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Abstract. The basic equations used to study the fluid diffu-
sion in porous media have been set by Fick and Darcy in the
mid of the XIXth century but some data on the flow of fluids
in rocks exhibit properties which may not be interpreted with
the classical theory of propagation of pressure and fluids in
porous media (Bell and Nur, 1978; Roeloffs, 1988).

Concerning the fluids and the flow, some fluids carry solid
particles which may obstruct some of the pores diminishing
their size or even closing them, some others may chemically
and physically react with the medium enlarging the pores; so
permeability changes during time and the flow occurs as if
the medium had a memory.

In this paper we show with experimental data that the per-
meability of sand layers may decrease due to rearrangement
of the grains and consequent compaction, as already shown
qualitatively by Elias and Hajash (1992). We also provide a
memory model for diffusion of fluids in porous media which
fits well the flux rate observed in five laboratory experiments
of diffusion of water in sand. Finally we show that the flux
rate variations observed during the experiments are compat-
ible with the compaction of sand, due to the amount of fluid
which went through the grains locally, and therefore with the
reduction of porosity.

1 Introduction

Darcy’s law, which states that the flux is proportional to the
pressure gradient, has led many authors to set rigorous equa-
tions representing the interaction between the porous media
and the fluid flow (Bear, 1972; Sposito, 1980; Steefel and
Lasaga, 1994; Dewers and Ortoleva, 1994; Indelman and
Abramovici, 1994; Cushman and Moroni, 2001). In spite
of this, some data exhibit properties which may not be in-
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terpreted neither with the classical theory of propagation of
pressure and fluids in porous media (Bell and Nur, 1978;
Roeloffs, 1988) nor adequately with many of the new the-
ories. Permeability changes may occur in time if the fluid
carries solid particles which obstruct some of the pores or
chemically reacts with the medium enlarging them. If that is
the case, then the flow would occur as if the medium had a
memory, meaning that at any instant the process of diffusion
is also affected by the history of pressure and flow. These
phenomena must be taken into account when modeling dif-
fusion of fluids in porous media.

The scope of this paper is to show quantitatively that the
permeability of sand layers decreases due to the rearrange-
ment of the grains and consequent mechanical compaction
(Elias and Hajash, 1992). By rewriting the constitutive equa-
tion of diffusion with memory formalism, we provide a new
model for diffusion of fluids in porous media capable to de-
scribe permeability changes observed in the flux rate through
the sand samples.

2 Laboratory experiments

The experiments were designed to obtain flow measurements
through a porous layer with constant hydraulic pressure dif-
ference between the boundary surfaces.

The selected medium is sand, which showed an adequate
compaction and therefore considerable permeability and flux
rate variations over time. The grain size distribution is shown
in Fig. 1. The percentiles are shown on top of histogram and
the weighted mean value of the grain size is〈s〉=0.27 mm.
Sand density was estimated to beρS= (2.4±0.1) g·cm−3 for
all the experiments.

We used water as fluid, its temperature during all experi-
ments was(19±1)◦C.

Figure 2 is a sketch of the instrument assembled for the
diffusion experiments.
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process of diffusion is also affected by the history of pressure and flow. These phenomena 

must be taken into account when modeling diffusion of fluids in porous media. 

The scope of this paper is to show quantitatively that the permeability of sand layers 

decreases due to the rearrangement of the grains and consequent mechanical compaction 

(Elias and Hajash, 1992). By rewriting the constitutive equation of diffusion with memory 

formalism, we provide a new model for diffusion of fluids in porous media capable to 

describe permeability changes observed in the flux rate through the sand samples. 

 

 

The laboratory experiments   

The experiments were designed to obtain flow measurements through a porous layer with 

constant hydraulic pressure difference between the boundary surfaces.   

The selected medium is sand, which showed an adequate compaction and therefore 

considerable permeability and flux rate variations over time. The grain size distribution is 

shown in Figure 1. The percentiles are shown on top of histogram and the weighted mean 

value of the grain size is 27.0=s  mm . Sand density was estimated to be ( )1.04.2 ±=Sρ  

3−⋅ cmg  for all the experiments. 

We used water as fluid, its temperature during all experiments was ( )119 ±  C° . 

 

 
Figure 1: Grain size distribution for the sand used in the experiments. Weighted mean value of the grain size is 0.27 mm. 

Fig. 1. Grain size distribution for the sand used in the experiments.
Weighted mean value of the grain size is 0.27 mm.

Water-saturated sand is kept in the cell for medium, a
cylinder shaped metal box of heightl= (11.6±0.1) cm and
surface’s inner diameterDI= (10.1±0.1) cm. The condition
of saturation was obtained slowly filling the empty cell with
dry sand and water alternately and removing the surplus wa-
ter. The cell was closed once completely filled. This ensures
that the water pressure inside the cell is the atmospheric pres-
sure. The next step is to obtain the value for the initial pres-
sure of the water pressure inside the cell. In Fig. 2R, RI and
RU are water-taps andR is also water source;T is a tank
with input gateI and output gateU ; H= (212±1) cm.

The water-tapsR andRI are initially switched on while
RU is off; this way the pressure inside the cell increases and,
after some time has passed, reaches the value of atmospheric
pressure plus the pressure due to theH - height water col-
umn. Once the pressure is the same through the medium, the
apparatus is ready.

OpeningRU the pressure on the boundary plane inx=l is
equal to the pressure of a water column of heightH plus the
atmospheric one, while the pressure on the boundary plane in
x=0 is the atmospheric pressure and so water starts to flow
through porous medium and runs out fromRU . Note that the
column is always of heightH because the surplus water from
the tap flows out from the gateU . This way a constant pres-
sure difference is maintained between the boundary planes in
x=l andx=0, which was verified during all the experiments
using pressure gaugeB.

Measurements of water flow at the boundary surface in
x=0 were obtained by storing water in a small container with
capacity of about 100 cm3 and taking note of the relative time
interval with 10−2 s precision chronometer. However, the
main error on time is the one due to the experimenter who
starts and stops the chronometer, as explained below.

The water mass in the container was measured using a
10−4 g precision scale.

In order to diminish the error of the experimenter and of
the devices the water mass in each container was measured
three times with the scale, experimenter error in starting and
stopping chronometer was evaluated to be 2·10−1 s and each

Fig. 2. Experimental device used in this study. A water column
of height equal H generates a pressure on one side of the porous
medium. Flux measures are token on the other side of the medium.

flow measure is the average of three containers filled in rapid
succession. The estimated relative error in the flux is then
about 2%.

All the experiments were managed the same way men-
tioned above, with the same value ofH and with five differ-
ent samples of the same type of sand. The following figures
(Figs. 3–7) show all experimental data collected. Collection
is limited to about 10 h, when the fluid flows very slowly,
steady rate has been reached and compaction is over. The
solid line in each figure is the theoretical flux that best fits
the experimental data. The memory formalisms leading to
the theoretical flux is introduced in the following.

Note that for each experiment in the first few hours the flux
rate steadily decreases defining a transient phase. It appears
that in several hours, seemingly less than 10, the flux estab-
lishes to a value that is about 70% of the initial one (only in
experiment 5 it is about 46% of initial value). The Reynolds
number (Re=ρF V Dµ−1, whereρF is fluid density,D is the
grain size andV is the volume of flowing water per unit of
time and surface) ensures whether the flow is laminar or tur-
bulent. AssumingD= 〈s〉 andV ∼=0.81 cm· s−1 (which was
computed in the worst of cases assumingq∼=65 g·s−1), it re-
sultsRe=2.2 which is less than 10, commonly accepted as
threshold for the turbulent motion.
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Figure 3 : Flux results (triangules) from experiment number one. An initial transient of about 3 to 4 hours is visible, afterwards the flux reaches a 

steady state. Overimposed solid line rapresents the theoretical curve which best fits the experimental data. 

 

 

 

 
Figure 4 : Same of figure 3, for the experiment number two. 

 

 

Fig. 3. Flux results (triangules) from experiment number one. An
initial transient of about 3 to 4 h is visible, afterwards the flux
reaches a steady state. Overimposed solid line rapresents the the-
oretical curve which best fits the experimental data.

 6

 
Figure 3 : Flux results (triangules) from experiment number one. An initial transient of about 3 to 4 hours is visible, afterwards the flux reaches a 

steady state. Overimposed solid line rapresents the theoretical curve which best fits the experimental data. 

 

 

 

 
Figure 4 : Same of figure 3, for the experiment number two. 

 

 

Fig. 4. Same as Fig. 3, for the experiment number two.

Opening the cell for medium after each experiment we ob-
served a height reduction of the sand of about 3–4 mm, that
is about 3% of the porous media volume, and this is an evi-
dence of mechanical compaction.

In order to account for the variation of flux rate in terms of
porous media volume reduction we used empirical Fair and
Hatch law (1933) for permeabilityk (Bear, 1972)

k = CMz3
/

(1 − z)2 (1)

wherez is medium porosity andCM is a geometrical medium
dependent coefficient introduced to account for the grain

 7

 
Figure 5 : Same of figure 3, for the experiment number three. 

 

 
Figure 6 : Same of figure 3, for the experiment number four. 

 

 

Fig. 5. Same as Fig. 3, for the experiment number three.
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Figure 5 : Same of figure 3, for the experiment number three. 

 

 
Figure 6 : Same of figure 3, for the experiment number four. 

 

 

Fig. 6. Same as Fig. 3, for the experiment number four.

size distribution, grains shape and chemical properties of the
medium.

The mass of sand in the cell in each experiment was
m= (1550±30) g (dry sand) and no sand went out from
cell during the experiment. Using the Fair and Hatch law
with ρS= (2.4±0.1) g·cm−3, it results that1k%= (26±3) %.
This permeability reduction justifies experimentally ob-
served flux rate reduction.

3 Modeling the flux variations

Our experiments show how the diffusion process departs
from the Darcy’s law. Compaction occurs during time and
diffusion is affected by the previous amount of fluid which

www.copernicus.org/EGU/hess/hess/10/93/ Hydrology and Earth System Sciences, 10, 93–100, 2006
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Figure 7 : Same of figure 3, for the experiment number five. 

 

 

Note that for each experiment in the first few hours the flux rate steadily decreases defining 

a transient phase. It appears that in several hours, seemingly less than 10, the flux 

establishes to a value that is about 70% of the initial one (only in experiment 5 it is about 

46% of initial value). The Reynolds number ( 1−= µρ VDR Fe , where Fρ  is fluid density, D  is 

the grain size and V  is the volume of flowing water per unit of time and surface) ensures 
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computed in the worst of cases assuming 65≅q  1−⋅ sg ), it results 2.2=eR  which is less than 

10, commonly accepted as threshold for the turbulent motion.  

 Opening the cell for medium after each experiment we observed a height reduction of the 

sand of about 3 – 4 mm , that is about 3% of the porous media volume, and this is an 

evidence of mechanical compaction. 

In order to account for the variation of flux rate in terms of porous media volume reduction 

we used empirical Fair and Hatch law (1933) for permeability k  (Bear, 1972) 

 

( )23 1 zzCk M −=                                                                                                          (1) 

 

Fig. 7. Same as Fig. 3, for the experiment number five.

went through the pores, so that a new formalism is required.
We modified as follows the original Darcy’s law

q̄ (x̄, t) = −c∇̄p (x̄, t) (2)

wherep is fluid pressure in the porous medium andq is fluid
flow through medium, introducing a derivative of fractional
ordern (Caputo, 2000):

γ q̄ (x̄, t) = −

[
c + d

∂n

∂tn

]
∇̄p (x̄, t) (3)

ap (x̄, t) = αρ (x̄, t) (4)

divq̄ (x̄, t) +
∂ρ (x̄, t)

∂t
= 0 (5)

whereρ is variation of fluid density in medium from the
undisturbed condition andγ , c andd are real numbers mod-
ulating memory formalism,α/a is the bulk modulus of the
fluid. In Eq. (3) the flux can be seen as a linear combination
of ∇p (x, t) and its fractional order derivative; the param-
etersc

/
γ andd

/
γ are the coefficient of the combination.

The definition of fractional order derivative is (Caputo, 1967;
Podlubny, 1999 )

f (n) (t) =
∂nf (t)

∂tn
=

1

0 (1 − n)

t∫
0

f (1) (u)

(t − u)n
du (6)

wheren ∈ [0, 1[ and0 is the Gamma function. Essentially
the derivative of fractional orderf (n) (t) is a weighted mean
of the first order derivativef (1) (u) in the time interval[0, t ],
which is a sort of feedback mechanism. That is, the values of
f (1) (u) at timeu far apart fromt are given smaller weight
than those at timeu closer tot . Hence, the weights are in-
creasingly smaller with increasing time separation fromt to

 11

usual empirical equations which are still very useful in many branches of applied science 

and technology. 

It is noteworthy to observe how the memory functions capture the past. What the fractional 

derivative memory functions are remembering is their past values as defined by equation 

(9), which implies that the function is constructed by adding to the initial value the 

successive weighted increments over time. The increments per unit time are represented by 

the first order derivative under the integral sign and the weights are represented by the factor 

of the first order derivative in equation (6), which are decreasing with increasing time 

separation from t . Thus, a variable’s value is a weighted mean of its past value. 

In order to fit our experimental data with memory model we find the Green function of the 

flux ( )tq ,0  when diffusion occurs through a slab of thickness l  with pressure boundary 

conditions, neglecting the atmospheric pressure which is a common offset (Appendix A), 

 

( ) 0,0 =tp                                                                                                                          (7) 

 

( ) == Ktlp , constant                                                                                                        (8) 

 

and initial pressure condition 

 

( ) == Kxp 0, constant                                                                                                      (9) 

 

 
Figure 8: Sketch of the porous slab with its assumed reference frame. 

 Fig. 8. Sketch of the porous slab with its assumed reference frame.

imply that the effect of past is fading with increasing time.
Whenn=0 andf (0)=0 the fractional derivative reduce to
the functions themselves.

The introduction of fractional derivatives in the constitu-
tive equations of the phenomena studied in geophysics is
not new. They have been already used to model the rhe-
ological properties of solids (Bagley and Torvik, 1986; Le
Mehaute and Crépy, 1983), to model the frequency indepen-
dent quality factor (Caputo, 1967), to successfully model the
fennoscandinian uplift (K̈ornig and M̈uller, 1989), to show
that the constitutive equation of polarizable media, in the
time domain, is represented by a relation containing these
derivatives (Caputo and Plastino, 1998). The derivatives of
fractional order were also succesfully used in other fields
of research like electromagnetism (Jacquelin, 1984), biology
(Caputo, 2002b; Cesarone, 2002), chaos (Mainardi, 1996)
and economy (Caputo and Kolari, 2001; Caputo, 2002a).

The equations resulting from our procedure are phe-
nomenological. However the reputation of this type of equa-
tions, as stated in recent motivations for assigning Nobel
prizes for physics, has been rehabilitated for their important
contribution given in various forms to the rapid developments
of the superconductive materials.

These phenomenological equations, when adequately ver-
ified with experimental data, represent a step forward in re-
spect to the usual empirical equations which are still very
useful in many branches of applied science and technology.

It is noteworthy to observe how the memory functions
capture the past. What the fractional derivative memory
functions are remembering is their past values as defined
by Eq. (9), which implies that the function is constructed
by adding to the initial value the successive weighted in-
crements over time. The increments per unit time are rep-
resented by the first order derivative under the integral sign
and the weights are represented by the factor of the first order
derivative in Eq. (6), which are decreasing with increasing
time separation fromt . Thus, a variable’s value is a weighted
mean of its past value.

In order to fit our experimental data with memory model
we find the Green function of the fluxq (0, t) when diffusion
occurs through a slab of thicknessl with pressure boundary
conditions, neglecting the atmospheric pressure which is a

Hydrology and Earth System Sciences, 10, 93–100, 2006 www.copernicus.org/EGU/hess/hess/10/93/
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Table 1. Fitting parameters with their errors for each experiment.

n d
/
γ

(
s1+n

)
AD

(
g · s−1

)
qAS

(
g · s−1

)
experiment 1 0.46±0.01 0.008±0.001 0.8 30.3
experiment 2 0.58±0.01 0.014±0.002 0.41 27.1
experiment 3 0.54±0.01 0.012±0.002 0.52 27.5
experiment 4 0.54±0.01 0.010±0.001 0.55 27.2
experiment 5 0.58±0.02 0.046±0.003 0.8 27.1

common offset (Appendix A),

p (0, t) = 0 (7)

p (l, t) = K = constant (8)

and initial pressure condition

p (x, 0) = K = constant (9)

In order to obtain the fluxq (0, t) we solve the Eqs. (3–5) in
the Laplace Transform (LT) domain obtaining

P (x, s) =
K

s

[
eBsν (x−l) − eBsν (l−x)

eBsν l − e−Bsν l
+ 1

]
(10)

and

Q (0, s) = −
dKB

γ sν

[
1 + e2Bsν l

e2Bsν l − 1

]
(11)

where

B =
[
aγ

/
αd

] 1
2 , ν = (1 − n)

/
2 (12)

and s is the LT variable.
TheLT −1 of Eq. (11) is found in the Appendix B and the

following expression of boundary flux is obtained

q (0, t) = −
dBK

2πγ

+∞∫
0

e−rt

rν

·
2 sin(πν)

[
e2Mrν

−1
]
+4 sin(Nrν) cos(πν) eMrν

e2Mrν
+1−2 cos(Nrν) eMrν dr (13)

with
r=modulus ofs
M=2Bl cos(πν)

N=2Bl sin(πν)

Note that in Eq. (7)a/α=ρF z
/
kB , where andkB is

bulk modulus of fluid; water values areρF =1 g·cm−3

and kB=2.08·1010 g·cm−1
·s−2 (Domenico and Schwartz,

1997). ThereforeB=
[
γρF z

/
dkB

] 1
2 and, assuming for sand

z=0.35 (Bear, 1972), the boundary flux theoretical solution

q (0, t) depends on memory parameterd
/
γ and the order of

fractional derivativen throughν=(1−n)
/

2.
With extreme values theorem it is seen that

lim
s→0

sQ (0, s) = lim
t→+∞

q (0, t) = 0 (14)

lim
s→∞

sQ (0, s) = lim
t→0

q (0, t) = −∞ (15)

4 Fitting the model to experimental data

The experimental data show that in several hours flux seems
close to stabilization. Since we will describe only the tran-
sient phase of diffusion (c=0), we obtained the data to fit by
subtracting the average of the last few hours of flux (let’s call
it qAS) to the original data. The data of the five experiments
indicate thatqAS is a good candidate for asymptotic flux and
reprocessed data are good to represent the diffusion transient
phase that we want to describe.

In order to best fit the memory model to experimental data
we minimized the following two variables function

AD

(
ν,

d

γ

)
=

1

ND

ND∑
i=1

∣∣∣∣EDi − q

(
ti, ν,

d

γ

)
− qAS

∣∣∣∣ (16)

whereND is the number of experimental data for each ex-
periment,EDi are the data obtained in the laboratory at the
time ti .

The results of fitting for the five experiments are shown in
Table 1.

Note that experiment 5 is a bit different from the others, in
fact the initial flux is higher and the transient reaches steady
state at about 46% of the initial value while the others reach
steady state at about 71% of the initial value. It differs from
the others most of all in the first hour, after which it is sim-
ilar to the other in the stationary part. This may be due to
a difference in the preparation of the sample which caused a
particular distribution of the grains which favoured a prefer-
ential path for the water caused an initial flux anomalously
high but the asymptotic value of flux is similar to that of the
other experiments.

Taking into account only the first four experiments it
results that both forn and d

/
γ the average quadratic
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Table 2. Mean values (AV) and average quadratic discrepancy
(AQD) for the first four experiments.

n d
/
γ

(
s1+n

)
AV 0.53 0.011

AQD 0.04 0.002

discrepancy (AQD) is compatible with the relative average
value (AV); values are shown in Table 2.

5 Conclusions

In the experiments we have observed that flux decreases
over time to about 70% of initial value and that the volume
of sand decreases by about 3%. Using empirical Fair and
Hatch law for permeability, the sand volume and flux reduc-
tions seem compatible; which proves that mechanical com-
paction occurring during diffusion is caused by the perme-
ability changes which in turn cause the flux variations.

The classic theory in the case of constant diffusivity with
constant boundary and initial conditions, would give a con-
stant flux, contrary to the results of our laboratory experi-
ments.

We rewrote the constitutive equations of the diffusion pro-
cess introducing a new memory formalism, based on frac-
tional order derivatives. This formalism accounts for the past
history of the process.

We successfully fit the new theoretical flux with our exper-
imental data. Note that for each experiment the value of the
minimum AD (see Eq. 16) numerically computed is about
2% of average observed flux and that the order of the frac-
tional derivatives has a standard deviation of 9% of the av-
erage value which. This is rather satisfactory result which
confirms the validity of the model.

With the boundary and initial conditions used, we ob-
served that the relaxation time of the flux is about 10 h. This
implies that the compaction of the sand in the sample has the
same relaxation time. However in terms of memory model,
the flux and the associated relaxation time are now defined
by two parameters and not only one as in the classic theory.
Those parameters are the order of fractional derivative n and
dµ

/
ρF γ , with µ being the fluid viscosity.

Appendix A

It is useful to rewrite memory relations in one dimension:

γ q (x, t) = −

[
c + d

∂n

∂tn

]
∂p (x, t)

∂x
(A1)

ap (x, t) = αρ (x, t) (A2)

∂q (x, t)

∂x
+

∂ρ (x, t)

∂t
= 0 (A3)

In this appendix we find theLT of the Green function of the
flux resulting from Eqs. (A1–A3) with boundary and initial
condition given by Eqs. (7–9). Computing theLT , differen-
tiating with respect tox and then substituting it results that

(c + dsn)

γ
Pxx =

1

α
[asP − αρ (x, 0)] (A4)

Here, in order to reduce the number of free parameters and to
simplify the formulae, we setc=0 which is justified as fol-
low: it seems that in several hours, seemingly less than 10 h,
the flux stabilizes but we cannot rule out that it is asymptoti-
cally nil. If the flux were constant after 10 h then the rigorous
solution requires thatc 6=0, which implies that asymptotically
the flux is constant as required by Darcy’s law which does not
apply here. We have two options:

1. consider the transient phase which is asymptotically nil

2. consider that after the transient phase the flux stabilizes

However, since we have no indication of the asymptotic
value, also for simplicity of computation, we studied only
the transient phase and setc=0.

So Eq. (A4) becomes

d

γ
snPxx =

a

α
sP − ρ (x, 0) (A5)

which, by substitutingLT of pressure equations, can be writ-
ten as

Pxx =
γ a

αd

[
s1−nP − s−np (x, 0)

]
(A6)

The general solution of Eq. (A6) is

P (x, s) = C1 (s) eBsνx
+ C2 (s) e−Bsνx

+
K

s
(A7)

whereB=
[
aγ

/
dα

] 1
2 andν=(1 − n)

/
2.

With boundary conditions (7) and (8) in Eq. (A7) we ob-
tain the general solution

P (x, s) =
K

s

[
eBsν (x−l) − eBsν (l−x)

eBsν l − e−Bsν l
+ 1

]
(A8)

Differentiating Eq. (A8) with respect tox and substituting in
theLT of Eq. (A3) we obtain

Q(x, s) = −
dKB

γ sν

[
eBsν (x−l) + eBsν (l−x)

eBsν l − e−Bsν l

]
(A9)
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Appendix B

In this appendix we find theLT −1 of Eq. (11), to be fit to
experimental data, by integratingestQ (0, s) along the path
of Fig. B1 below.

When the radiusR1 of the inner circle01 goes to infin-
ity and the radiusR2 of the outer circle02 goes to zero the
residual theorem (RT) states that the integral is equal to the
sum of residuals inside the path.

Path of integration in Fig. B1 can be divided as follow

0T = 01 + 0FH + 0HA + 0AB + 0BD + 0DE (B1)

and whenR1→0 we find that0BD→0CD and0HA→0HK .
Concerning the integral along01, when the radiusR1 goes

to zero it can be shown by the Taylor development ofQ (0, s)

nears=0 that

lim
s→0

sQ (0, s)= lim
R1→0

−
2dKB

γ

s1−ν(
2Blsν+o

(
s2ν

))=0 (B2)

and so integral along01 is zero.
To compute integrals along0CD and 0HK , it is useful

to rewriteestQ (0, s) with s=R2e
iϑ . WhenR2 goes to in-

finity imaginary exponential can be neglected because lim-
ited in [−1; 1], cos(ϑν) ∈ ]0, 1] becauseϑ ∈

]
π

/
2, π

]
∪]

−π, −π
/

2
]

and ν=(1−n)
/

2∈
]
0, 1

/
2
]
. So the integrals

along0CD and0HK are nil because function inside integral
is nil.

Function estQ(0, s) has no singularity in the complex
plain except in the origin, already analyzed. For RT, renam-
ing estQ (0, s)=I (s), we have that

lim
R1 → 0
R2 → +∞

∫
0T

I (s) ds

 = lim
R1 → 0
R2 → +∞

 +iR2∫
−iR2

I (s) ds

+

∫
0DE

I (s) ds +

∫
0FH

I (s) ds

 = 0 (B3)

and so

T L−1 [Q (0, s)] = lim
R1 → 0
R2 → +∞

1

2πi

−

∫
0DE

I (s) ds−

∫
0FH

I (s) ds

 (B4)

For the integral along0DE we sets=reiπ and obtain

I
(
reiπ

)
= IDE (r) = −

dBK

γ

e−rt

eiπνrν

(
1 + eZrν )(
eZrν

− 1
) (B5)

with

Z = M + iN

M = 2Bl cos(πν)  18

To compute integrals along CDΓ  and HKΓ , it is useful to rewrite ( )sQest ,0  with ϑieRs 2= . 

When 2R  goes to infinity imaginary exponential can be neglected because limited in [ ]1;1− , 

( ) ] [1,0cos ∈ϑν  because ] [ ] [2,,2 ππππϑ −−∈ U  and ( ) ] [21,021 ∈−= nν . So the integrals 

along CDΓ  and HKΓ  are nil because function inside integral is nil.  

Function ( )sQest ,0  has no singularity in the complex plain except in the origin, already 

analyzed. For RT, renaming ( ) ( )sIsQest =,0 , we have that 

 

 
Figure B.1: path of integration in the complex plane. 
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Fig. B1. Path of integration in the complex plane.

N = 2Bl sin(πν)

For the integral along0FH we sets = re−iπ and the same
way we have

I
(
re−iπ

)
= IFH (r) = −

dBK

γ

e−rt

e−iπνrν

(
1 + eZ∗rν

)
(
eZ∗rν

− 1
) (B6)

so that

T L−1 [Q (0, s)] = q1 (0, t)

=
1

2πi

+∞∫
0

[IFH (r) − IDE (r)] dr (B7)

Renamingω=πν andY (r) =

[
−

dBK
γ

e−rt

rν

]
we have

q (0, t) = −
dBK

2πγ

+∞∫
0

e−rt

rν

·
2 sin(πν)

[
e2Mrν

− 1
]
+ 4 sin(Nrν) cos(πν) eMrν

e2Mrν
+ 1 − 2 cos(Nrν) eMrν dr (B8)
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Appendix C
Glossary

ρS

[
g·cm−3

]
Mass of sand per unit vol-
ume

k
[
cm2

]
Permeability

z (dimensionless) Porosity
q (x, t)

[
g·s−1

·cm−2
]

Fluid mass flow rate in
porous medium

p (x, t)
[
g·s−2

·cm−1
]

Pressure of the fluid
ρ (x, t)

[
g·cm−3

]
Variation of fluid mass per
unit volume in the porous
medium from the undis-
turbed condition

ρF

[
g·cm−3

]
Mass of fluid per unit vol-
ume[

g·s−2
·cm−1

]
Bulk modulus of fluid[

g·s−1
·cm−1

]
Viscosity of fluid

dµ
γρF

[
sn

·cm2
]

Pseudodiffusivity

Acknowledgements.The authors are grateful to G. Scarascia
Mugnozza of the Department of Earth Science of Università “la
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