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Abstract. The study presents an approach to represent the
two first order moments of temporal runoff variability as a
function of catchment area and aggregation time interval, and
to map them in space. The problem is divided into two steps.
First, the first order moment (the long term value) is analysed
and mapped applying an interpolation procedure for river
runoff. In a second step a simple random model for the river
runoff process is proposed for the instantaneous point runoff
normalised with respect to the long term mean. From this
model analytical expressions for the time-space variance-
covariance of the inflow to the river network are developed,
which then is used to predict how the second order moment
varies along rivers from headwaters to the mouth. The obser-
vation data are handled by a hydrological information sys-
tem, which allows to display the results either in the form
of area dependence of moments along the river branches to
the basin outlet or as a map of the variation of the moments
across the basin. The findings are demonstrated by the ex-
ample of the Moselle drainage basin (French part).

1 Introduction

Mapping statistical parameters of runoff across space consti-
tutes one of the fundamental tasks in hydrology. As the prob-
abilistic characteristics of the runoff formation process are
a priori unknown, the only direct source of information for
solving this task is hydrological observations series. Hydro-
logical observation series, however, may be too few and/or
too short for a reliable determination of quantitative runoff
characteristics, or even not available at all. In this case, hy-
drology turns to indirect approaches for the study of runoff
distribution in space, namely the “geographical interpola-
tion” (in some sense) of the parameters of the runoff distribu-
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tion. This is done utilizing hydrological series for different
sites in a large river basin or different river basins within a
region. Such studies fall under what is vaguely defined as
“regional hydrology”, to which this paper is a contribution.

The main hydrometerological processes (rainfall, evapo-
transpiration, temperature etc.) when observed at the land
surface develop in a three-dimensional space – the two ge-
ographical coordinates (x, y) and timet . The variation of
these variables across space is described as contour (isoline)
maps in classical works, i.e. they are space-filling phenom-
ena and allow straightforward interpolation. River discharge
(surface runoff), on the other hand, is formed in a two- di-
mensional space – the distance along a riverlA (related to
the point with areaA in a basin) and timet . This relationship
to the area (and not the (x, y) coordinates) explains why the
variation of runoff characteristics across space, determined
from discharge measurements, cannot be plotted as a con-
tour map as simply as hydrometerological variables. Neither
is it a space-filling phenomenon.

The contradiction in mapping runoff characteristics was
noted early by Gergov (1972) with respect to the runoff
“module”. This latter concept, very often found in Central
and East European hydrological literature, can have three in-
terpretations – 1) the true specific runoffq1 with which a
point (x, y) in a basin contributes to the runoff in the river
(rainfall excess; in the general case this might not be a space
filling variable); 2) the areal mean runoff at a pointlA in a
river derived asq2=Q/A (whereQ is the mean annual dis-
charge andA the area of the corresponding basin); 3) the
derivative of the specific runoffq3=dQ/dA , i.e. the contri-
bution of runoff to the river reach for each increment in the
area. For all cases the dimension of runoff is volume per area
and time [L3/(L2 T)], and in hydrology either “l/km2/s” or
“mm/year” is used. Herein the latter of the two will be used.

This study presents an approach to represent runoff as a
function of area (and thus on a map) in terms of how its
statistical properties (mean value and variance) develop with
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area. The approach does not fully solve the theoretical am-
biguities in mapping runoff but permits a reasonable simpli-
fication of the problem. We thus accept that runoff can be
looked upon as a random variable in the two dimensional
spaceq=Q/A=q(lA, t)=q(A,t). Consequently we accept
the second definition given earlier, which also implies that
runoff is only defined along a river network. Discharge mea-
surements with modern technology represent almost instan-
taneous values for an instancet in time. In practice, whether
this technology is available or not, runoff characteristics rep-
resent a certain aggregation time intervalD (an hour, a day,
five days, a month, a year). Mapping runoff characteristics
involves thus mapping of statistical properties (moments) as
a function of catchment areaA and durationD−q=q(A, D)

which is the focus for the present study. This task is simi-
lar to studying scale dependence in moments of runoff with
respect to the areaA and durationD.

The long term mean value of runoff as well as the temporal
variance show large variability across space revealing a non-
homogeneous random process. In general there exists a great
coherence between the variability of these two moments i.e.
a significant part of the variability of the variance might be
explained by the pattern of variability of the mean. The mean
value is independent of the time intervalD used, while this
is not the case for the variance. The temporal variance de-
creases with time intervalD. Furthermore, the variance de-
creases also with catchment area due to averaging over this
area (the support of the random process). The full temporal-
spatial covariance structure of the runoff process needs to be
known to be able to evaluate this variance reduction due to
time and space averaging.

The patterns of spatial variability of the temporal mean and
variance of runoff that can be identified from observations are
of course influenced by the fact that these observations rep-
resent averaged values. To be able to map these quantities we
need to assume the existence of an instantaneous point runoff
(IPR) process. The task is thus to solve the inverse problem
of identifying this process from the observations represent-
ing averages in time and space. In a second step we are able
to average this IPR process along rivers to obtain the desired
map.

For the long term mean runoff this task is rather straight-
forward and basically is a problem of stochastic interpola-
tion with local support or, in other words, block kriging. An
obstacle might be the complexity in the structure of the co-
variance of runoff as the data represents a mixture of nested
and non-nested basins. This problem has been studied by
Gottschalk (1993a) and the theoretical findings of this study
will be brought forward here. Gottschalk (1993b) intro-
duced a method for stochastic interpolation of runoff along
the river network with a constraint preserving the water bal-
ance, i.e. at each downstream point in the river the runoff is
the sum of the upstream inflow. Sauquet (2000) and Sauquet
et al. (2000) developed this methodology further and com-
bined it with a system for structuring hydrographical net-

works in a hierarchical way called HydroDem (Leblois and
Sauquet, 2000). It allows an effective reconstruction of the
variation of mean annual runoff (first order moment) along
the river network in a basin from discharge observations and
a DEM. This latter interpolation scheme will be followed
here to map the mean value. The resolution of the under-
lying DEM defines the size of the computational units (grid
cells, sub-basins). It is further assumed that each unit con-
tains a segment of a river (“a flow path”). The difference
between the definition of runoff “module” (specific runoff)
q1 andq2 is eliminated by this assumption and all the ter-
ritory is assigned a runoff value down to the scale of basic
computational units.

The patterns of spatial variability of the temporal vari-
ance identified from observations are still more complex than
in case of the mean. There are two sources of variability.
The first one is a reflection of the natural variability of the
IPR process. This is then overlain by variability induced by
the variance reduction which varies with the support i.e. the
basin area. This part of the variability might constitute a sig-
nificant part of the total variability. As such it introduces a
dependence on the basin area. In principle, it would be pos-
sible to solve this problem also with stochastic interpolation
with local support. A constraint can be added so that the sum
of variance-covariances over sub-basins should add up to the
total variance over the whole basin. The authors of this pa-
per have made several attempts in this direction but they have
all failed. The reason is mainly due to inconsistencies in ob-
served data which do not satisfy the proposed constraint.

The alternative developed herein is as follows. Firstly
we benefit from the fact that the pattern of the mean value
is also reflected in the variance by introducing a new vari-
able namely the normalized instantaneous point runoff i.e.
IPR divided by the long term mean at a point. For this lat-
ter variable a parametric random model is proposed that al-
lows constructing a space-time covariance structure for the
runoff along rivers and specifically mapping the variance
along rivers.

The paper is structured as follows. In the first section of
the paper, the statistical characteristics of runoff data from
the Moselle basin (France) are described which are used to
test the approach. In the next section the method for inter-
polation of the mean is described and a random model for
river runoff in a basin is proposed which allows to estimate
variance functions, reduction factors, and auto- and cross-
correlations. The derivation of these latter functions is rather
laborious and is only briefly presented in an Appendix. The
derived theoretical expressions are then used to model the
spatial and temporal scale dependence of the first and second
order moments of temporal variability, the autocorrelation at
a site, and the cross-correlation between sites along rivers
of the Moselle basin. Examples of derived maps of mean
annual runoff and the coefficient of variation of runoff of dif-
ferent durations are shown in an Appendix. The paper ends
with a discussion of the results and conclusions.
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A map of the Moselle basin and the drainage pattern identified by HydroDem is shown in 

Appendix A. The resolution of the map is 1 km2, which is the size of the grid cells used 

for producing maps of the runoff characteristics. This map of the Moselle basin is 

complemented by a schematised river network with its eight main branches as well as the 

discharge stations (Fig. 1). The size of the main basin is 9387 km2 at its outlet at 

Hauconcourt, France. Within this basin another 16 sub-basins with areas in the range of 

73-3350 km2 have been utilised. Data for a common period 1970-1997 have been used. 

Not all stations had complete records for this period. Stations with a record of at least 15 

years were included in the study.   The discharge data used are breakpoints and thus 

allow the estimation of runoff averaged over any duration D. Here five durations have 

been considered, namely: an hour, a day, five days, a month and a year.  

 

Fig. 1. Schematised river network of the Moselle basin down to Hauconcourt (a793061) 

with eight main branches and 17 gauging stations used in the study. 

Fig. 1. Schematised river network of the Moselle basin down to Hauconcourt (a793061) with eight main branches and 17 gauging stations
used in the study.

2 Runoff characteristics of the Moselle River basin

The study area covers the French part of the Moselle basin,
one of the main tributaries to the Rhine River. The Moselle
River basin demonstrates a great variability of the landscape
due to the heterogeneity of the geology (crystalline and sedi-
mentary rocks, schist, sandstone) and relief under continental
climate. The headwaters are located in the Vosges Mountains
covered by forests whereas the downstream parts are low-
lands (alluvial plains) with a landscape influenced by agri-
cultural practices.

A map of the Moselle basin and the drainage pattern iden-
tified by HydroDem is shown in Appendix A. The resolution
of the map is 1 km2, which is the size of the grid cells used
for producing maps of the runoff characteristics. This map
of the Moselle basin is complemented by a schematised river
network with its eight main branches as well as the discharge

stations (Fig. 1). The size of the main basin is 9387 km2 at its
outlet at Hauconcourt, France. Within this basin another 16
sub-basins with areas in the range of 73–3350 km2 have been
utilised. Data for a common period 1970–1997 have been
used. Not all stations had complete records for this period.
Stations with a record of at least 15 years were included in
the study. The discharge data used are breakpoints and thus
allow the estimation of runoff averaged over any durationD.
Here five durations have been considered, namely: an hour,
a day, five days, a month and a year.

The study focuses on the two first order moments of runoff
variability in time. By this we accept the concept of “partial
characterization” of complex variation patterns and of a se-
quential analysis of variability (Gottschalk, 2005). Charac-
terization by the one dimensional distribution function is the
first step. In a characterisation by distribution function in the
general case a multivariate distribution would be needed for a
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Fig. 2. Estimated first moment of runoff (i.e. long term mean runoff)
of the Moselle stream gauges.

complete characterisation. The one dimensional distribution
constitutes in this case the marginal distribution of the data,
which is the same as the flow duration curve widely used in
hydrology. We thus choose to study the two first moments
of this marginal distribution constructed from data averaged
over different durations and for the time being do not con-
sider the structure of this variability over time, for instance
the role of seasonality.

The first order moment of the Moselle discharge data are
plotted against basin area in a double logarithmic diagram in
Fig. 2 in accordance with the traditional way of representing
scale dependences. There is a tendency that the data cluster
around straight lines but the scatter is quite large. The first
order moments (the long term mean values) do not depend
on durationD but higher order moments do. This spatial-
temporal dependence for the second order moment is illus-
trated in Fig. 3 in terms of the coefficient of variation. For
short durations (an hour and a day) this coefficient shows
a strong decay with the area. This dependence on area de-
creases with the increase in duration and for annual values it
is negligible. For small catchments the estimated values dif-
fer between one hour and one day duration. This difference
almost disappears for basins bigger than 1000 km2.

Figure 4 shows the empirical auto- and cross-correlations
at and between runoff stations along the tributary to the

Fig. 3. The estimated temporal coefficient of variation of runoff for
the Moselle discharge data plotted against basin areaA for different
durationsD. This normalised second order moment decreases with
the increasing duration from an hour (the highest value) to a day,
five days, a month and a year (the lowest value).

Moselle viz. the Meurthe River (branch 4, cf. Fig. 1) and
the outlet site of the Moselle River at Hauconcourt (sta-
tion a793061). It shows the estimated autocorrelation func-
tion for the central site in this river branch (station a627101)
for the four different durations considered (a), the same func-
tion for one hour duration for the five sites along the same
river branch (b), the cross-correlation between the central and
outlet site for different durations (c) and the cross-correlation
between the site at the outlet and those upstream (d).

There is a strong autocorrelation in the data over small
time lags (hours, days). The decay of the correlation for
larger time lags is not of the exponential type frequently used
in hydrology. A heavy tail is observed. We interpret this as
the existence of (at least) two characteristic scales – one of
the order of one day and another of the order of one month.
Examining the autocorrelation at a site (Fig. 4a) we note that
the correlation increases with increasing time interval from
hours, to days, five days and months. One would expect a
similar although less pronounced behaviour when moving
downstream and the basin size is increased (Fig. 4b). For
very small time steps (hours) this is actually the case. How-
ever, the tail of the autocorrelation function does not show
any clear systematic pattern corresponding to the size of the
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Fig. 4. Estimated empirical correlation functions for five sites on branch 4 (the Meurthe River) down to the outlet (station a793061):(a) the
autocorrelation function for the central site (a627101) for different durations;(b) the same function for one hour duration for the five sites
along branch 4;(c) the cross-correlation between the central and outlet sites for different durations and(d) the cross-correlation between the
outlet and upstream sites for daily data. (In a and c the curves for 1 h and 1 day coincide except for very short time lags and the former is
therefore hidden behind the second one).

basin, although there is a slight tendency of an increased
memory when moving downstream along the branch. The
impression is that the weight of the heavy tailed part of the
autocorrelation varies locally.

The empirical cross-correlation functions show a drop
(“nugget”) in the correlation at lag zero, which is larger the
larger the difference in basin size is. At a site this drop de-
creases with the increasing duration (Fig. 4c). However, the
behaviour at short time lags can be quite complex – some-
times with a small increase before decaying and in other
cases an immediate decay (Fig. 4d). For the time being it has
not been possible to explain all the details in the behaviour
of the correlation functions.

The spatial correlation, revealed in Fig. 4d for individual
sites, would allow to show the plot of spatial correlation co-
efficients along and between river branches against some dis-
tance measure. The structure of such a diagram is, however,
quite complex. Runoff as related to points along rivers is
a non-homogeneous process (Gottschalk, 1993a). Further-
more, nested and non-nested sub-basins show drastic differ-
ences in correlation, very high in the first case and lower in

the other. Finally, the distance measure is not obvious in this
case. Should it be Euclidian distance between observation
sites, distance between the centres of gravity of the basins,
distance along the rivers between the sites etc.? Whatever
the measure used, the result is a scatter of points without any
structure.

3 Long-term mean annual runoff

Let X(lA, t), the inflow to a river at a length coordinatelA
and timet , represent a two dimensional random field. We
allow the long term mean valuemX(lA) to vary in spacelA
but let it be constant in timet . We thus admit that the runoff
production systematically from one locality to another in a
basin, i.e. the generic process is non-homogeneous in space.
On the other hand, stationarity is postulated in time. In real-
ity runoff shows seasonal variations with more or less stable
patterns (Krasovskaia and Gottschalk, 1992). We will any-
how accept this as a simplification for the time being as was
already commented on in the previous section.
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Fig. 5. Estimated first moment of runoff (i.e. long term mean
runoff): Diamonds are the local estimates from the stream gauge
data, grey points are the mapped values along the streams.

The long term mean valuemX(lA) characterises the vari-
ation in the intensity in runoff formation across space being
a product of the local landscape and climatic features. This
first order moment is not influenced by the dynamics of the
runoff formation process as the higher order moments are.
We are thus able to mapmX(lA) with a due consideration
of the fact that it is a variable in a one dimensional space
lA, the coordinate along the river network, applying stochas-
tic interpolation with local support. We will follow here the
approach developed by Sauquet et al. (2000). First, a theoret-
ical model of an assumed point process is estimated from the
empirical covariance function. This point covariance func-
tion is then used for interpolation of runoff to each grid cell
of the Moselle basin following a hierarchical scheme to be
able to satisfy a water balance constraint along the river.

The covariance between two sites in a nested river system
was earlier treated by Gottschalk (1993a). A simple expo-
nential function is postulated for the correlation of the inflow
to the river between to pointslA1 and lA2 along the river at
a distanceλ=|lA1−lA2|: ρ(λ)= exp(−λ/K. The constantK
has the dimension of length and describes the characteristic
scale of variation of runoff formation and reflects landscape
and long-term climatic features. An approximate expression
for a corresponding covariance between two nested basins is

derived as:

Cov(A1, A2) = Cov(LA1, LA2)

= 2σ 2
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A1 andA2 denote the two areas of sub-basins, where the first
is nested within the second, drained by the river segments
of lengthsLA1 andLA2 (LA1<LA2), where the shorter one
is common. Let us specifically look at the situation when
LA1=LA2=LA, i.e. we get an expression for the variance
over the sub-basins. Insertion into the equation above yields:

Var(A) = σ 2
A = 2σ 2

x

(
K

LA

)2{
LA

K
− 1 + e−LA/K

}
(2)

Whether we use area or distance the expression for the co-
variance between two sub-basins along the same river any-
how indicates a non-homogeneous process, i.e. it depends
on the absolute coordinatesA1(LA1) andA2(LA2) and not
on the relative difference between the positions of the points
with these coordinates. The covariance along a river is thus
represented by an ensemble of curves conditioned on the po-
sition of the downstream siteA2(LA2) as a function of the
difference in area (position). For the covariance between
sites in non-nested basins it is not possible to develop close
form analytical expressions, but it must be derived numeri-
cally as a conventional covariance with local support.

The details of parameter estimation and interpolation fol-
low Sauquet et al. (2000). The characteristic space scale was
estimated asK=50 km (Eq. 1) and the spatial point standard
deviation asσX=300 mm/year. The resulting dependence
with basin area is shown in Fig. 5 and the corresponding map
in Appendix A. It would be possible to show a space filling
map of runoff. We prefer to show runoff in the map only
along main rivers (A>50 km2) so that the map better reflects
the actual variability covered by available observations.

Figure 5 shows the long term mean runoff estimated from
the discharge records as diamonds. The HydroDem software
(Leblois and Sauquet, 2000) utilised in this study, allows a re-
trieval of a unique string that arranges the grid cells on a map
in accordance with the structure of the river network, thus
linking the position of the grid cell with the integrated area
of the basin at this position. Accordingly, we are able to plot
interpolated runoff at each grid cell of the map against area
which is shown as a grey background in the figure. When
scale dependence is studied in the context of a river basin the
scale relations develop along river branches towards a com-
mon value at the outlet (this is guaranteed due to the water
balance constraint in the interpolation scheme). The diagram
in Fig. 5 reveals the relative contribution from the branches
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to the total discharge. The flow in the main river can there-
fore be higher (lower) than the surrounding contribution due
to high (low) inflow upstream.

4 Normalised instantaneous point runoff

In a second step we now turn to the second order moments
with the assumption that the variation inmX(lA) is known.
To achieve homogeneity in space the original process is nor-
malised with respect to this long term mean:

Z(lA, t) = X(lA, t)/mX(lA) (3)

This homogeneous random field in time and spaceZ(lA,t)
is the main focus for the study with the aim of developing
a random model for this variable and specifically deriving
expressions for its variance-covariance function.

For the general formulation of a time-space process Van-
marcke (1988) distinguishes between three important special
types of two dimensional covariance functions, namely:

– the covariance structure is separable

– the correlation structure is isotropic, i.e. the covariance
structure can be expressed in terms of the “radial” co-
variance function

– the covariance structure is ellipsoidal, i.e. by appropri-
ate scaling and rotation of the coordinate axes random
fields with ellipsoidal covariance structure can be re-
duced to isotropic random fields.

Gandin and Kagan (1976) suggest a covariance model sim-
ilar to the second type for use in meteorology and climatol-
ogy:

Cov[λ, τ ] = σ 2ρ(|(λ/v) + τ |) (4)

whereλ as before is the relative distance between two points
in the river,τ is the time lag,ρ( ) is a one dimensional cor-
relation function to be specified,v is a velocity andλ/v can
be interpreted as a time of travel. The expression has its root
in the so called Taylor’s hypothesis for turbulent flow also
known as the Taylor “frozen turbulence” hypothesis. We will
here assume that the processZ(lA,t) has this type of isotropic
space-time covariance function.

Z(lA,t) describes the instantaneous inflow at a point in
a river. The important variable is the integrated process
Z(A, t), i.e. the normalised discharge of a river with a basin
of sizeA. We derive it by integration ofZ(lA,t) from the
most distant point in the river (lA=0) down to its outlet atlA.
In accordance with the formulation of the covariance func-
tion Eq. (4) we replace the distance by the time of travel
(time of concentration)TcA=LA/v along the river distance
LA. The integrated process is thus expressed by:

Z(A, t) = Z(TcA, t) =
1

TcA

t∫
t−TcA

Z(t ′, t)dt ′

=
1

TcA

t+TcA∫
t

Z(t − t ′)dt ′ (5)

This formula coincides in form with a system interpretation
of the rational method (Singh, 1988, p. 123) if runoff is ex-
pressed in terms of flow per area, i.e. a unit pulse of duration
TcA and depth 1/TcA. There is of course an important differ-
ence in the fact that we here deal with the inflow to the river
and not directly with rainfall like in the rational method. It is
a simplification that neglects the dynamics and non-linearity
of river flow. The only argument for doing this is the Prin-
ciple of Parsimony as formulated by Tukey (1961): It may
pay not to try to describe in the analysis the complexities
that are really present in the situation. He stresses the impor-
tance of reconsidering a model structure towards a simpler
representation, which might improve the performance of the
estimation method.

The mean value of the processZ(TcA, t) is independent of
time of concentration because the aggregation is linear and
it is unity as it represents a normalised value (see Eq. 3).
The variance-covariance, however, will change with chang-
ing time of concentration. The covariance function for the
integrated process is derived as:

Cov(Z(TcA, t), Z(TcA, t + τ))

= CovA(τ ) =
1

T 2
cA

t+TcA∫
t

t+TcA+τ∫
t+τ

σ 2
Zρ(t ′ − t ′′)dt ′dt ′′ (6)

This type of double integral can be easily transformed to
a single integral by a simple variable transformation (e.g.
Gottschalk, 1993a). A more general method for simplifica-
tion is to apply the following relation between the covariance
for areas (lines as special cases) and the underlying point co-
variance (Mat́ern, 1960):

CovA (τ ) =

max(h)∫
min(h)

Cov(|h|) f (h) dh = E [Cov(|h|)] (7)

wheref (h) is the probability density function of distances
h between two points chosen at random within the two line
segments that are separated by a specified distanceτ . For the
special case ofτ=0, f (h) is the density function of all pos-
sible distances within a line segment of lengthT which has
the well known expression:f (h) =

2
T

(
1−

h
T

)
. The distribu-

tion function for a more general case of random distances
between two line segments of equal lengthT shifted by the
distanceτ is derived using general results by Ghosh (1951):

f1(h) =
1

TcA

(
1 +

h − τ

TcA

)
; (τ − TcA) ≤ h ≤ τ

f2(h) =
1

TcA

(
1 −

h − τ

TcA

)
; τ < h ≤ (τ + TcA) (8)
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When integrating this distribution in accordance with Eq. (7)
three cases have to be distinguished namely i)τ=0; ii)
0<τ≤TcA; and iii) τ>TcA:

i) τ=0;

CovA(0) = VarA = σ 2
Z


0∫

−TcA

ρ(−h)f1(h)dh

+

TcA∫
0

ρ(h)f2(h)dh


= 2σ 2

Z

T cA∫
0

ρ(h)f2(h)dh (9a)

ii) 0<τ≤TcA;

CovA(τ ) = σ 2
Z


0∫

−(TcA−τ)

ρ(−h)f1(h)dh

+

τ∫
0

ρ(h)f1(h)dh

+

TcA+τ∫
τ

ρ(h)f2(h)dh

 (9b)

iii) τ> TcA;

CovA(τ ) = σ 2
Z


τ∫

τ−TcA

ρ(h)f1(h)dh

+

τ+TcA∫
τ

ρ(h)f2(h)dh

 (9c)

Let us exemplify the derivations above by assuming a simple
exponential correlation function:

ρ(h) = exp(−h/k) (10)

where k is a time constant. The following expression is de-
rived:

i) τ=0;

CovA(0) = γ (A) = σ 2
A = 2σ 2

Z

(
k

TcA

)2

{
TcA

k
+ e−TcA/k

− 1

}
(11a)

i) 0 <τ≤TcA;

CovA(τ ) = 2σ 2
Z

(
k

TcA

)2{
TcA − τ

k

+
1

2

(
e(τ−TcA)/k

+e−(τ+TcA)/k
)

−e−τ/k

}
(11b)

iii) τ>TcA;

CovA(τ )=σ 2
Z

(
k

TcA

{
1−e−TcA/k

})2

e−(τ−TcA)/k (11c)

The time constantk characterises the scale of persistence in
the inflow to the river system. This constant thus describes
the dynamics of the runoff process in contrast to the constant
K introduced in Eq. (1), which describes the characteristic
spatial scale of variation in runoff formation. The two limit-
ing cases of Eqs. (11a–c) are whenk→0 andk→∞, respec-
tively. In the first case the covariance function Eq. (9) turns
into a Dirac’s delta functionδ(λ) for λ=0, i.e. the characteris-
tic of a process without memory. Applying the relationships
Eqs. (11a–c) to this situation we find:

i) τ=0;

CovA(0) = σ 2
A = σ 2

Z/TcA (12a)

ii) 0<τ≤TcA;

CovA(τ ) = σ 2
Z

TcA − τ

T 2
cA

(12b)

iii) τ>TcA;

CovA(τ ) = 0 (12c)

i.e. a moving average process over a time periodTcA. For the
second case with a very large memory (k large compared to
TcA) the variance is constant equal toσ 2

Z.
Equation (11a), with Eq. (12a) as a special case, is thus

the variance function for instantaneous runoff from an area
of sizeA. It describes how the variance of runoff changes
with this size (time of concentrationTcA). Taking the square
root of this expression yields the corresponding reduction
factor. In a system terminology it represents a combination
between linear reservoirs entering into a linear channel or as
first order autoregressive processes combined with a moving
average one. Equations (11b, c) and (12b, c) represent the
auto-covariance functions of instantaneous runoff of a basin
of sizeA.

Hydrological data of runoff often represents averaged val-
ues for a day or some other duration and the derived ex-
pressions are not directly applicable as they concern instan-
taneous runoff. To make them compatible we need to in-
tegrate these equations in the time domain over a duration
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of D=1 day. We will omit detailed derivations in the text
as the principle is the same as described earlier, i.e. using
Eq. (7) develop frequency functions of distances between
line segments (river branches, time intervals)f (h) and then
integration schemes in accordance with Eq. (8). The result-
ing equations of such derivations are shown in Appendix B
for the variance functions for a basin of sizeA and dura-
tion D (Eq. B1), the auto-covariance function for a basin of
sizeA and time lagsnD, n=0,1,. . . (Eq. B2), and the cross-
covariance function between two areas with sizesA1 andA2
and time lagsnD, n=0,1,. . .(Eq. B5). Some intermediate re-
sults are also shown. To simplify the notation, dimension-
less variablesδ=D/k andη=T cA/k replace durationD (time
scale) andTcA (space scale).

The random model, in principle, allows a reproduction
of all statistical characteristics of the runoff data from the
Moselle basin referred to in the first section of this paper.
The theoretical model shows how they are interrelated. The
parameters of the model can be determined by fitting the
respective theoretical function to the empirical ones, estab-
lished from the observed data. We will concentrate these ef-
forts to the variance function (Eq. B1), which expresses the
dependence of the variance on the time of concentrationTcA

(area) and durationD. The other functions will be used as a
diagnostic test of model assumptions.

5 Fitting the model for the normalized variable

The second order moment of the normalized variableZ

equals the coefficient of variation squared of the original vari-
ableX. Figure 3 showed the dependence of the coefficient of
variation on areaA estimated from the observed runoff data
for different durationsD (an hour, a day, five days, a month
and a year). In case of so-called simple scaling this param-
eter should be constant (Gupta and Waymire, 1990) but the
pattern of variation seen is indeed complex. In principle we
should be able to model the behaviour in accordance with the
variance function (Eq. B1), depending on the dimensionless
variablesδ=D/k andη=T cA/k, respectively, and containing
one parameterσZ equal to the coefficient of variation for in-
stantaneous inflow to a river branch. Following the develop-
ment along different branches a mirrored pattern of the vari-
ation of the first order moment (although with an increased
scatter) can be identified, i.e. high runoff values show low
coefficients of variation and vice versa. It was also found
that the decay in the time dependence was poorly described
by the assumed simple exponential function for the instanta-
neous point correlation function (Eq. 11). Two time scales
could be identified (cf. Fig. 4) – one on the order of a day
and another on the order of a month. To account for this
fact, the point exponential correlation function is modified
asρ(h)=w exp(−h/k1)+(1−w) exp(−h/k2), wherew is a
weight coefficient. The variance function (Eq. B1) needs to
be modified accordingly. As all operations for the derivation

of this function from the point correlation function are linear
the modified variance function is derived as two weighted
components as in Eq. (B1) with weightsw and (1−w) and
with time variablesδ1=D/k1, δ2=D/k2 and time of concen-
tration variablesη1=TcA/k1 andη2=TcA/k2, respectively.

For the variablesηi ,i=1,2 and the point standard deviation
σZ the following relations are proposed to take account of
the dependence on basin area and mean runoff, respectively:

η1k1 = η2k2 = TcA = a + b ln(A)

σZ = c(1 + d × mX) (13)

It is assumed that the time of concentration increases linearly
with the logarithm of the basin areaA and that the coefficient
of variation increases or decreases linearly with the mean an-
nual runoffmX.

We thus obtain a model for the description of the depen-
dence of the coefficient of variation on basin areaA and
durationD containing seven parameters, namelyw, k1, k2,
a, b, c, d. Some of these parameters might vary with lo-
cation, and should therefore develop along river branches.
Here we for the time being assume a set of global param-
eters for the whole Moselle basin and determine them so
that an optimal fit in the least square sense is obtained with
the scatter of data in Fig. 6. A downhill simplex method
(Press et al., 1992, p. 326–330) was applied for the search
of optimal parameters, with the following result:w=0.8
[–], k1=0.63 [days],k2=40.0 [days],a=−10.4 [days],b=2.77
[days/ln(km2)], c=2.7 [–], d=0.012 [(mm/year)−1]. The de-
rived relations are not applicable to resolve variability for
small basins (A<43.5 km2). The absolute estimation error
in the coefficient of variation obtained for this set of param-
eters was 0.18, to be compared with the standard deviation
of this coefficient 0.47. The explained variance is thus 0.82.
The model is best in explaining variance between the differ-
ent durations, while the explained variance across different
sites in space amounts to 0.5. Most stations follow the gen-
eral pattern except for one outlying observation station in the
Vosges Mountains (a405062).

The estimated parameters confirm the impression of a de-
crease in the coefficient of variation with the increase of
the mean runoff and the existence of two characteristic time
scales of the correlation function one a little less than a day
and the other about one and a half months. The parameters
allow us to estimate the coefficient of variation as a func-
tion of basin areaA and durationD. The resulting relation-
ships are shown in Fig. 6 where observed values for basins
are compared with those estimated. The coefficient of varia-
tion has also been estimated for each grid cell in the digital
map. Each grid cell defines an upstream catchment area and
a mean runoff to be used in the empirical formulas. Only
values for an area larger than 50 km2 are considered as in
case of the map of the long-term mean runoff. These esti-
mated values are shown as a grey background on the graphs.
The proposed model is able to reproduce the main features
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Fig. 6. Temporal coefficients of variation of runoff. Plusses are the estimates from local stream gauge data; crosses are the estimates of the
stochastic model for the gauged sites; grey points are the estimates of the stochastic model for the grid cells of the DEM (see Appendix A).
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Fig. 7. Modelled correlation functions for five sites on the same river (branch 4):(a) the autocorrelation function for the central site in
this river branch for different durations;(b) the same function for one hour duration for the five sites along the same river branch;(c) the
cross-correlation between the central and outlet sites for different durations and(d) the cross-correlation between the outlet and upstream
sites for daily data. The corresponding empirical functions are illustrated in Fig. 4. for daily data. (In a and c the curves for 1 h and 1 day
coincide except for very short time lags and the first one is therefore hidden behind the second one).

of the dependence of the coefficient of variationCv on both
the area and the duration. The corresponding maps can be
constructed and an illustration forCv for D=1 day andD=1
month is given in Appendix A.

6 Testing auto- and cross-correlation

The approach developed here is based on the existence of a
covariance function along the river network. We have here
chosen to determine the basic parameters in this covariance
structure through the dependence of the coefficient of vari-
ation on the areaA and durationD. It thus remains to be
shown that the main features of this covariance structure are
reproduced. Here we will do this by comparing the empirical
statistical properties shown earlier in Figs. 4a to 4d and those
obtained by the model with the parameters determined in the
previous section. The covariance includes duration as well
as area, which would mean that we should be able to model
the autocorrelation at a site in a river for different durations

D, as well as the cross-correlation between sites along a river
branch.

A comparison of empirical and model correlation func-
tions carried out here should not be seen in the light of a for-
mal test. The theoretical derivations developed herein are in
its infancy and not yet ready for such formal procedures. This
comparison is rather to be seen as a first diagnostic to indicate
if the assumptions make sense. We will use branch 4 as an
illustration when comparing the theoretical derivation with
the empirical functions of Fig. 4. Figure 7a thus shows the
estimated autocorrelation (Eq. B2) for durations of an hour, a
day, five days and a month for the central site on this branch,
and Fig. 7b the autocorrelation function for one day duration
for all stations along the branch. Figure 7c in a similar way
shows the estimated cross-correlation function (Eq. B5) be-
tween the central and the outlet sites for different durations
and Fig. 7d the cross-correlation function between the outlet
site and upstream stations along the same river branch for a
duration of one day.

In general the agreement is acceptable. The empirical and
modelled correlation functions show the same main features.
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There are of course details both at very small and large time
scales that are not yet captured by the model. It describes
well the behaviour of the empirical autocorrelation func-
tions for different durations in time. However, the model
is not able to reproduce the details of the spatial unsystem-
atic dependence of the empirical correlation functions along
branches. The deviation between the model and empirical
functions is largest in small basins. This can, to a certain ex-
tent, be traced back to the empirical relationship of the time
of concentration variable to ln(A), which contains a lower
bound (∼43 km2).

We note that it was necessary to compose the theoretical
model of two parts – one for small and the other for large
time lags represented by the two parametersk1 andk2, re-
spectively and a weight coefficientw. For the time being,
we assumed these parameters to be the same for the whole
of the Moselle basin. For larger sub-basins this can be an
acceptable approximation. For small basins with specific lo-
cal conditions, this might not be the case especially for the
quickly decaying part of the correlation functions connected
to the parameterk1. This is confirmed for two of the basins
utilised here (a600101 and a605102 along branch 4). We
interpret the large-scale component as a characteristic of the
baseflow and seasonal climatic conditions for the region. The
slowly decaying part of the correlation functions related to
the parameterk2 is rather stable. The weight coefficientw

balancing the local and regional influence seems also to be
relatively constant for larger basins, while small ones may
show deviations from this regional value possibly due to dif-
ferent baseflow contributions. The parametersa, b, c andd

are all interpreted to be of a regional character for the time
being.

7 Discussion and conclusions

The problem of mapping runoff characteristics has been di-
vided into two steps in this paper. First, the first order mo-
ment (the long term mean value) is analysed and mapped ap-
plying an interpolation procedure for river runoff proposed
by Gottschalk (1993b). In a second step a simple random
model for the river instantaneous point runoff process nor-
malised with respect to the long term mean is proposed,
which allows the derivation of the time-space variance-
covariance function of the inflow to the river network. This
function is then used to predict how the temporal coefficient
of variation develops from headwaters of the different river
branches down to the river mouth. The runoff characteris-
tics in a downstream point, here the first and second order
moments, are thus derived by integration over the upstream
contributing river network. The results are thus consistent in
this respect and furthermore are able to reproduce the main
features of the space-time covariance within a basin. The
observation data are handled by a hydrological information
system HydroDem (Leblois and Sauquet, 2000), which al-

lows to display the results either in the form of area depen-
dence of moments along the river branches to the basin outlet
or as a map of the variation of the moments across the basin
space.

The runoff variation across space is first of all explained
by the variation in the average runoff formation. For the
Moselle River basin (French part) studied here, the character-
istic space scale of this process has been identified as 50 km.
The basic parameters in the stochastic model for the second
order moment express the characteristic scales in time. Two
characteristic temporal scales were identified – one related to
the dynamics of the runoff formation process in the order of
a day,k1, and another related to the persistence in baseflow
and climatic condition in the order of a month,k2.

While the influence of the time scale on auto- and cross-
correlation functions is well in agreement between empiri-
cal and modelled data, the influence of the spatial scale, ex-
pressed as a “time of concentration” is more complex and
not yet fully captured by the model. In this paper the “time
of concentration” is a measure of the variance reduction in
space, which corresponds to a similar reduction in time. A
possible reason for the poorer fit might be the assumption
of one global set of parameters for the whole Moselle basin.
Further studies are needed to verify if allowing the parame-
ters to vary between river branches (in particular the small
time scale parameterk1 and the weight coefficientw bal-
ancing the influence of the two time scales) can improve the
results. However, aggregation rules need to be elaborated
for this purpose. Other critical points that need to be further
elaborated are the present simplistic time-space correlation
function Eq. (5) utilised here and the assumption about sta-
tionarity in time, neglecting seasonality.

Distributed modelling is an expanding activity in hydrol-
ogy that lately also has been used for mapping purposes (e.g.
Beldring et al., 2002). A fair comparison between the two
approaches is possible, however, only if the diagnostics used
for evaluating the performance of distributed models is ex-
tended to their ability of preserving time-space statistics and
scale dependence. The preservation of time-space statistics
and scale properties is of outmost importance for further de-
velopments for modelling and mapping of runoff for different
durations as in this paper, and extremes (floods and drought)
for different durations.
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Appendix A

Maps

Fig. A1.
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Appendix B

B1 Variance function for a basin areaA and durationD

δ=D/k; η=T cA/k;τ ’= τ /k;

f1(λ) =
1

δ

(
1 +

λ − τ ′

δ

)
; (τ ′

− δ) ≤ λ ≤ τ ′

f2(λ) =
1

δ

(
1 −

λ − τ ′

δ

)
; τ ′ < λ ≤ (τ ′

+ δ) (B1)

i) 0<δ≤η;

γA(δ) = 4σ 2
Z(δη)−2

{
δ2η − δ3/3

2
+

1

2

(
e(δ−η)

+e−(δ+η)
)

+ 1 − δ − e−η
− e−δ

}
(B2a)

ii) δ>η;

γA(δ) = 4σ 2
Z(δη)−2

{
δη2

− η3/3

2
+

1

2
(e−(δ−η)

+e−(δ+η)) + 1 − η − e−η
− e−δ

}
(B2b)

B2 Auto-covariance function for a basin areaA and time
lagnD

δ=D/k; η=T cA/k;

f (λ) =
1

δ

(
1 − n +

λ

δ

)
; (n − 1)δ ≤ λ ≤ nδ

f (γ ) =
1

δ

(
1 + n −

λ

δ

)
; nδ ≤ λ ≤ (n + 1)δ (B3)

i) (n+1)δ≤η

CovA(nδ) = 2σ 2
Z(δη)−2

{
δ2(η − nδ) +

(
eδ/2

− e−δ/2
)2

(
1

2
e−(nδ+η)

+
1

2
e(nδ−η)

− enδ

)}
(B4a)

ii) nδ≤η<(n+1)δ

CovA(nδ) = 4σ 2
Z(δη)−2 {e−nδ

+
1

4

(
e−((n−1)δ+η)

+ e((n−1)δ−η)

+e(−(n+1)δ+η)
+ e(−(n+1)δ+η)

)
−

1

2

(
e−(n−1)δ

+ e−(n+1)δ
+ e(nδ−η)

+e−(nδ+η)
)

− η/2 + η3/12

+δ(1 + n)/2 +

(
δ2η(n2

+ 2n − 1)

−δη2(n + 1) − δ3(
1

3
n3

+ n2
− n +

1

3

))/
4

}
(B4b)

iii) (n-1)δ≤η<nδ

CovA(nδ) = 4σ 2
Z(δη)−2{

e−nδ
+

1

4
(e−((n−1)δ+η)

+ e((n−1)δ−η)

+e−((n−1)δ−η)
+ e(−(n+1)δ+η))

1

2

(
e−(n−1)δ

+ e−(n+1)δ

+e(−nδ+η)
+ e−(nδη)

)
+ η/2 − η3/12

+δ(1 − n)/2 −

(
δ2η(n2

− 2n + 1)

−δη(n − 1) − δ3
(

1

3
n3

− n2

+n −
1

3

))/
4

}
(B4c)

iv) (n−1)δ>η

CovA(nδ) = σ 2
Z

{
(δη)(1 − e−η)(eδ/2

− e−δ/2)
}2

e−(nδ−η) (B4d)

B3 Covariance between two nested catchments A1 and A2
(A1 <A2)

(Gottschalk, 1993a)

η1 = TcA1/k; η2 = TcA2/k;

f1(λ) =
1

η2

(
1 +

λ

η1

)
; −η1 ≤ λ ≤ 0

f2(λ) =
1

η2
; 0 ≤ λ ≤ (η2 − η1)

f3(λ) =
1

η2

(
1 −

λ

η1

)
; (η2 − η1) < λ ≤ η2 (B5)

Cov(A1, A2, 0) = 2σ 2
Z(η1η2)

−1
{
η1 +

1

2
e−η1

+
1

2
(1 − η1 + η2)(e

−η2

−e−(η2η1)) −
1

2

}
(B6)
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B4 Cross-covariance between two nested catchments A1
and A2 (A1<A2) for instantaneous runoff with lagτ ′

η1 = TcA1/k; η2 = TcA2/k;
′
= τ/k;

f1(λ) =
1

η2

(
1 +

λ − τ ′

η1

)
; (τ ′

− η1) ≤ λ ≤ τ ′

f2(λ) =
1

η2
; τ ′

≤ λ ≤ (η2 − η1 + τ ′)

f3(λ) =
1

η2

(
1 −

λ − τ ′

η1

)
;

(η2 − η1 + τ ′) < λ ≤ (η2 + τ ′) (B7)

i) τ=0;

Cov(A1, A2, 0) = 2σ 2
Z(η1η2)

−1{
η1 +

1

2
e−η1 +

1

2
(1 − η1 + η2)

(e−η2 − e−(η2−η1)) −
1

2

}
(B8a)

ii) 0<τ≤η1

Cov(A1, A2, τ ) = 2σ 2
Z(η1η2)

−1{
(η1 − τ) +

1

2
e−(η1−τ)

+
1

2
(1 − η1 + η2)(e

−(η2+τ )

−e−(η2−η1+τ)) −
1

2
e−τ

}
(B8b)

iii) τ>η1;

Cov(A1, A2, τ ) = σ 2
Z(η1η2)

{
e−(η2−η1)−e−η2

}
{1−(1−η1+η2)e

−η2}e−(τ−η2) (B8c)

B5 Cross-covariance between two nested catchments A1
and A2 (A1<A2) for runoff with time lag nD

δ = D/k; η1 = TcA1/k; η2 = TcA2/k;

f (λ) =
1

δ

(
1 − n +

λ

δ

)
; (n − 1)δ ≤ λ ≤ nδ

f (λ) =
1

δ

(
1 + n −

λ

δ

)
; nδ ≤ λ ≤ (n + 1)δ (B9)

i) δ≤η1, n=0

Cov(A1, A2, 0) = 2σ 2
Z(δ2η1η2)

−1{
1 + δ2(η1 − δ/3) + e−(η1−δ)

−e−δ
− (δ + 1)e−η1

−δ + (1 − η1 + η2)(e
−(δ+η2)

−e−(δ−η1+η2)) − (1 − δ)

(1 − η1 + η2)

(e−η2 − e−(η2−η1))
}

(B10a)

ii) δ>η1, n=0

Cov(A1, A2, 0) = 2σ 2
Z(δ2η1η2)

−1{
1 + η2

1(δ − η1/3) + e(η1−δ)

−e−δ
− (δ + 1)e−η1 + δ − 2η1

+(1 − η1 + η2)(e
−(δ+η2)

−e−(δ+η1)) − (1 − δ)

(1 − η1 + η2)(e
−η2

−e−(η2−η1))
}

(B10b)

iii) (n+1) δ≤η1, n≥1

Cov(A1, A2, nD) = 2σ 2
Z(δ2η1η2)

−1{
δ2(η1 − nδ)

+
1

2
(eδ/2

− e−δ/2)2
[e−(nδ−η2)

−e−nδ
+ (1 − η1 + η2)(e

−(nδ+η2)

−e−(η2−η1+nδ))]
}

(B10c)

iv) (n−1)δ>η1, n>1

Cov(A1, A2, nD) = σ 2
Z(δ2η1η2)

−1(eδ/2
− e−δ/2)2

(e−(η2−η1) − eη2)(1 −

(1−η1+η2)e
−η2)e−(nδ−η2) (B10d)
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