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Abstract

The classical models developed for degradation and transport of xenobiotics have been derived with the assumption of homo-
geneous environments. Unfortunately, deterministic models function well in the laboratory under homogeneous conditions but
such homogeneous conditions often do not prevail in the field. A possible solution is the incorporation of the statistical varia-
tion of soil parameters into deterministic process models. This demands the development of stochastic models of spatial vari-
ability. To this end, spatial soil parameter fields are conceived as the realisation of a random spatial process.

Extrapolation of local fine scale models to large heterogeneous fields is achieved by coupling deterministic process models with

random spatial field models.

Notation:

: volumetric water flux density [cm/d]

: O(u,x,y,2,t) = source and sink term for water-
transport [cm3/cm3/d]

: hydraulic potential

: bulk density [g/cm?]

: water content [cm3/cm3]

: residual water content [cm3/cm?]

: saturated water content [cm3/cm?]

: normalized water content (cf. text)

: saturated hydraulic conductivity [cm/d]

: = K/K; normalized hydraulic conductivity

: liquid phase concentration [ug/ml]

: solid phase concentration [ug/g soil]

: equilibrium sorption constant [ml/g]

: kinetic constant [1/day]

: shape parameters of Van Genuchten and
Mualem retention and conductivity curves

v : velocity of microbial degradation [pg/ml/day]

: maximum velocity [ug/ml/day]

Ku : Michaelis constant [ug/ml]

Corg : organic matter content

K, : octanol water partition coefficient

/ : correlation length of a gaussian variogram func-
tion

. parameter vector

: sampling space of the parameter vector

D, : coefficient of hydrodynamic dispersion [cm?/s]

o

-~ -3
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o e

N

ay, ar : longitudinal and transversal dispersivity coeffi-
cient [cm]

Introduction

Experience with reactive transport processes at the labora-
tory scale i.e. in continuously stirred reactors, soil columns
and lysimeters shows that, in spite of the apparent com-
plexity of transport and degradation processes, decay
curves and breakthrough curves can be described well by
deterministic mathematical models in the form of differ-
ential equations. However, physical properties and the
chemical composition of real soils are inhomogeneous.
Frequently, this inhomogeneity is not simply a noise,
which can be dealt with by averaging, but it is essential for
the transport properties of a given soil. Consider water
flow through a medium with a large range of water con-~
ductivities. If conductivities are spatially correlated, it is
highly probable that interconnected regions of low and
high conductivities occur. These are giving rise to a
random flow pattern with preferential flow zones.
Deterministic models function well in the laboratory under
homogeneous conditions. However, homogeneous condi-
tions do not prevail in the field. Upscaling is hence neces-
sarily connected with the spatial variability of model
parameters such as the hydraulic conductivity or the shape
parameters of the water retention curve. Model parameters
are therefore treated as multivariate random variates. In
this paper, stochastic models of various degrees of
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complexity (ranging from simple distribution functions to
random field models) are incorporated in deterministic
process models thus allowing the extrapolation of local
fine-scale models across heterogeneous areas.

Short Review of Model Equations

Water transport is modelled by the Richards-equation
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which is specified by the water retention curve and the
hydraulic conductivity curve. The conductivity function is
written in the form K = K K,, where K denotes the sat-
urated conductivity (which is a parameter) and K,
describes the functional relationship. K; is referred to as
normalized hydraulic conductivity. The normalized water
content is defined by

6-6,

e =
93—0,.

Several parametrizations of empirical relationships are in
use. The retention and conductivity curves according to
van Genuchten (1980) and Mualem (1976), which are
widely used, are flexible, i.e. they can be applied to many
soil types. Where m = 1-1/n. The conductivity curves are
parameterized as a function of the water content

K
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or as a function of the matric potential.

k. = =@y '1+ @)™y
' 1+ (oyp))?

Potential and actual evaporation are calculated by the
Penman-Monteith equation and by the approach of
Feddes (1978) respectively (cf. also Diekkriiger and Arning
1995).

Transport and reaction is modelled by the convection
dispersion equation, which is coupled to the above water
transport equation

%(90 +pS)=V.[6D,Vc —Gcl = ke

In this equation, a linear decay law is assumed, which
applies well to the examples considered below. It should
be kept in mind, however, that many xenobiotics such as
pesticides are degraded by microbial processes with non-
linear degradation kinetics such as

_ Wt

c+ Ky

In the case of linear equilibrium binding, the solid phase
concentration § is related to the liquid concentration ¢ via
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where K is the equilibrium sorption constant. All model
parameters are strongly related to soil properties, e.g. the
maximum degradation rate and the strength of adsorption
of many chemicals depend on the organic matter content
of soil. The above equations together with appropriate
boundary values and initial conditions constitute a bound-
ary value problem.

Concept of Random Soil Columns

The concept of random seil columns is based on the notion
of an ensemble (in the statistical sense) of uncorrelated soil
columns. This means that lateral flow is neglected. For
each soil column, a deterministic model is valid. The sta-
tistical model consists of the probability density function
of the parameter vector, which is conceived as random.
Given this function, it is possible to compute the expecta-
tion and other statistical moments of the solution of the
initial boundary value problem. Extrapolation from local
homogeneous scale to large heterogeneous areas is carried
out via the expectation operation. The solution of the ini-
tial boundary value problem, which depends on the sto-
chastic parameters, simply acts as a transformation of
probability density functions. In other words, the random
parameter vector is mapped via the deterministic model
into a random scalar concentration field ¢(x,?).

6,
6,
K.

s ___)boundary value problem ‘,( 57" t)
o >
n

p

The mathematical problem involves the derivation of the
density function f*(¢) from the probability density function
S?(&) of the parameter ¢. In the one-dimensional case,
the density transformation is achieved via

£ =4 00
with ¢ = g(¢). Gustavson and Holden (1990) solved this
problem for a mono-exponential decay with a Gamma dis-
tributed decay rate.
In the general case the problem is stated as follows:
Given:

1) a deterministic dynamical model in form of a boundary
value problem with parameter vector ®
ii) the density function of the parameter vector ®, (D)

the mathematical problem is then to find estimators for the
moments of the distribution of the state variables of the
dynamical model.



Translating environmental xenobiotic fate models across scales

Table 1. Statistical distributions of the parameters used in the Latin Hypercube simulations.
Notations: # = normal distribution, / = lognormal distribution, ¢ = upper soil layer, # = lower soil layer

Parameter Mo T, Mu Ty

0; (n) 0.371607 0.027761 0.299843 0.031529
0; (n) 0.041713 0.023728 0.024300 0.013460
K (1) 197.9930 107.1420 260.1290 218.1420
a () 0.035921 0.015304 0.052566 0.032650
n—1 () 0.409752 0.141652 0.587983 0.325315
p (n) 1.526470 0.087350 1.517870 0.091856
Corg (n) 1.081160 0.193570 0.316326 0.158269

When no analytical solutions are obtainable, which is the
case in nearly all practical applications, this problem is
addressed by stochastic simulation methods referred to as
Stratified random sampling and Latin Hypercube
sampling. An intuitively appealing method is to generate
a random sample of the parameter vector and to derive
estimators from the sampling statistics of the model out-
put. This approach is referred to as the Monte Carlo
method. In many practical situations, the number of repli-
cations is limited by the running time of the numerical
code. Therefore, sampling techniques have been devel-
oped, which are more efficient than simple random sam-
pling (McKay et al., 1979). These are stratified random
sampling and Latin Hypercube sampling. Let {2 denote
the sampling space of the parameter vector ®. Stratified
sampling is performed by partitioning {2 into disjoint sub-
sets and obtaining random samples from each subset. Latin
Hypercube sampling is an extension of stratified sampling.

The following example is based on a soil survey based
on 86 sample points. From each sample, the parameters for
the water transport model were determined in two soil lay-
ers. As an example, Fig. 1 shows the histogram of the sat-
urated hydraulic water conductivity, which can be
modelled well by a lognormal distribution, as is frequently
the case. Other parameters such as the saturated: water
content rather follow a normal density function (cf; Fig. 2).
Table 1 summarises the type of distribution and their
parameters. Since the sample points are georeferenced,
geostatistical analyses could be performed and maps were
generated by kriging. Fig. 3 shows the map of the silt plus

clay content. This data base was used for the simulation of
" the transport of a tracer, bromide, and of the transport,
sorption and degradation of the herbicide chlorotoluron.
The K- value of chlorotoluron was computed via the rela-
tion K;= K,, C,y,. Although the kinetic constant k was
kept fixed, the effective kinetic constant rate ke is ran-
dom, since it is related to the K~ value which is in turn
related to the random soil property C,,,. !

k

by = —-—
1+£K,,
0

Simulations were performed for the time period from 28
March 1994 to 15 October 1994 using precipitation and
temperature data from the meteorological station. Initial
herbicide and bromide loads were 5kg/ha. Simulations
were performed a) for each of the 86 sampling points and
b) for 100 Latin Hypercube realisations based on distrib-
utions and parameters as given in Table 1. Appropriate
criteria are the total residues of chlorotoluron and the
depth of the peak of the soil profiles of bromide at the end
of the study. Figures 4 and 5 show the distribution of these
measures for the two types of simulations performed. The
histograms of both simulations (sample points and Latin
Hypercube sampling) are similar, Furthermore, the his-
tograms are skewed and exhibit a large range due to the
spatial variability. Note that chlorotoluron residues lie in
the range from 0.01 to 1.2 kg/ha for the Latin Hypercube
histogram. For the simulations based on the sample points,
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Fig. 1. Histogram of the saturated hydraulic water conductivity,
upper sotl layer. Note that the form of the histogram is well matched
by a lognormal density function.
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Fig. 2. Histogram of the saturated water content, upper soil layer.
The form of this histogram is best described by a normal density func-
tion.

contour maps can be constructed (interpolation by kriging)
as is shown in Fig. 6 and Fig. 7.

Note that the spatial aspects of these simulations are
solely due to the georeferenced sampling points of the soil
properties. The concept of uncorrelated soil columns with-
out lateral flow is still valid. From the point of view of
mathematics, the contour maps are the results of the trans-
formation of a random vector, the parameter vector of the
model. This random vector is assumed to be generated by
a random spatial process with spatial correlations. The
transformation is achieved by solving an initial boundary
value problem for each sampling point. The random para-

%0.00

meter vector is thus transformed into the variables ‘total
chlortoluron residues’ and ‘depth of bromide peak’. This
example is continued in section 5.

Three Dimensional Transport
Proceses over Realisations of
Random Fields

WATER TRANSPORT

The concept of uncorrelated soil columns is based on the
assumption that lateral flow can be neglected. This
assumption is valid if the soil properties are homogeneous
within a soil column. If the soil consists of different lay-
ers, this assumption is made for each layer. Each soil col-
umn is then described by a one-dimensional transport
model. But what if microscale variation creates a hetero-
geneous soil structure within a column ? Parameter fields
can be modelled as realisations of spatially correlated ran-
dom processes. Consider for instance the hydraulic con-
ductivity. If this parameter is the realisation of a second
order stationary stochastic process with a Gaussian shape
variogram, a realisation creates connected zones of differ-

* ent conductivities. If the correlation length is in the order

of magnitude of the column under study then it is most
likely that connected regions of high conductivity exist. In
these regions, water flow and hence transport are facili-
tated. Obviously one-dimensional models are not capable
of simulating these effects. How can one handle this kind
of heterogeneity? A possible procedure involves the fol-
lowing steps:

1. Identification of the spatial random process and its
parameters, e.g. the correlation length.

2. Generation of realisations of the process.

3. Three dimensional simulation of water and matter
transport over realisations of the random parameter

- field.

4. Assessment of the statistical properties from a large
number of realisations,
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Fig. 3. Contour map of silt and clay content [% by weight] of the investigation site (coordinates in m).
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Fig. 4. Histogram of the criterion measure ‘total chlorotoluron
residues’ a) based on the parameters as measured at the 86 sample
points b) based on Latin hypercube sampling from statistical distrib-
_ utions (c¢f. Table 1).

It is assumed that the basic stochastic process is given
by
o(F)=my+ (@) +¢
where u denotes the general mean, w a second order sta-

tionary process and € a white noise (uncorrelated random
variable). Stationarity ensures that

E[$G)] = —é— _[ OE)d’x = my = const
G

The properties of the second order process are determined
by the form of the variogram. To solve deterministic trans-
port processes over a random field, it is necessary that the
random field can be differentiated, i.e. that a smooth sur-
face of the parameter field is generated without spikes. Fig.
8 shows such a ‘smooth’ parameter field. This property is
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Fig. 5. Histogram of the criterion measure ‘depth of bromide peak’

a) based on the parameters as measured at the 86 sample points b)

based on Latin hypercube sampling from statistical dism'butions/(cf.
Table 1).
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Fig. 6. Contour map of total residues of chlorotoluron based on simulations with sampled parameters.
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Fig. 7. Contour map of the depth of bromide peak based on simulations with sampled parameters.

ensured if the slope of the variogram in the origin is zero
as is the case for the Gaussian model.
- 2 _E_Z - - . -
y(h)=0'(l-¢") h=x -%

The parameter / characterizes the correlation length.
The following example is taken from a publication by

Tietje and Richter (1992). Assuming a lognormal distrib-

ution of the saturated hydraulic conductivity, the authors
simulated random parameter fields and solved the
Richards-equation for the stationary case in three dimen-
sions over the realisation of random Kj-fields. Figure 8
shows a realisation of the spatial parameter field of Kj; Fig.
9 shows the resultant flow field, which is obtained by the
numerical solution of Richards-equation in three dimen-
sions by means of the finite element method.

AN
NSO
S —a

-
<>
R -
)
s

&

Fig. 8. Cross section through a three-dimensional realisation of a
random spatial K-field.
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MATERIAL TRANSPORT

The application range of the one-dimensional form of the
convection dispersion equation is limited to substrates
with only slight spatial heterogeneities. Lateral flow
becomes important if the soil contains random three-
dimensional structures giving rise to random parameter
fields. In a general three-dimensional situation, the coeffi-
cient of hydrodynamic dispersion Dj, becomes a tensor. In
a random soil, one has to generate a random tensor field.
The components of the dispersion tensor depend on the
components of the velocity field of the water and, in
isotropic soils, on the longitudinal and transversal disper-
sivity coefficients a1, and at. To complicate matters, these
coefficients are correlated to parameters of the water trans-

Fig. 9. Flow field over the realisation of the random spatial K~field
shown in Fig. 8.
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port. The anisotropy is due to the flow field of the water.
This tensor has the general form (Bear, 1979):

‘U "
D; = ay, ';;’ f(Pe,0)

fis a correction factor, which depends on the peclet num-
ber Pe and on the pore geometry.

-

Pe = Peclet number = Ly
d

with L being some characteristic length of the pores and
D, being the coefficient of molecular diffusion of the solute
in the considered liquid phase. In most applications, f is
set equal to 1. The coefficient 4, is the element of a
fourth rank tensor, the dispersivity tensor. In the isotropic
case, it reduces to

G = 0000y, + _Z—‘a_r(aibajm +8,,0,)

where 9; denotes the Kronecker symbol and a;, and a7 are
the longitudinal and transversal dispersivity. The elements
of the tensor of hydrodynamic dispersion are thus given by

V0;
D; = 09, +(aL ar)?

where v; are the components of the water velocity field. In
the following example which is taken from the PhD-thesis
of A. Stock (1994), it is assumed that both coefficients are

inversely proportional to the square of the hydraulic con- .

ductivity:
o o<1
K
Thus, regions of high conductivity are assumed to exhibit
low dispersivity and vice versa.

In the study of Stock, stationary flow and water content
fields were generated by solving the water transport equa-
tion over a random field of Ks values. In addition, a ran-
dom field of the dispersivity coefficients was generated
under the above assumption of an inverse proportional
relationship between these coefficients and K. Figures
10a-c show the development in time of vertical cross sec-
tions of the three-dimensional concentration field of a

. slowly degradable substance. Each Figure also shows the
mean concentration profile and the profile obtained from a
hypothetical borehole in the centre of the region. Note the
difference between the mean profile and the profile
obtained from the borehole. For degradable substances, a
decrease of the degradation rate with depth has to be taken
into account. This effect is due to the decreasing organic
matter content, which is closely related to the degradation
capacity and to the decreasing oxygen content of the soil.
The experience gathered from a large series of simulations
stresses the importance of soil heterogeneity in two
respects:
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Fig. 10. Time development of a cross section of a concentration field
of a slowly degradable substance in & soil with a low degree of her-
erogeneity. On the right side the mean depth profiles and the profiles
obtained by a fictitious borehole in the middle of the cross section: a)
5 days, b) 10 days and ¢) 20 days after simulation start. H marks
the location where the highest values occur.

The transfer to field conditions of experimental and/or
simulation results obtained from artificial, homogeneous
soil columns in the laboratory may lead to an underes-
timation of the amount of pesticide leached.

In heterogeneous soils, the information obtained from
borehole profiles should be interpreted with cauﬁon. For
more information see Richter ez al. (1996) and Stock
(1994).
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SOME TECHNICAL REMARKS

The one-dimensional partial differential equations were
solved by a fully implicit finite difference scheme. The
realisations of the spatial random fields were generated by
the turning bands method (Mantoglou and Wilson 1982).
The underlying variograms are Gaussian. Variogram mod-
els with zero slope at the origin generate sufficiently
smooth (differentiable in the stochastic sense) random
fields, which is necessary to ensure the existence of the
solution of the initial boundary value problem. The three-
dimensional initial boundary value problem was solved by
the method of finite elements.

Representative Parameter Sets and
Parameter Fields

RANDOM SOIL COLUMNS

The concept of random soil columns is applicable only if
lateral flow can be neglected. This implies that the corre-
lation lengths of the underlying spatial fields are large so
that microscale patterns influence the flow field only
weakly. First, the case of a known density function is con-
sidered. This demands that the sample size is very large so
the distribution law can be identified. Since the state vari-
ables of the deterministic models are spatio-temporal con-
centration fields, one has to define criteria such as the total
amount of residues in a soil layer or the depth of the peak
of the concentration profile at a prescribed time point. The
recommended procedure is then straightforward:

aggregation of the spatio-temporal concentration field
generated by the deterministic model by an appropriate
measure, e.g. the total residual mass of a pesticide in the
upper soil layer.

calculation of measures either by direct integration or by
the Latin Hypercube method.

construction of histograms and percentile bands for the
measures. This can be done either by density transforma-
tion techniques or by the ILatin Hypercube method
(McKay et al. 1979). The latter method has a larger range
of application. The former demands a density transforma-
tion.

selection of a parameter set, which results in a criterion
of the modal class as representative parameter set.

Extrapolation to large areas is then based on the represen-
tative set.

Unfortunately, sample sizes in practice are generally

very small and the type of density function cannot be iden-
tified, or the data do not match any classical model such
as a normal or lognormal density function. In this case,
Latin Hypercube methods still apply. Calculations can be
performed on the basis of the empirical distribution func-
tions or histograms. In large scale applications, model
parameters have to be derived from the information
contained in soil survey maps. The derivation of model
parameters from this kind of information is achieved
via so-called pedo-transfer functions (Tietje and
Tapkenhinrichs 1993).
" Summarising the example of the last section, the his-
tograms of the target variables ‘total chlorotoluron
residues’ and ‘bromide peak depth’ are shown in Figs. 4
and 5. Table 2 summarises the statistical parameters of the
histograms. The table also contains the results of a simu-
lation performed with the means of the underlying para-
meters (cf. Table 1). They are close to the values obtained
by averaging the results of single simulations.

Table 3 summarises the representative parameters for
the two soil layers. It was possible to find parameter sets,
which yield values in the modal class of both criterion
measures.

HIGHLY SPATIALLY CORRELATED PARAMETER
FIELDS

In soils with highly correlated parameter fields, heteroge-
neous patterns emerge within the spatial dimension of a
soil column. Only three-dimensional models are capable of
simulating water and matter flow in such environments.
One has to recall that an effective parameter is meant to
replace an inhomogeneous block of soil by an equivalent
homogeneous one. It is obvious that this approach yields
only crude approximations in a block of soil with compli-
cated spatial patterns, especially if degradation is involved.
Hence, in this situation, effective parameters are of only
limited value and a new concept based on the notion of a
representative parameter field is proposed.

1. Aggregation of the spatio-temporal concentration field
generated by the deterministic model by an appropriate

Table 2. Mean values and standard deviations of the criterion measures ‘total chlorotoluron
residues’ and ‘depth of bromide peak’. The last column shows the results obtained by a sim-
ulation based on the expectation of the model parameters. Note the close agreement with the
values obtained by averaging the simulation results. Notations: LH = Latin Hypercube, S =
Simulation of sample points, M = mean parameter values

Criterion measure us oS MLH OLH MM
total residues CT [kg/ha] 0.237 0.163 0.260 0.222 0.236
depth of bromide peak [m] 0.855 0.265 0.843 0.224 0.875
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- Table 3. Representative parameters derived from the modal classes of the histograms of the criterion
measures ‘total chlorotoluron residues’ and ‘depth of bromide peak’. Note that the parameters chosen
result in values of the modal classes of both criterion measures. Notations: LH = Latin Hypercube, S
= Simulation of sample points, » = upper layer, / = lower layer.

6, 6, K 27 pP : Corg
LHu 0.37 0.037 312 0.046 1.50 1.49 0.98
Su 0.33 0.0 120 0.038 1.20 1.58 0.95
LHI 0.38 0.055 308 0.098 1.70 1.61 0.36
LHI1 0.28 0.0 132 0.057 1.251 1.73 0.33

Table 4. Model approaches at differenf scales

Scale

Stochastic properties of model
parameters

Model

continuously stirred tank reactor

artificial column reactor

field scale (low spatial correlation)
one pedological unit

field scale (high spatial correlation)
one pedological unit

catchment scale
collection of pedological units (low
spatial correlation)

catchment scale
collection of pedological units (high
spatial correlation)

uncertainties due to experimental error

almost homogeneous
microscale variation

uncertainties due to experimental error

(statistical ) ensemble of soil columns

soil properties realisations of a three-
dimensional random spatial process

several statistical ensembles of soil
columns

soil properties realisations of a
collection of three-dimensional
random spatial processes

kinetic models in form of ordinary
differential equations

kinetic models coupled with one-
dimensional transport models in
form of partial differential
equations plus multivariate
statistical distribution functions of
the parameter-vector

distribution functions pertain to
one soil column

kinetic models coupled with one-
dimensional transport models in
form of partial differential’
equations plus multivariate
statistical distribution functions of
the parameter-vector

distribution functions pertain to
the soil properties of a field

kinetic models coupled with three-
dimensional transport models in
form of partial differential
equations plus three-dimensional
multivariate random field models
for soil properties

kinetic models coupled with one-
dimensional transport models

. .. plus distribution functions of
soil parameters for each pedotope

kinetic models coupled with three-
dimensional transport models

. . . plus random field models for
each pedotope
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measure, e.g. the total residual mass of a pesticide above
the plough horizon.
2. Production of realisations of the spatial random process.
. Calculation of the criterion value for each realisation.
4. Construction of percentile bands and the histogram of
the criterion.
5. Consideration of the realisations which belongs to the
modal value of the histogram as the representative para-
meter field. i

W

DIFFERENT SOIL TYPES

The concept of a random spatial parameter field can be
extended to regions of different soil types. The soil type
determines the parameters of the continuous spatial ran-
dom process. The distribution of soil types can be mod-
elled by stochastic geometries (so called boolean models)
and in a second step, for each soil type a continuous ran-
dom field is generated,

Conclusions

The translation of environmental fate models across scales
necessitates the combination of deterministic approaches
in the form of systems of partial differential equations with
stochastic models. Table 4 summarises the proposed
model approaches and combinations of deterministic and
stochastic models at different scales in dependence of the
stochastic properties of the underlying soil parameters.

The key idea of this paper is that the statistical methods
in use for an ensemble of random soil columns can be
extended to spatial random process models by introducing
a representative parameter field. The proposed procedure
involves the steps

1. Construction of random field models

2. Solving initial boundary value problems over realisa-
tions of random parameter fields

3. Selection of a representative field

In this context, a pedological unit is characterized by a
random field model. The pedological units in turn are
combined to catchments and landscapes. Whereas this
concept for translating models across scales is quite appeal-
ing from a theoretical point of view, how to identify the
many spatial random processes involved, is by no means
clear. It is hoped that it will be feasible to associate a
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proper random field model to each pedotope taking into
account both the properties of a soil and its genesis.
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