., hypervolume metrics<0.625 and ep-
silon indicator metrics<0.3125). Theε-NSGAII exceeded
these thresholds in approximately 2000 model simulations
whereas MOSCEM-UA and SPEA2 required approximately
12 500 and 20 000 model simulations, respectively. Also
Fig. 7 shows that after 15 000 model simulations, MOSCEM-
UA failed to maintain search whereas SPEA2 andε-NSGAII
continued to improve their approximation sets.

A key question that readers should consider when inter-
preting “best run” results for any evolutionary algorithm such
as those shown in Fig. 7 is: “How reliably can the algorithms
perform this efficiently?”. Tang et al. (2006) show in Table 5
that SPEA2 performed the most reliably on the Leaf River
test case followed byε-NSGAII., which was followed by
MOSCEM-UA. Augmenting any of the algorithms by using
results from another single objective algorithm would likely
enhance their search, but this does not represent a stand alone
test of their search capabilities and failures which was the fo-
cus and intent of Tang et al. (2006). Additionally, there are
several possible ways to address search failures as shown in
our recent work (Tang et al., 2007) in which a very simple
parallelization scheme exploits theε-NSGAII’s use of time
continuation to dramatically enhance search efficiency and
reliability for the Leaf River test case while maintaining al-
gorithmic and parametric simplicity.

3 Concluding remarks

We appreciate the time and effort spent in developing the
comment on our paper. Multiobjective optimization is
garnering interest across a broad suite of water resources
systems applications. The goal of this reply is to clarify
that our use and testing of MOSCEM-UA as an independent
multiobjective solver tried to maximize the algorithm’s
performance and provide a rigorous statistical test of its
search dynamics. We appreciate Dr. Vrugt’s continued
contributions to multiobjective optimization in the context
of his new developments. Since Tang et al. (2006) tested
MOSCEM-UA, we did not comment on the new approach
since it does not appear to be relevant to the focus of our
study. Our research has progressed as well (e.g., see Kollat
and Reed, 2007, and Tang et al., 2007) and we look forward
to future interactions.
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