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Abstract. Topographic convergence and divergence are first
order controls on the hillslope and catchment hydrological
response, as evidenced by similarity parameter analyses. Hy-
drological models often do not take convergence as measured
by contour curvature directly into account; instead they use
comparable measures like the topographic index, or the hills-
lope width function. This paper focuses on the question how
hillslope width functions and contour curvature are related
within the Plynlimon catchments, Wales. It is shown that
the total width function of all hillslopes combined suggest
that the catchments are divergent in overall shape, which is
in contrast to the perception that catchments should be over-
all convergent. This so-called convergence paradox is ex-
plained by the effect of skewed curvature distributions and
extreme curvatures near the channel network. The hillslope-
storage Bossiness (hsB) model is used to asses the effect of
within-hillslope convergence variability on the hydrological
response. It is concluded that this effect is small, even when
the soil saturation threshold is exceeded. Also described in
this paper is a novel algorithm to compute flow path lengths
on hillslopes towards the drainage network, using the multi-
directional flow redistribution method.

1 Introduction

The terrestrial part of the hydrological cycle is driven by hy-
drometeorological fluxes such as rainfall, but controlled by
landscape properties. An understanding of these landscape
properties is thus a prerequisite for successful rainfall-runoff
modelling, especially for applications in ungauged basins.

In this paper we limit ourselves to landscapes that are char-
acterized by the following constrains:
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– The channel network is well-defined and consists of
perennial streams only. The channel network is thus
fixed in time and space.

– The non-channelized part of the landscape consists of
hillslopes that connect topographic divides with the
channel network. Every point in the landscape thus
drains towards the channel network and “pits” do not
occur.

– Hillslopes consists of a highly permeable soil layer
overlying an impermeable bedrock. The thickness of
the soil layer is small, as compared to the characteristic
length.

As a result of these constrains, the hydrology of land-
scapes considered will be dominated by lateral subsurface
flow and saturation-excess overland flow on hillslopes, and
open-channel flow within the channel network.

Its is assumed that these conditions hold for the major-
ity of catchments in humid climates. Notably exceptions are
sedimentary basins, where groundwater flow will dominate,
and semi-arid climates where the channel network extent is
highly dynamic, and the dominant runoff generating process
will be infiltration-excess.

The mechanisms by which landscape properties control
the hydrological response of catchments fall intro three
broad, and not completely mutually exclusive, categories:

– Ecological factors, like vegetation type and density,
which control processes like rainfall interception, evap-
otranspiration, and biogenic modification of hydraulic
soil properties

– Hydraulic factors, like saturated hydraulic conductivity,
water retention characteristics and macropores.

– Geometric factors, like hillslope shape and size, soil
depth, and channel network topology.
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These three categories are not entirely independent, in the
sense that e.g. soil hydraulic properties are strongly affected
by plant and soil ecology. Also, on a long (longer than a year)
time scale, there is a feedback from hillslope hydrology to
these controlling factors: vegetation composition is affected
by the soil moisture regime, hillslope length is limited by a
channelization threshold.

This paper is concerned with the last group of hydrolog-
ically relevant landscape characteristics, being hillslope and
catchment geomorphology.

The classical form of geomorphic information is a digital
elevation model (DEM), and the classical way to use it for
hydrological purposes is to build a two or three-dimensional
gridded spatially distributed hydrological model, where each
grid cell has an associated topographic elevation, and water
is allowed to flow from grid cell to grid cell. This can be con-
sidered as an explicit way of incorporating geomorphic data.
In some sense, because grid cells are only linked through
common boundaries, the larger scale spatial correlations and
structures that exist in the geomorphic surface are ignored.

There are, however, alternative ways of applying geomor-
phic data in a more implicit way, that, by doing so, do respect
these larger scale geomorphic structures.

An example of a simple model that conforms to this im-
plicit use of geomorphic data is the overland flow and sed-
iment transport model KINEROS (Woolhiser et al., 1990;
Smith et al., 1995; Canfield and Goodrich, 2006). In this
model, the channel network is broken up into individual
channel links, each represented by a “channel” model ele-
ment having a single, characteristic length, cross-sectional
geometry, and slope. The hillslopes are broken up into indi-
vidual ’plane’ model elements, each having a characteristic
width, length, and slope.

The model thus starts from some observations regarding
the regularity that is present within catchments: channel links
can be adequately described by straight lines, and hillslope
elements by rectangular planes. Higher order geomorphic
attributes such as stream profile concavity and hillslope cur-
vature are thus regarded as second-order with respect to their
effect on hydrology and sediment transfer.

Parametrization of the KINEROS model requires the iden-
tification and delineation of landscape elements as channels
and hillslopes, which by definition requires the interpreta-
tion of individual DEM grid cells in a spatial and geomorphic
context.

A second, more advanced example of the implicit use
of topographic information for hydrological purpose is
the TOPMODEL (Beven and Kirkby, 1979; Beven, 1997;
Kirkby, 1997). The basic idea is that under hydraulic steady
state, local (perched) groundwater level is directly related to
the so-called topographic indexλ

λ = logAc/ tanα (1)

whereAc [L] is the upstream contributing area, per unit con-
tour line width, and tanα is the local topographic slope gra-

dient. The topographic indexλ thus describes the balance
between the amount of water that has to pass through a given
point (proportional toAc), and the gravity-controlled subsur-
face flow velocity (proportional to tanα). In effect, the index
λ functions as asimilarity index, because all point of equal
λ are assumed to behave similar, despite differences inAc

and tanα. The TOPMODEL then routes water not through
a (two-dimensional) spatial grid, but instead through a (one-
dimensional) histogram ofλ. Much of the topographic struc-
ture of hillslopes has thus been captured in this histogram.
Sivapalan et al.(1990) explored the possibility of approx-
imating the shape of theλ histogram with a 3-parameter
gamma distribution, reducing the amount of required topo-
graphic data even further.

The idea of developing similarity indices for hydrologi-
cal applications has been extensively explored byAryal et al.
(2002) who derived such indices from topographic, soil, and
climatic attributes. the extent of hillslope saturation was
found to be defined by three parameters:

– An input index that relates water supplyq to the soil
transmissivity and the first-order hillslope geometry
(length, slope). This index, which is derived in a simi-
lar fashion as TOPMODEL’sλ, predicts occurrence and
extent of saturated areas on planar hillslopes.

– Two parameters describing the second-order hillslope
geometry, i.e. planform and profile curvature. These
parameters modify the predictions made by the input
parameter.

In a later paper, this theory is extended to the prediction of
response time after a change in water balance (Aryal et al.,
2005).

All examples described above use some simplifying as-
sumptions regarding the flow process, being either in steady
state, or approximated by the kinematic wave theory, and
thus ignoring diffusive hydraulic processes. Recently,Berne
et al. (2005), starting from a linearized version of the
hillslope-storage Boussinesq model (Troch et al., 2003), de-
rived a similarity parameter that described the balance be-
tween diffusive and advective subsurface flow components:
the hillslope Ṕeclet number, defined by

Pe =
L tanα

2pD
−

aL

2
(2)

whereL hillslope length,p a linearization parameter,D soil
depth (the productpD is equivalent to a characteristic aver-
age perched groundwater height), anda a planform curvature
measure.Berne et al.(2005) proceed further by showing that
a unique relationship exists betweenPeand the moments of
the characteristic response function (i.e. the recession hydro-
graph). Thus,Pecan be regarded as a similarity parameter.

Summarizing, the question how the characteristic hydro-
logical response within a catchment varies (e.g. as measured
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by the moments) can thus be reduced to the question how
similarity indices likeλ andPevary within the landscape.

In an ideal case, a catchment can be subdivided into a
(fixed) drainage network and a (fixed) hillslope that folds
around the channel network. This hillslope should then be
broken up into geometrically homogeneous individual hill-
slopes, each characterized by a set of morphometric parame-
tersL, D, α, a.

It appears that of all morphometric parameters discussed,
the first order parameters (length, slope) are relatively eas-
ily observed, measured and understood, while this is more
problematic for second-order parameters such as conver-
gence/divergence. Therefore, after a brief discussion of con-
trols onL, D, α, this paper’s focus will be on flow line con-
vergence and divergence, which is an important parameter in
all hydrogeomorphic similarity indices described above.

2 Morphometric parameters

2.1 Hillslope gradient

Hillslope gradient tanα is primarily controlled by the tec-
tonic and geomorphological setting of the hillslope and
catchment. For low-relief areas, where tectonic uplift rate
is slow, diffusive geomorphic processes will prevail. The re-
sulting morphology consists of dome-shaped hills, with wide
flat tops, slowly steepening towards the channel network.
The classic model to describe this process is the linear ge-
omorphic diffusion law, given by

qs = kD tanα (3)

wherekD

[
L2 T−1

]
is a diffusivity constant, andqs

[
L2 T−1

]
the volumetric sediment transport per unit hillslope width.
A typical order-of-magnitude value forkD is 0.01 m2/ yr
(Rosenbloom and Anderson, 1994). For landscapes where
topography is in approximately steady state, material re-
moved from hillslopes by surface erosion is equal to material
inserted from below by uplift. For a unit width hillslope strip
of lengthL, this latter volume is equal to

qs = UL (4)

whereU
[
L T−1

]
is the tectonic uplift rate. Equating Eqs. (3)

and (4) and solving forL yields

tanα = UL/kD. (5)

The interpretation of Eq. (5) conforms to common sense
knowledge of hillslopes: hillslopes get steeper if they are
longer; they get steeper if tectonic action is stronger; they
get steeper if erodibility is lower.

There is however a strong constraint on maximum values
of α. Landsliding and other mass wasting processes will limit
slope angles. The effect of these processes is thatα≤αc,
whereαc is a “critical” slope angle, that is controlled by soil
material, cohesion, pore pressures etc. Note that the latter

L

Fig. 1. Cartoon illustrating the relationship between hillslope length
and drainage density. A tile with an area ofA=4L2 has a channel
length of (averaged over all tiles)≈2L, resulting in a drainage den-
sity of L/2

implies strong feedbacks between hillslope hydrology and
morphology, at least on longer time scales. A typical value
for the critical slope angle is tanαc≈0.3

There is growing evidence that many diffusional pro-
cesses do behave more non-linear than previously assumed
(Roering et al., 1999; Martin, 2000). Corresponding mod-
els suggest a continuous transition between linear diffusion
at small slope angles, towards landsliding-like strongly non-
linear transport at high slope angles.

2.2 Hillslope length

Hillslope length is directly related to drainage density (the
total length of stream channels per catchment area). For
a highly idealized “random-walk” catchment, as shown in
Fig. 1, one can show that

L ≈ 1/2Dd (6)

whereL [L] is hillslope length andDd

[
L−1

]
drainage den-

sity.
Drainage density is defined by the location of channel

heads, or “sources”. Channel heads are primarily a geo-
morphic feature but have a clear hydrologic significance, be-
cause they demarcate the subsurface flow dominated hill-
slopes from surface flow dominated channels. Different ex-
planations for channel head locations have been proposed,
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reasoning onwards from hydro-geomorphic or hydrologic
controls.

The classical hydro-geomorphic model for channel head
locations is based on a stability analysis for geomorphic hill-
slope evolution (Smith and Bretherton, 1972; Tarboton et al.,
1992; Smith et al., 1997): infinitesimally small hollows on
a hillslope will act as a focal point for water and sediment
transported from upslope, due to flowline convergence just
upflow of the hollow. If the (increased) amount of sediment
delivered to the hollow is larger than the (increased) sediment
transport capacity from the hollow downwards, the hollow
will tend to fill up and disappear. If, on the other hand, the
delivered amount is smaller than the local transport capacity,
the hollow will grow and channelization will initiate.

So, the channel network extent, and thus characteristic
hillslope length, is primarily controlled by sediment trans-
port, which is in itself strongly dependent on hillslope hy-
drology. As a general rule, “dry” sediment transport (such
as most mass wasting processes) lead to stable, unchannelled
hillslopes, while “wet” sediment transport (due to overland
flow) leads to instabilities and hence channelization.

Thus, in general, the hillslope-channel transition will
coincide with the transition from subsurface-dominated to
surface-dominated hydrology. This observation is the start-
ing point for an analysis that yields the maximum area of
unchannelled zero-order drainage basins (O’Loughlin, 1986;
Tucker and Bras, 1998). It is assumed that in many cases
the (shallow, perched) groundwater flow can be satisfactory
described by a kinematic wave approach, and that the head
gradient (that is the physical basis for flow) can be approx-
imated by the topographic slope gradient (that can be easily
derived from terrain information) (Troch et al., 2002). Then,
for a given basin of areaA, bottom widthw and characteris-
tic effective precipitation rateP , the steady state water flux
through the lower boundary will beAP/w. The subsurface
flow capacity, however, is the product of soil transmissivity
T and local slope gradientα. Overland flow and hence chan-
nelization will occur whenAP/w>T α.

2.3 Profile curvature

Profile curvaturecp

[
L−1

]
measures the topographic cur-

vature along a flow line, i.e. a steepest descent path. It is
computed by (Mitasova and Hoffierka, 1993; Schmidt et al.,
2003)

cp =
fxxf

2
x + 2fxyfxfy + fyyf

2
y(

f 2
x + f 2

y

) (
f 2

x + f 2
y + 1

)3/2
(7)

wherefx etc. are the first and second order partial derivatives
of the topographic surfacez=f (x, y). SeeSchmidt et al.
(2003) for a discussion on methods to compute these from a
raster DEM. Positive (negative)cp indicate concave (convex)
profiles.

The variability of profile curvature within hillslopes and
catchments is directly related to the governing geomorphic
processes. Landscapes where diffusional erosion dominates
will have domed-shaped hills with flat tops and steeper slope
bases, but convex in overall shape.

2.4 Contour curvature

Contour curvature (sometimes named “planform curvature”)
cc

[
L−1

]
measures the curvature of contour lines on topo-

graphic maps. It it directly related to the convergence and
divergence of flow lines, which are by definition perpendic-
ular to the contour lines. It is computed by (Mitasova and
Hoffierka, 1993; Schmidt et al., 2003)

cc =
fxxf

2
y − 2fxyfxfy + fyyf

2
x(

f 2
x + f 2

y

)3/2
(8)

(Note that the corresponding equation in Table 1 ofSchmidt
et al. (2003) contains a typo: the firstfx should be anfy).
Positive (negative)cc values indicate convergent (divergent)
curvature.

The remainder of this paper will focus on the organization
of contour curvature within hillslopes and catchments.

3 Hillslope analysis

The hsB hydrological model is designed for the hillslope
scale; catchment response is to be modelled by tying to-
gether many hillslopes with a channel routing function, such
as described byTroch et al.(1994). Hillslope morphologi-
cal parameters of the hsB model are hillslope lengthL, mean
hillslope gradientα, and the semi-distributed hillslope width
functionw(x).

So far, the hsB model has mainly be applied to theoretical
cases using highly idealized hillslope geometries, spanning
the whole range of profile and contour curvatures.

However, delineating a catchment into individual hill-
slopes, that each fall in the classes convergent, divergent and
parallel, is a nontrivial problem. The main reason for this is
that the lateral boundaries of a hillslope are in principle un-
defined. Measuring along a contour line, contour curvature
continuously changes.

A much more practical way of delineating hillslopes, also
suggested byFan and Bras(1998), is to distinguish between
“headwaters” and “sideslopes”. Headwaters being those
zero-order basins that drain directly towards a channel head.
Sideslopes are those hillslopes that drain directly towards a
channel link. Generally speaking, headwaters will be mainly
convergent in nature, and sideslopes parallel and divergent.

Figure 2 shows for the Plynlimon catchments in Wales
(e.g.Brandt et al., 2004) the probability densities of contour
curvature for all 15 m DEM grid cells that belong to the head-
water or sideslope classes. The channel network was defined
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Fig. 2. Probability density of contour curvature,cc for headwater
and sideslope DEM grid cells, for the Plynlimon catchments, Wales

as all DEM grid cells having a contributing area of at least
10 000 m3, roughly consistent with maps and a slope-area
analysis (see Fig.7). Note that both slope types are domi-
nantly divergent, and that headwaters appear to be even more
divergent than sideslopes, which is counterintuitive. Me-
dian values for contour curvature arecc= − 2.6×10−3 m−1

for headwaters andcc=−1.7×10−3 m−1 for sideslopes. The
fact that thecc distribution appears to be skewed towards di-
vergence is in contrast with the prior estimation that catch-
ments should be overall convergent, because they can be re-
garded as an area draining towards a single point (i.e. the
catchment outlet). This is discussed in greater detail in
Sect.5, below.

The relative abundance of convergent grid cells within
sideslopes is caused by the large variability of curvature
within a single hillslope. To a large extent, this variability
is due to hollows. The nature of these hollows will be dis-
cussed below.

The hillslope width functionw(x) is essentially the dis-
tribution of downstream path lengths. Every grid cell can
be though of being the origin of a flow path that follows a
steepest descent (as the water flows) path towards the chan-
nel network, where it terminates.

The obvious way to compute flowpath length for each hill-
slope grid cell is to trace a single-flow-direction path. In this
method, flow originating from cellc is passed to that neigh-
bour celln out of 8, that has the steepest downhill gradient
betweenc andn. This is similar to the classic “D8” algorithm
for computing upstream contributing area (O’Callaghan and
Mark, 1984). McGuire et al.(2005) uses path lengths com-
puted in this way to explain inter-catchment mean residence
time variability.

1
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Fig. 3. Illustration of the multidirectional flow distance algorithm.
(a): flow fractionsf from every cell to at most 2 lower neighbours.
(b): First step ofd(c) computations. The small-print boxed number
on top of the arrows indicate path lengths along that route. The large
unboxed numbers in the cell center indicate computedd(c) values.
(c): Second and last step.

However, it is widely acknowledged that the D8 algorithm
does a poor job when applied to divergent landscapes. Flow
on divergent hillslopes does not diverge; it keeps flowing on
a single flow path, while other paths may join. In essence,
the D8 algorithm is convergent by design. To solve this
problem (for computing contributing area) several multidi-
rectional flow redistribution algorithms have been proposed,
among which those byQuinn et al.(1991, 1995) and Tar-
boton(1997) are the most widely applied. These models do
not have the constraint that water originating from a grid cell
c is passed to a single neighbourn. Instead, water is passed
to 2 (Tarboton, 1997) or all lower neighbours (Quinn et al.,
1991, 1995). In this way, flow on divergent topographies will
be divergent as well.

The higher predictive quality of these multidirectional
flow redistribution methods (Schmidt and Persson, 2003;
Güntner et al., 2004; Pan et al., 2004; Erskine et al., 2006)
raise the question whether there are any advantages for com-
puting flow distances too. Here we present a flow-path length
algorithm that takes divergent flow into account.

One property of multidirectional flow path algorithms is
that unique flow paths do not exist. Therefore, flow distance
between a grid cellc is not defined by a single number, but
by a distribution of distances instead, see also Fig.3. Unfor-
tunately, the determination of this full distribution is compu-
tationally extremely demanding for the general case of flow
distribution among all lower neighbours, because all possible
paths between every grid cell and the channel network has to
be considered, which is anO(N2) problem.

The practical solution adopted here is to trace the first mo-
ment of this distribution only. the following pseudo code
describes the algorithm:

1. Sort all cellsc by z.

2. Setd(c) = 0 for all c that are in the channel network.
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Fig. 4. Flow distance field for the Plynlimon catchments. Left: Flow distance as computed using theQuinn et al.(1991) multiple flow
direction method (“MFR-Q”). Right, top: detail showing the D8 single-flow direction method (“SFD”). Right, middle: detail showing the
Tarboton(1997) multidirectional flow redistribution method (“MFR-T”). Right, bottom: detail showing the MFR-Q method.

3. Let 1i be the inter-cell distances in all 8 directionsi.

4. For each hillslope cellc:

5. For each directioni:

6. Compute flow fractionfi towards neighbourni of c.

7. end for.

8. For all directionsi wherefi 6= 0:

9. Compute the flow distance along a path through neigh-
bourni asdi=d(ni)+1i .

10. end for.

11. Computed(c) as the weighted mean of flow distances
along all pathsi asd(c)=

∑
fidi .

12. end for.

Notes: a.d. 1.:dc depends ondn, wheren are those neigh-
bours ofc that are connected toc by flow paths. Alln are
guaranteed to be lower thanc in all optional flow partition-
ing schemes. By iterating through the DEM from lowest to
highest cells, it is thus guaranteed for allc that whend(c)

is to be computed, alld(n) are known. In this way, recur-
sion code, and associated computational inefficiencies, can
be avoided, though the algorithm itself is defined recursively.

a.d. 2.: The lowest hillslope grid cells have somen that are
channel grid cells. Settingd=0 for these channel cells avoids
having to take the lowest hillslope cells as a special case.

a.d. 5.: These flow fractions are to be computed according to
the schemes proposed byQuinn et al.(1991, 1995) Tarboton
(1997) or any other multidirectional flow redistribution algo-
rithm. Note that single flow direction algorithms such as the
classic D8 method can also be used here. In that case only
onefi is set to 1, and all otherfi are 0.

Figure 3 illustrates the algorithm. Flow originating in
cell 1 has three different ways to end up in the channel net-
work, by path 1→3→5, by path 1→ 3 → 6, and by path
1→4→6. A complete analysis would involve and averag-
ing all these path lengths to obtaind(1) as a distribution of
lengths. Our (recursive) algorithm definesd(1) in terms of
d(3), d(4), f1→3 andf1→4.

Figure4 shows a map of flow distance, for the Plynlimon
catchments, Wales (e.g.Brandt et al., 2004). Insets show how
the flow distance field vary with the method chosen.

4 Width functions

Flow distance fields are useful to parameterize the hsB
model. The required hillslope width functionw(x) is equiv-
alent with the frequency of flow distances. Figure5 shows
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the histograms of flow distances, as shown in Fig.4, and as
computed by three different flow distance algorithms.

It can be seen from this figure that the shape of the
w(x) function is clearly influenced by the flow redistribution
method used, especially for the headwater hillslopes. The
general trend observed is that MFR methods skew the dis-
tribution towards higher distances; slightly for the MFR-T
method, much stronger for the MFR-Q method. This can
be explained by the divergence that is inherent in the MFR
methods in general and the MFR-Q method in particular.
Because flow dispersion is taken into account, multiple flow
paths connect each grid cell with the channel network. The
steepest-descent path is likely to correspond to the shortest
path, but the alternative paths are longer. Because MFR-Q
includes more dispersion than MFR-T, even longer paths are
included, although with a small weight. Median flow path
lengths for the headwater hillslopes are 5% (MFR-T) and
27% (MFR-Q) higher than for SFD path lengths. For the
sideslopes these numbers are slightly smaller, 1.5% and 20%,
respectively. For all hillslopes taken together the effect is
2.5% and 22.5%.

The general shape of the width functions, as shown in
Fig. 5 requires some attention. The width function for head-
waters are first increasing, and then decreasing. This can be
explained by the way that headwater hillslopes are placed
within the landscape. Headwaters are thought to capture
much of the convergent parts of the catchment, because they
form areas where flow converges towards a single point: the
channel head. Hillslope width on this point (x=0) is very
small (theoretically it could be zero). Then, the hillslope is
becoming wider, sow(x) is increasing. The upper bound-
ary of hillslopes are formed by (local) divides. This divide
is generally not on equal distance from the channel, nor does
it have a uniform elevation. Usually the divide is a ridge-
like feature consisting of hilltops and saddles. The lowest
saddle of this divide also defines the highest continuous to-
pographic contour line. Above this line, the hillslope is no
longer necessarily continuous but may consists of multiple
parts. This is reflected in the width function turning into a
decreasingw(x) function, reflecting the divergent nature of
the hillslope fragments in these locations (the hilltops on the
divide). Note, however, that the highest continuous contour
is not necessarily the location of the modal flow distance. Fi-
nally, there is only a single location (usually a hilltop) that
is at the maximum flow distance from the channel network.
Therefore,w(x) should be decreasing towardw=0 atx=L,
whereL is the length of the hillslope.

Sideslopes, on the contrary are more characterized by di-
vergent and parallel hillslope fragments. This is reflected by
thew(x) functions that are almost strictly decreasing. Only
for the very lowx rangew(x) seems to be slightly increasing.
This effect is absent for the SFD algorithms, and strongest for
the MFR-Q algorithm. This suggests that it is caused by ri-
parian area dispersion. Because in these areas topographic
slopes are relatively small, and valley bottoms wide, flow
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Fig. 5. Flow distance probability densities for headwater hills-
lope grid cell, sideslope hillslope grid cells, and combined. Meth-
ods used are using the D8 SFD algorithm, theQuinn et al.(1991)
MFR algorithm (MFR-Q), and theTarboton(1997) MFR algorithm
(MFR-T). Probability densities are calculated such that the total
probabilities for the headwaters and sideslopes sum up to that of
all hillslopes, which is 1.

paths tend to diverge here. Near-channel grid cells thus can-
not be expected to take the shortest route to the channel net-
work, but instead have some fraction of flow that moves par-
allel to the streams for some while before joining the chan-
nel. Therefore, very short cell-to-channel distances are less
likely, and hence their frequency is lower.

Also shown in Fig.5 is the overall width function when
all hillslope grid cells are taken together. This overall width
function is the sum of the headwater and sideslope width
functions. What is most striking about the shape of the over-
all width function is that it is mainly decreasing. This is
caused by the much larger area of sideslope cells compared
to headwater cells. therefore the contribution of the conver-
gent lower part of the headwater width function to the overall
width function is rather small, and not strong enough to pre-
vent decreasingw(x) for d>30 m.
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Table 1. Curvature statistics for various subsets of the Plynlimon
catchments DEM grid cells. subsets are: hillslope grid cells (H),
sideslope hillslope grid cells (S), both slope types (HS), and any
grid cell (HSC).

class meancc mediancc

H 0.2432 −0.0026
S −0.0874 −0.0018
HS 0.0079 −0.0020
HSC 0.0102 −0.0020

5 The convergence paradox

The overall width function as shown in Fig.5 (c) is clearly
decreasing. This suggest that the catchment as a whole is
dominated bydivergence. This is in sharp contrast to what is
to be expected. Because the catchment can be regarded as an
area that drains towards a single point (the outlet) it should
beconvergentin overall shape.

As described above, Delineating a catchment in headwa-
ter and sideslopes, and using the width functions of these
as indicators of convergence and divergence is just a practi-
cal approach. A more fundamental convergence/divergence
analysis should be based on per-cell contour curvature and
the statistics thereof.

Table1 lists, for the Plynlimon catchments, the mean and
median contour curvaturecc for all grid cells that belong to a
headwater hillslope (subset “H”), a sideslope hillslope (sub-
set “S”), any hillslope (subset “HS”), or any cell within the
drainage basin, including those grid cells that form the chan-
nel network (subset “HSC”).

It can be seen from the mean curvature data that indeed
headwater hillslopes are convergent on average (meancc>0),
and sideslopes are divergent (meancc<0). The HS and HSC
subsets also are convergent on average. This confirms the ex-
pectations, i.e. that the catchment as a whole should be con-
vergent. However, when inspecting themediancurvatures
for all 4 subsets, one sees that these are all negative. Thus,
in 3 of the 4 subsets meancc>0 while mediancc<0. These
opposite signs suggest that the curvature distributions are sig-
nificantly skewed, or that extreme values play an important
role.

To investigate the effect of skewness and extremes in the
curvature distribution, the distribution has been cutoff at a
range of percentile values. This is shown in Fig.6. It can
be seen that the average of (say) the 1st and 99th percentile
is positive. This indicates that extreme values are dominated
by cc>0. This behaviour is up to (approximately) the 10th
and 90th percentile. From the average of 20th and 80th per-
centiles onward, the value is negative, and coincides with the
overall median curvature. This indicates that for this range,
the curvature distribution is skewed towards divergence, and
the effect of extreme values is absent.
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Fig. 6. Diagram illustrating the asymmetric tails of contour curva-
ture distribution. For every thresholdi the ith and the(100−i)th
percentiles have been computed. The red solid line indicates the av-
erage of these two percentiles. The dashed lines indicate the global
mean curvature (>0; convergent) and global median curvature (<0;
divergent).

A preliminary conclusion, therefore, is that the “curvature
paradox” is caused by the fact that the majority of grid cells
is divergent, but the catchment-scale curvature is still conver-
gent, because of a small fraction of grid cells that are strongly
convergent.

Additional information can be obtained from Table1. The
median values for all-hillslope and all-basin grid cells are
equal, while the mean values are not. This by itself indicates
the effect of extreme values, for which the mean is sensi-
tive while the median isn’t. The difference between the two
classes considered is that HSC includes channel grid cells,
while HS doesn’t. Therefore, the extreme convergent grid
cells should be located in the channel grid cells, which does
make sense.

This hypothesis can be tested in a systematic way by plot-
ting contour curvature against contributing area, see Fig.7.
This graph shows a strong curvature–area relationship. For
small contributing area (A<1500 m2) curvature is domi-
nantly divergent (median<0). For large areas (A>5000 m2)
curvature is dominantly convergent (10th percentile>0).
The intermediate range of 1500<A<5000 m2 is a transition
zone in which the median curvature is>0, but the 10th per-
centile is<0.

These zones can be interpreted in terms of dominant ge-
omorphological processes, based on the signature that these
processes create in slope-area plots (Tarboton et al., 1991;
Ijj ász-V́asquez and Bras, 1995; Tucker and Bras, 1998).
Such a plot has been included in Fig.7. Three zones can
be distinguished. Zone I (A<1500 m2) is interpreted as hill-
slopes where diffusional sediment transport dominates. Zone
II (1500<A<5000 m2) is interpreted as hillslope hollows
where episodic transport in the form of debris flow and/or
shallow landsliding dominates. These hollows are to a large
extent responsible for the large variability of contour curva-
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Fig. 7. Top: Slopeα vs contributing areaA for the Plynlimon catch-
ments. Dots are individual grid cells. The red solid line represents
the meanS for small bins ofA. The indicated regions are: I: dif-
fusion dominated hillslopes; II: hillslope hollowssensuStock and
Dietrich (2003); III: channels. Bottom: Contour curvaturecc vs
contributing area. Dots are individual grid cells. The red solid line
indicates the mediancc for small bins ofA. The dashed red lines
indicate the 10th and 90th percentile ofcc.

ture within hillslopes. Zone III (A>5000 m2) is interpreted
as the semi-permanent channel network, where “fluvial” sed-
iment transport is most dominant.

These zones and processes can be related to the corre-
sponding contour curvature. Grid cells in zone I are part
of diffusional hillslopes that have a characteristic dome-like
shape. As a result, profile curvature is convex, and contour
curvature is divergent. Grid cells in zone II are often part of
hillslope hollows. Contour curvature is either zero or lightly
positive. Grid cells in zone III are part of the channel net-
work, forming valleys in between hillslopes. As a result,
contour lines that cross the channels have a strong positive
(convergent) curvature.

6 Curvature effects on hydrological response

Convergence and divergence form a first-order topographic
control on the hydrological response of hillslopes and catch-
ments. This is recognized in many conceptual hillslope hy-
drological models. In the TOPMODEL (Beven and Kirkby,
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Fig. 8. Hydrological response for hillslopes with top/bottom widths
of 50 and 150 m (case I): “c” marks the response of the convergent
hillslope; “d” marks the response of the divergent hillslope; “+”
marks the response of both hillslopes combined; “p” marks the re-
sponse of the 200 m wide parallel hillslope with equal width as the
convergent and divergent one combined.

1979; Beven, 1997), convergence is one of the parameters
that define the value of the topographic index of a grid cell. In
the hillslope-storage Boussinesq model (Troch et al., 2003),
convergence/divergence are parameterized by the hillslope
width function,w(x).

A full discussion of the hydrological consequences of cur-
vature organization within catchments is beyond the scope
of the present paper but we will present one example here. It
has been mentioned above that there is a wide variability of
grid cell scale contour curvature within individual headwater
or sideslope hillslopes. Therefore, one can question what the
effect is of lumping convergent and divergent areas within a
single computational hillslope.

A simple conceptual numerical experiment has been set
up: Consider a hillslope that is 200 m long and 200 m wide.
Such a hillslope can be considered to be neither convergent
nor divergent, but parallel. In this case, the width function
is uniform (w(x)=200 for all x). For a given forcing, this
hillslope gives a certain hydrological response in terms of
Q(t), whereQ is discharge.

Now, this hillslope can be sliced into two halves. If these
halves are both 100 m wide, they can be considered to be par-
allel as well. The response of these sub-hillslopes equals that
of the large hillslope, when added. This is a property of the
width-functions to be uniform. What happens when the two
halves are not parallel is less clear. We test two cases. In case
I, the first half-hillslope will be 50 m wide at the bottom, and
150 m wide at the top. This creates a convergent hillslope.
The other hillslope is 150 m wide at the bottom and 50 m
wide at the top, creating a divergent hillslope. Note that total
area is preserved with this setup. In case II, these widths are
20 and 180, respectively. Other model parameters are: slope
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Fig. 9. Hydrological response for hillslopes with top/bottom widths
of 20 and 180 m (case II). Legends as for Fig.8. The arrow marks
the period during which saturation was obtained at the foot of the
convergent hillslope.

gradientα=0.10, drainable porosityf =0.3, saturated hy-
draulic conductivityk=1.0 m hr−1, soil depthD=2 m. Ini-
tial conditions are a dry soil. Forcing is such that steady state
will be reached: recharge rateN=6 mm d−1 during 50 d, fol-
lowed by an equal period of free drainage.

Results are shown in Figs.8 and9. The responses for the
convergent and divergent hillslopes are plotted. Discharge
during the recharge phase is lower for the convergent hill-
slope than for the divergent hillslope. This is caused by a
higher dynamic storage capacity within the convergent hills-
lope because water tables will rise higher. This effect is re-
versed during the drainage phase: discharge from the conver-
gent hillslope is higher because of the larger water reservoir
that has been build up during steady state. The effect is quite
strong: discharge from the convergent hillslope is twice that
of the divergent hillslope around time 70 d. Also plotted are
the average response of the convergent and divergent hill-
slope combined, and the response of an equivalent parallel
hillslope. These two discharge responses are almost equal,
suggesting that while convergence/divergence is an impor-
tant control on individual hillslope response, within-hillslope
variability of convergence and divergence can be ignored.

Figure9 shows the results of the second case, where the
degrees of convergence and divergence are much stronger.
The shape of the individual hillslope responses is different in
character than in Fig.8, especially the response of the conver-
gent hillslope. This is due to saturation at the downward end
of the hillslope. As a result, saturation excess overland flow
is generated, causing the sudden rise in discharge after time
20 d. Again the responses of the combined and equivalent
parallel hillslopes are plotted. Now there is a larger deviation
between these two discharge responses. However, the dif-
ferences are still relatively small, especially for the drainage
part of the experiment.

7 Discussion and conclusions

A new algorithm has been presented to compute flowpath
lengths from hillslope grid cells towards the channel net-
work. This algorithm is able to take flow path divergence
into account, by allowing multidirectional flow redistribution
every grid cell. The algorithm has been tested by compar-
ing path length fields for three different methods to describe
per-cell flow redistribution, using the classic D8 single-flow-
direction scheme (SFD), and theQuinn et al.(1991) andTar-
boton (1997) redistribution schemes (MFR-Q and MFR-T,
respectively). It was found that SFD and MFR gave compa-
rable results, while MFR-Q resulted in a significant higher
(≈20%) median path length when averaged over the whole
catchment. These and other characteristics could be ex-
plained from the response of the methods to hillslope, and
riparian area morphology, considering the variable degree of
dispersion in all three methods.

A so-called curvature paradox has been identified.
Catchment-scale hillslope width functions suggest that
catchments are divergent in overall shape, which is in con-
trast to the intuitive perception that catchments should be
overall convergent because they are essentially an area drain-
ing towards a single point (the outlet). We have shown how
this paradox can be explained by investigating how curvature
is organized within the landscape. It has been confirmed that
hillslopes are indeed divergent when averaged. However, the
drainage network – which is left out of the hillslope width
function analysis – contributes the majority of convergence
present within catchments. As a result, the overall curvature
is indeed convergent when the channel network is considered
as well.

It should be noted that topographic conver-
gence/divergence as measured by contour curvature is
not equivalent to convergence/divergence as measured by
the flow path length distribution. Tentative insights in the
relationship between these two measures can be gained
from two contrasting, highly idealized isolated hills: a cone-
shaped and a pyramid-shaped hill. For both hills, it is clear
that the path length distribution will be “divergent”. How-
ever, a contour curvature analysis will result in “divergent”
for the cone-shaped hill, and “parallel” (neither convergent
nor divergent) for the pyramid-shaped hill, because of
the clearly planar hillslopes. The cone shaped hill should
represent a (geomorphic) diffusion dominated landscape
(although the characteristic hill shape then would be a dome,
rather than a cone – but that does not alter the conclusions
drawn here), having a moderate slope gradients, and the
pyramid shaped hill should represent a steep landscape,
where land slides are the dominant geomorphic process.
The catchment discussed here, Plynlimon, is assumed to
belong to the “cone/dome” geomorphic class rather than
to the “pyramid” class. However, a full discussion of the
relation relation between the two convergence measured
would require a study comparing a range of catchment mor-
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phologies, and associated dominant geomorphic processes,
and is beyond the scope of this paper.

It should be noted too, that a number of simplifying as-
sumptions have been made in the current analysis:

– The catchment is considered to be “small”, such that
the response time is dominated by hillslope delays. In
“large” catchments, stream flow delays will become sig-
nificant. Also, most headwaters can be expected to be
located remote with respect to the catchment outlet. The
average channel routing delay from headwaters thus can
be expected to be different from the average delay for
sideslopes. The effects of this is beyond the scope of
the current paper.

– Hydraulic conductivity of the soil layer is considered
to be constant with depth. In reality, conductivity will
most often decrease with depth. This will likely affect
the behaviour of convergent and divergent hillslopes, es-
pecially for the recession behaviour. Again, this effect
is beyond the scope of the current paper.

We have presented a simple numerical experiment to test
to what extent within-hillslope curvature variability affects
the hydrological response of hillslopes. It has been found that
the effects of convergent and divergent areas on the total hy-
drograph almost cancels out, making the total intra-hillslope
curvature variability effect small. This is even the case when
a saturation threshold has been exceeded.

This effect can also be scaled up from the hillslope to the
catchment scale (from intra-hillslope curvature variability to
inter-hillslope curvature variability) without loss of general-
ity. Based on our findings, convergent hillslopes do compen-
sate for equivalent but divergent hillslopes. Only the total net
amount of convergence would define the nature of the catch-
ment response. These findings may assist in creating efficient
catchment-scale hydrological models, because it does pro-
vide justification for the clustering together, without sacri-
ficing precision, of individual convergent and divergent hill-
slopes into a single hillslope width function, as applied by
Troch et al.(1994) to a catchment in the Appalachian moun-
tains.

In summary, these results provide some justification for
the view that a whole landscape could be regarded as one
single large hillslope folded around the channel network. The
analysis presented in this paper showed that this hillslope is
a divergent one.
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