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Abstract. The Rainfall-Response Aquifer and Watershed

Flow Model (RRAWFLOW) is a lumped-parameter model

that simulates streamflow, spring flow, groundwater level, or

solute transport for a measurement point in response to a

system input of precipitation, recharge, or solute injection.

I introduce the first version of RRAWFLOW available for

download and public use and describe additional options.

The open-source code is written in the R language and is

available at http://sd.water.usgs.gov/projects/RRAWFLOW/

RRAWFLOW.html along with an example model of stream-

flow. RRAWFLOW includes a time-series process to esti-

mate recharge from precipitation and simulates the response

to recharge by convolution, i.e., the unit-hydrograph ap-

proach. Gamma functions are used for estimation of paramet-

ric impulse-response functions (IRFs); a combination of two

gamma functions results in a double-peaked IRF. A spline fit

to a set of control points is introduced as a new method for es-

timation of nonparametric IRFs. Several options are included

to simulate time-variant systems. For many applications,

lumped models simulate the system response with equal ac-

curacy to that of distributed models, but moreover, the ease of

model construction and calibration of lumped models makes

them a good choice for many applications (e.g., estimating

missing periods in a hydrologic record). RRAWFLOW pro-

vides professional hydrologists and students with an accessi-

ble and versatile tool for lumped-parameter modeling.

1 Introduction

1.1 Lumped vs. distributed models

Hydrologic models that commonly are referred to as

“lumped-parameter” or “lumped” models generally have a

small number of parameters, each representing a property

of the entire hydrologic system; conceptually, many physi-

cal processes are lumped into a few parameters. In contrast

to lumped models, distributed models discretize the system

into small compartments or cells, each of which has sev-

eral parameters defined. All hydrologic models, however, are

lumped to some degree. Models that frequently are consid-

ered physically based simulate numerous small-scale physics

by lumping these processes into simplified mathematical

forms (Beven, 1989). The use of the term “physically based”

to describe any hydrologic model, therefore, should be dis-

couraged (Beven and Young, 2013). Both distributed and

lumped models, however, have components that can repre-

sent different hydrologic processes that can be interpreted in

physically meaningful ways (Beven and Young, 2013). For

example, the impulse-response function (IRF) estimated in

many lumped models represents the physical response to an

impulse into the system and provides mechanistic insights

into that system, including the peak response time and mag-

nitude and the hydrologic memory of the system (von As-

muth and Knotters, 2004; Beven and Young, 2013; Young,

2013). The IRF could be measured directly at the outflow

point (e.g., a spring) if a short, intense recharge event follows

a long, dry period. Most commonly, however, the outflow,

or system response, results from a series of superposed re-

sponses to repeating recharge events, and the lumped model

is used to estimate the IRF iteratively and to simulate the sys-

tem response.
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In a comparison of lumped models to distributed mod-

els, Reed et al. (2004) concluded that lumped models had

better overall performance than distributed models but also

cited several other studies indicating that distributed or

semi-distributed models may or may not provide improve-

ment over lumped models. In another comparison, Smith et

al. (2013) concluded that distributed models provided im-

provements over lumped models in 12–24 % of the cases

tested, depending on the criteria of evaluation. The mixed re-

sults of these comparisons indicate that lumped models are a

good choice when the objectives do not require a distributed

model.

A major advantage of a lumped model is its ease of con-

struction and calibration because of the small number of pa-

rameters to estimate and because there is no need to assem-

ble large data sets representing the physical properties of the

system. Lumped models are useful for karst aquifers, where

the geometry of the conduit network frequently is unknown.

Lumped models provide an efficient means to simulate the

response to possible future changes in the system input (e.g.,

precipitation). A lumped groundwater model might be more

effective than a distributed model in regard to conditional

validation and predictive modeling because of its simplicity,

as will be discussed. The primary advantage of distributed

models is to simulate the response to possible changes within

the system, such as urban development or increased ground-

water pumping, for example. The choice to use a lumped or

distributed model, therefore, depends on a study’s objectives

and available resources; a lumped model likely is the better

choice when it meets the study’s objectives.

1.2 RRAWFLOW overview

The Rainfall-Response Aquifer and Watershed Flow Model

(RRAWFLOW) is a lumped model that is partially based

on unit-hydrograph theory applied to streamflow (Nash,

1959). RRAWFLOW simulates a time-series record for a

measurement point of streamflow, spring flow, groundwater

level, or solute transport in response to a system input of

precipitation, recharge, or solute injection. A preliminary

version of RRAWFLOW was developed by Long and

Mahler (2013) and used to classify karst aquifers and

characterize time-variant systems. This preliminary version

also was used by Symstad et al. (2015) to simulate future

scenarios of streamflow and groundwater level in a cave in

Wind Cave National Park, USA, and by the US Geologi-

cal Survey to simulate future scenarios of spring flow and

groundwater levels (https://nccwsc.usgs.gov/display-project/

4f8c652fe4b0546c0c397b4a/52d5615ae4b0f19e63da8647).

Although this preliminary version was applied primarily,

but not exclusively, to karst, RRAWFLOW is suitable

for aquifers and watersheds of any type, and non-karst

systems generally are easier to model than karst systems.

Convolution, as used in RRAWFLOW, has been applied

extensively to non-karst surface-water and groundwater

systems (e.g., Nash, 1959; Blank et al., 1971; Delleur and

Rao, 1971; Dooge, 1973; Neuman and de Marsily, 1976;

Maloszewski and Zuber, 1982; Besbes and de Marsily, 1984;

Beven, 1989; Jakeman and Hornberger, 1993; von Asmuth

et al., 2002; Reed et al., 2004; von Asmuth and Knotters,

2004; Olsthoorn, 2008; Jurgens et al., 2012; Smith et al.,

2013).

The purpose of this paper is to present a new version of

RRAWFLOW with added functionality, to make the code

publicly available, and to guide users in its operation. New

functions in this version include (1) the gamma function for

parametric IRFs, (2) a spline curve or straight-line segments

fit through a set of control points for nonparametric IRFs,

(3) a new option for time-variant systems that uses a con-

tinuously changing IRF scale, (4) two methods to determine

wet and dry periods, and (5) any user-defined IRF. To my

knowledge, the spline-curve method previously has not been

used for the IRF. The RRAWFLOW open-source code writ-

ten in the R language (http://www.r-project.org/index.html)

can be downloaded from http://sd.water.usgs.gov/projects/

RRAWFLOW/RRAWFLOW.html along with a user’s man-

ual, example model, and a quick-start guide for the R novice.

Time-invariant and time-variant systems were described

by Jenkins and Watts (1968). For example, Larocque et

al. (1998) described high-flow periods exhibiting distinctly

different response characteristics from low-flow periods.

RRAWFLOW includes several options to simulate time-

variant systems that generally are not available for distributed

watershed models (e.g., PRMS; http://wwwbrr.cr.usgs.gov/

projects/SW_MoWS/PRMS.html). If a distributed model is

required for a specific study, RRAWFLOW might be a com-

plimentary exploratory tool to analyze the system’s sensi-

tivity to time-variant response characteristics. RRAWFLOW

is useful for estimation of missing periods in a hydrologic

record and as an educational tool for hands-on instruction of

some of the basic principles in hydrology. Several example

applications that demonstrate model options and calibration

and validation procedures are included herein. Input, out-

put, and calibration files are available from the RRAWFLOW

website for one of these examples.

2 The model

The model’s time-step interval is determined by the input

data record, which must have equal time steps, and model

output is generated for the same time step. Hydrological

and meteorological data commonly are available for a daily

time step, which is suitable for most simulations over a time

frame of months to decades. Time steps shorter than 1 day

can be used when high-resolution responses are of interest.

Any time-step interval can be used because the equations

are not time-unit specific. However, the time step should

be equal to or less than the quickest identifiable response

of interest; longer time steps will result in a loss of infor-

Geosci. Model Dev., 8, 865–880, 2015 www.geosci-model-dev.net/8/865/2015/

https://nccwsc.usgs.gov/display-project/4f8c652fe4b0546c0c397b4a/52d5615ae4b0f19e63da8647
https://nccwsc.usgs.gov/display-project/4f8c652fe4b0546c0c397b4a/52d5615ae4b0f19e63da8647
http://www.r-project.org/index.html
http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html
http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html
http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html
http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html


A. J. Long: RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15) 867

Table 1. RRAWFLOW options.

System input 1 = system input is precipitation that results in recharge to the system (Eqs. A1–A4).

2= system input is recharge estimated outside of RRAWFLOW (skip Eqs. A1–A4).

3= system input is solute concentration (skip Eqs. A1–A4).

System output 1= system output is groundwater level.

2= system output is spring flow or streamflow.

3= system output is solute concentration (System input = 3).

IRF type 1= parametric IRF – gamma functions.

2= nonparametric IRF – spline fit to IRF control points.

3= nonparametric IRF – linear fit to IRF control points.

4= nonparametric IRF – user-defined IRF.

Time-variance (TV) option 1= time-invariant (static) IRF.

2=wet-period IRF and dry-period IRF are defined separately, and each are time invari-

ant within these respective periods.

3= variable IRF vertical scale, where β in Eq. (1) is variable.

Wet-switch option 0= the wet and dry periods are provided by the user.

1=wet and dry periods are calculated by RRAWFLOW. Any calendar year when the

mean precipitation is above the mean for the entire precipitation record is a wet year,

and other years are dry years.

2=wet and dry periods are calculated by RRAWFLOW according to the annual cumu-

lative departure from mean precipitation.

Air-temperature option 1= use air-temperature adjustment (Eq. A2).

2= do not use air-temperature adjustment.

mation about response dynamics (Jakeman and Hornberger,

1993). RRAWFLOW also is independent of specific units for

flow, water level, or solute concentration, and the user should

maintain unit consistency. Air temperature is always in ◦C.

2.1 Precipitation recharge

Effective precipitation for a watershed is the amount of

precipitation that results in streamflow exiting the water-

shed. This consists of infiltration to groundwater below the

root zone that reemerges as streamflow, spring flow, shal-

low groundwater interflow, and overland runoff. Processes

that apply to effective precipitation for watershed modeling

also apply to infiltration recharge to groundwater that causes

a response in spring flow or groundwater level, except that

overland runoff generally does not contribute to groundwater

recharge. In RRAWFLOW, the term “recharge” is used for

both watershed modeling and groundwater modeling. Meth-

ods used in RRAWFLOW to simulate precipitation recharge

are described in Long and Mahler (2013), and the equations

also are presented in Appendix A herein for convenience and

reference from the RRAWFLOW user’s manual.

2.2 Other recharge options

Recharge estimated outside of RRAWFLOW can be used

as model input. For example, this applies to precipita-

tion recharge estimated by a soil-water-balance model (e.g.,

Westenbroek et al., 2010) or sinking-stream recharge in karst

aquifers that can be estimated by methods such as those de-

scribed by Hortness and Driscoll (1998). This is system-input

option 2 (Table 1).

2.3 Convolution

Convolution is a time-series operation (Jenkins and Watts,

1968; Smith, 2003) that is commonly used in non-distributed

hydrologic models to simulate streamflow, spring flow, or

groundwater level in response to recharge (e.g., Nash, 1959;

Dooge, 1973; Dreiss, 1989; Olsthoorn, 2008). The use of

convolution in modeling also has been described as a linear-

reservoir model and a transfer-function model (e.g., Nash,

1959; Young, 2013; von Asmuth et al., 2002). The discrete

form of the convolution integral for uniform time steps used

in RRAWFLOW is

yi =1t

i∑
j=0

βjhi–juj +ϕi + d0 (1)

i,j = 0,1, . . .,N,

where hi–j is the IRF; uj is the input, or forcing function;

j and i are time-step indices corresponding to system input

and output, respectively;N is the number of time steps in the

output record; βj is an optional time-varying IRF scaling co-

efficient; ϕi represents the errors resulting from measurement

inaccuracy, sampling interval, or simplifying model assump-
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tions; and d0 is a hydraulic-head datum used in simulation of

groundwater levels. d0 is the level to which hydraulic head

would converge if the local recharge was eliminated. Local

recharge is assumed to be the only forcing that results in

hydraulic-head fluctuation or that causes hydraulic head to

rise above d0. The errors ϕi are not explicitly simulated but

are shown in Eq. (1) for clarity.

The quantity i–j represents the delay time from impulse

to response, and the IRF represents a distribution of these

delay times. In RRAWFLOW, the input function uj can be

recharge or input of a solute. The system response yi can be

streamflow exiting a watershed, spring flow from a ground-

water system, groundwater level, or solute concentration at

an outlet. Physically, the IRF is the system response yi per

unit impulse of uj and also can be described as the response

produced by a system when the input is a delta function

(Smith, 2003). Conceptually, convolution is the superposi-

tion of a series of IRFs that are initiated at the time of each

impulse of uj and are scaled proportionally by the magnitude

of the corresponding impulse (Fig. 1).

2.4 Solute transport

RRAWFLOW can simulate transport of a solute, similarly to

the approach of Maloszewski and Zuber (1982). In this case,

the user-provided system input uj is the solute concentration.

A variable recharge rate is not considered, i.e., the concentra-

tion is not weighted by a variable recharge rate. The response

in solute concentration at the outlet of a system is simulated

by the convolution integral (Eq. 1) with the IRFs described

in the following section. Convolution temporally disperses a

system input of a solute, according the IRF characteristics, at

the system outlet. This is system-input option 3 (Table 1).

2.5 Impulse-response function

The IRF characterizes the relation between system input and

output by convolution (Eq. 1) and has been described by

other terms, including instantaneous unit hydrograph, trans-

fer function, and kernel (e.g., Nash, 1959; Dreiss, 1989;

Berendrecht et al., 2003; Smith, 2003; Jukić and Denić-Jukić,

2006). However, the term “transfer function” should only be

applied to the Fourier transform of the IRF (Smith, 2003).

The IRF of a hydrologic system can be approximated by a

parametric function, where its shape is defined by one or

more parameters, or a nonparametric function that is not con-

strained by common curve types.

2.5.1 Parametric IRFs

Parametric functions that have been used to approximate the

IRF for hydrologic systems include exponential, lognormal,

and gamma functions (Nash, 1959; Besbes and de Marsily,

1984; Jakeman and Hornberger, 1993; von Asmuth et al.,

2002; Berendrecht et al., 2003; von Asmuth and Knotters,

2004; Long, 2009; Long and Mahler, 2013). The gamma
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Figure 1. Superposition of sequential impulse-response functions

(IRFs). Each IRF is in response to an impulse of the input function

uj and is scaled by the magnitude of that impulse.

function is equivalent to the Pearson type III function: the

three parameters of the Pearson type III function can be

combined into the two parameters of the gamma function

(Haan, 2002). Estimation of parametric IRFs generally con-

sists of model-calibration techniques to optimize the param-

eters with the aim of minimizing the difference between

the observed and simulated system response, i.e., fitting the

model. The parametric functions previously described (other

than Pearson type III) have one or two of these fitting param-

eters. As the number of fitting parameters increases, the risk

of over-fitting the model also increases, i.e., fitting the errors

ϕ in Eq. (1).

For a parametric approximation of the IRF, RRAWFLOW

uses the gamma function:

γ (t)=
ληtη−1e−λt

0(η)
λ,η>0, (2)

0(η)=

∞∫
t=0

tη−1e−tdt, (3)

where λ and η are unitless shape parameters, and the mean

and variance are η/λ and η/λ2, respectively. Equation (3) is

approximated in RRAWFLOW by the discrete form

0(η)=1t

N∑
t=t0

tη−1e−t , (4)

where t is time centered on each discrete time step, t0 and N

are time centered on the initial and final time steps, respec-

tively, and 1t is the time-step duration. The gamma func-

tion can produce a variety of shapes, including exponential

(η = 1), reverse-J (η < 1), and positively skewed shapes with

a peak at t = (η− 1)/λ (Fig. 2; Haan, 2002). The gamma

function can produce nearly identical shapes to those of the

lognormal function when η > 1 and, therefore, can produce
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nearly all possible shapes of the exponential and lognormal

functions combined when η ≥ 1, plus the additional reverse-J

shape when η < 1. The RRAWFLOW option to use paramet-

ric IRFs is specified as IRF type 1 (Table 1).

The gamma function (Eq. 2), which has an area under its

curve of unity, requires the additional scaling coefficient ε

for use as the IRF in many hydrologic applications:

h(t)= εγ (t), (5)

where ε (unitless) compensates for hydrologic systems that

do not have a one-to-one relation between system input and

output (Olsthoorn, 2008). For example, if (1) the system in-

put uj is in cubic meters per day of recharge, (2) the sys-

tem response yi is spring flow with the same units, and (3)

100 % of this recharge emerges as spring flow with nothing

else contributing to spring flow, then ε would be set to unity.

For most other hydrologic applications, ε would not equal

unity. Similarly, if 100 % of a solute entering the system does

not exit the system at the observation point, then the area un-

der the IRF should be less than unity (ε < 1). Maloszewski

and Zuber (1982) simulated solute transport with IRFs that

were approximated by the exponential or dispersion-model

functions. The gamma function has a similar shape to that of

the dispersion-model function and could be used as an ap-

proximation of the dispersion-model function, or the exact

dispersion-model function can be provided to RRAWFLOW

as a user-defined IRF.

RRAWFLOW allows the use of as many as two super-

posed gamma functions, herein referred to as double-gamma

IRFs, to produce additional IRF shapes such as a double-

peaked curve; several examples of these are shown in Long

and Mahler (2013), except with different combinations of

lognormal and exponential functions. Approaches similar to

this have been used to represent the components of quick

flow and slow flow in watershed modeling (Jakeman and

Hornberger, 1993) and for conduit and diffuse flow in karst

systems (Pinault et al., 2001; Long, 2009; Long and Mahler,

2013). In these examples, each parametric function repre-

sents one of two flow components. The use of a double-

gamma IRF also might be useful when a single function can-

not produce the necessary IRF approximation (e.g., an extra-

long tail). The scaling coefficient ε can be set to different val-

ues for the two gamma functions, e.g., to allow for a larger

component of slow flow than of quick flow.

2.5.2 Nonparametric IRFs

The process of determining an unknown IRF from observed

system input and output data is known as deconvolution (e.g.,

Neuman and de Marsily, 1976). To define a nonparametric

IRF, an ordinate value is defined for each time step, and any

shape desired is possible. Deconvolution methods include

Fourier harmonic time-series analysis (Blank et al., 1971;

Delleur and Rao, 1971), linear programming (Neuman and

de Marsily, 1976), and time-moment analysis (Dreiss, 1989).

Estimations of nonparametric IRFs by model calibration in-

clude those described by Pinault et al. (2001) and Jukić and

Denić-Jukić (2006). A potential problem with nonparametric

IRFs is that hundreds or even thousands of IRF ordinates may

be needed to define the IRF, depending on the IRF length and

time step. Optimization of each individual ordinate would re-

sult in a mathematically underconstrained and over-fit model.

An extreme example of over-fitting is to determine the IRF

by means of deconvolution in the frequency domain (Smith,

2003) that results in a numerically perfect model fit but also

an IRF that commonly is highly oscillatory and cannot be

explained physically (Blank et al., 1971; Delleur and Rao,

1971) because the errors ϕ (Eq. 1) are included in the fit-

ting process. Filtering the IRF in the frequency domain (i.e.,

transfer function; Smith, 2003) or smoothing the IRF in the

time domain (Long and Derickson, 1999) are options for IRF

estimation by Fourier analysis, which may require trial-and-

error calibration. Further, an over-fitted model results in a

poor model fit when tested on a conditional validation pe-

riod that was sequestered from the fitting process. Pinault et

al. (2001), Jukić and Denić-Jukić (2006), and Ladouche et

al. (2014) described different methods to constrain the non-

parametric IRF and reduce the number of fitting parameters.

The method proposed herein uses a small number of ordi-

nates to define a smoothly shaped nonparametric IRF: ordi-

nates of the IRF are defined at spaced intervals (IRF control

points), and a spline curve is fit through these points (Fig. 3)

(IRF type 2, Table 1). Another option is to apply straight-line

segments connecting the control points (IRF type 3, Table 1).

Similar to parametric IRFs, these two nonparametric options

are convenient for the estimation of the IRF through model

calibration and conditional validation because of the ability

to control the number of fitting ordinates. If a model is sus-

pected of having been over-fit, the number of control points

should be reduced; this consists of increasing the control-

point intervals, resulting in a smoother shape, or by reduc-

ing the tail length by setting posterior control points to zero.

Trial and error generally is required to determine the opti-
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mum number of control points for a given application. The

minimum number of control points is two: at least one to de-

fine the non-zero part of the curve and one to define where

the function becomes zero.

Another option allows a predefined IRF to be supplied to

RRAWFLOW if the IRF is determined by some other method

(IRF type 4, Table 1). The scaling coefficient ε is not used

for nonparametric IRFs because the area is defined by the

ordinate values.

2.5.3 Linearity and time variance

The terms “linear”, “nonlinear”, “time variant”, and “time

invariant” may cause some confusion. Estimated recharge

(Appendix A) is a nonlinear process, where recharge as a

fraction of precipitation varies with antecedent soil-moisture

conditions. Convolution (Eq. 1), which simulates the system

response to recharge, is a linear system (Jenkins and Watts,

1968; Dooge, 1973). This linear system can be either time

variant or time invariant, depending on whether or not the

IRF changes with time (Jenkins and Watts, 1968). Most com-

monly, a time-invariant (i.e., static) IRF is assumed in hy-

drologic convolution models (e.g., von Asmuth et al., 2002;

Denić-Jukić and Jukić, 2003). In many hydrologic systems,

however, the IRF changes with changing climatic conditions,

resulting in a change in response characteristics (Larocque et

al., 1998; Long and Mahler, 2013). Additional details and ex-

amples of time-variant IRFs for hydrologic applications in-

clude Pinault et al. (2001), Jukić and Denić-Jukić (2006), and

Long and Mahler (2013).

2.5.4 Time-variance (TV) options

RRAWFLOW has three options for time variance in convo-

lution (Table 1). In TV option 1, the IRF is time invariant,

or static. TV option 2 applies a time-variant IRF, similarly

to the method proposed by Long and Mahler (2013), which

uses a minimal number of fitting parameters but also repre-

sents the dominant transient characteristics of the system. In

this method, the system-input record is separated into climat-

ically wet or dry periods. One IRF represents all of the wet

periods, and the other represents all of the dry periods. The

IRF scaling variable β (Eq. 1) is set to unity for TV options 1

and 2.

All of the parametric and nonparametric IRF-type options

previously described can be used in TV option 2 (Table 1).

An advantage of this method is that both the size and shape of

the IRF can change, while the fitting parameters are kept to

a minimum, because IRFs are not defined continuously but

rather for two different periods only. A potential disadvan-

tage of this method is that the IRF changes abruptly between

wet and dry periods; however, this was not a detrimental

factor for several models in which this method was applied

(Long and Mahler, 2013). Also, the superposition of many re-

sponses applied in convolution results in smooth transitions

in the simulated response between wet and dry periods. Jukić

and Denić-Jukić (2006) proposed a similar time-variant ap-

proach, where three different IRFs were applied to one of

three different hydrologic periods determined by an index of

antecedent recharge.

Pinault et al. (2001) varied the IRF’s vertical scale con-

tinuously with hydraulic head. However, because hydraulic

head also is used for model calibration, this approach cannot

undergo conditional validation or be used to simulate peri-

ods without observed system-response data, e.g., future pe-

riods that might be simulated with climate projections. TV

option 3 in RRAWFLOW (Table 1) is similar to the approach

of Pinault et al. (2001), except that the IRF scaling variable β

(Eq. 1) varies according to the input for convolution uj (e.g.,

recharge) by

βj =mxj m 6= 0, (6)

where xj is the moving average (MA) of uj (Eq. 1) that is

scaled to range from 0 to 1, and m determines the range of

β. An MA of uj is used so that the IRF transitions smoothly.

Generally, β is assumed to vary directly with x (m> 0). Ad-

vantages of this method are that it requires fewer fitting pa-

rameters than TV option 2 and the IRF does not change

abruptly; the disadvantage is that only the vertical scale of the

IRF changes, whereas the shape is static. All of the paramet-

ric and nonparametric IRF-type options previously described

can be used in this option. TV option 3 has longer run times

than TV options 1 or 2 because of the additional computation

required, mainly within the convolution loop.

For time-invariant systems, the cross-correlation function

(CCF) has the same shape as the IRF but only if the input to

the convolution process is completely random (Jenkins and

Watts, 1968). If the convolution input has a strong autocorre-

lation, typical of recharge in hydrologic systems, then there is

large error in using the CCF to estimate the IRF (Jenkins and

Watts, 1968; Bailly-Comte et al., 2011) and therefore should

be avoided.
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2.6 Determining wet and dry periods

RRAWFLOW includes two options to determine wet and dry

periods on the basis of the precipitation input record when us-

ing TV option 2. The first option assigns each calendar year

to a wet period if the annual mean precipitation is greater

than the overall mean Pmean for the entire input record, and

other years are set to dry years (wet-switch option 1, Ta-

ble 1). The second option sets wet and dry periods according

to the slopes of a cumulative precipitation function in which

upward or downward slopes indicate wet or dry periods, re-

spectively (wet-switch option 2, Table 1). This option (1) cal-

culates a record, at the model time step, of the cumulative

departure from Pmean, (2) calculates the annual mean cumu-

lative departure (CDmean) from this record, (3) sets each time

step within a year to wet if an increase in CDmean from the

previous year occurred, and (4) sets all other periods to dry.

Finally, this record of wet and dry time steps is shifted back-

ward in time by 183 time steps, by default, which is 6 months

if daily time steps are used. The reason for this shift is that the

wet periods for option 2 tend to lag behind those of option 1

if no shift is applied. However, because the two methods are

calculated differently, wet periods from option 2 can begin ei-

ther before or after those of option 1, depending on the year;

the same is true for the beginning of dry periods. The shift

can be changed in the RRAWFLOW code if desired by edit-

ing the parameter “shift.” A third option allows the user to

provide a record of wet and dry periods in the model input

(wet-switch option 0, Table 1).

2.7 Model outputs

Model outputs consist of time series for simulated system re-

sponse yi , the dry-period and wet-period IRFs (if using TV

option 2), the soil-moisture index si (Eq. A1, Appendix A),

and the input to convolution uj . Other outputs consist of a

coefficient of efficiency E to measure the similarity between

simulated and observed system response (residuals) and the

hydrologic memory of the system. This system memory is

the time that the response to an impulse effectively persists,

which is defined by the length of the IRF. Because the gamma

function is asymptotic and has infinite length, system mem-

ory is arbitrarily defined in RRAWFLOW as time tm on the

IRF time scale at which 95 % of the curve area is in the range

0–tm.

2.8 Evaluating model fit and over-fitting

The calibration period is the period of the data record used to

calibrate the model. By default in RRAWFLOW, the condi-

tional validation period is the part of the data record follow-

ing the calibration period that is used to test the model cal-

ibration against system-response observation data not used

in calibration (i.e., model prediction of streamflow or spring

flow). Assessing the conditional validation period is an in-

dication of the expected model performance to predict a fu-

ture period on the basis of climate simulations, for exam-

ple. Moreover, this assessment indicates if the model is be-

ing over-fit. This validation is considered conditional because

the model cannot yet be tested against additional observa-

tional data that will be available in the future (Beven and

Young, 2013). RRAWFLOW calculates a modified form of

the Nash–Sutcliffe coefficient of efficiency (Nash and Sut-

cliffe, 1970; Legates and McCabe, 1999) to quantify model

fit, as proposed by Long and Mahler (2013). This modifica-

tion calculates the coefficient of efficiency E for a partial pe-

riod, either calibration or conditional validation, in a manner

that allows the two periods to be compared directly:

E = 1−

[∑
(yobs− ysim)

2
]
p[∑

(yobs− ymean)2
]
T

(
lp
lT

) , (7)

where yobs and ysim are time series of the observed and simu-

lated system responses, respectively; ymean is the mean value

of yobs; the subscripts p and T refer to the partial and total

periods, respectively; and l is the time length of the respec-

tive period. Conceptually, E is the ratio of the magnitude of

model residuals (numerator) to the overall variability in the

observation record (denominator) subtracted from unity and

theoretically can vary from−∞ (poorest fit) to unity (perfect

fit).

In addition to quantifying model fit, E provides a useful

way to evaluate possible over-fitting of the model. Although

model fit for the calibration period might improve as param-

eters are added, if the validation period indicates that this

added complexity is not helpful, the model has been over-fit

(von Asmuth et al., 2002). To test this condition, E is cal-

culated for the calibration and conditional validation periods

separately (Ecal andEval) by the modified Nash–Sutcliffe co-

efficient of efficiency (Eq. 7), which makes Ecal and Eval

directly comparable (Long and Mahler, 2013). This method

is particularly important for comparison of two periods with

different fluctuation amplitudes.

Legates and McCabe (1999) describe limitations of

correlation-based measures to quantify model fit, such as the

coefficient of determinationR2, and the benefits of the Nash–

Sutcliffe coefficient of efficiency and the index of agreement.

The sum of the squared and weighted residuals (Doherty,

2005) is another useful metric used for this purpose. Hart-

mann et al. (2013) provides an example of using multiple

metrics to evaluate model performance.

A value of Ecal that is much larger than Eval might in-

dicate over-fitting, in which case a simpler model (i.e., fewer

fitting parameters) should be tested. For example, if a double-

gamma IRF is used, then a second model calibration with

a single-gamma IRF could be tested to determine if greater

similarity in the Eval and Ecal values is achieved. For non-

parametric IRFs, a reduction in the number of IRF control

points could be tested. A time-variant IRF requires more

parameters than a time-invariant IRF, and this also can be
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tested. Thoroughly considering model complexity in light of

Eval and Ecal provides context for conditional validation. For

example, Long and Mahler (2013) described decision criteria

to evaluate model complexity and the number of fitting pa-

rameters on the basis of Ecal and Eval, with several examples

of calibrated models.

The number of gamma functions or fitting parameters

might correspond to different conceptual models of the sys-

tem, and model complexity issues can be investigated by test-

ing multiple conceptual models (e.g., Hartmann et al., 2013).

Numerous other researchers have investigated issues related

to model complexity and its effect on model-prediction

uncertainty (e.g., Young et al., 1996; Jakeman and Horn-

berger, 1993; Arkesteijn and Pande, 2013). Prediction un-

certainty crucially depends on model complexity (Arkesteijn

and Pande, 2013). Although Vapnik–Chervonenkis general-

ization theory suggests that models with higher complex-

ity tend to have higher prediction uncertainty, model com-

plexity is not necessarily proportional to prediction uncer-

tainty (Fienen et al., 2010). Doherty et al. (2010) described

a method for predictive uncertainty and sensitivity that tests

the range of each parameter’s potential values on the basis of

expert knowledge and propagates this uncertainty to model

predictions. Estimating this potential range of IRF parame-

ter values, however, might be more difficult than, for exam-

ple, estimating hydraulic conductivity or streambed rough-

ness in a distributed model. Although a rigorous assessment

of prediction uncertainty is beyond the scope of this article,

effective tools are available for this purpose (Doherty, 2005;

Fienen et al., 2010).

3 Example model applications

The model was applied to three hydrologic systems in the

United States with responses of streamflow, spring flow,

and groundwater level. Several examples with different

RRAWFLOW options and different levels of parameteriza-

tion are described, including examples of model over-fitting.

The hydrologic systems were selected to provide a wide

range of examples that required different levels of model

complexity. The first hydrologic system is streamflow from a

watershed, for which a simple model was appropriate. Karst

settings were selected for the second and third hydrologic

systems to provide examples in which more complex mod-

els are needed. For precipitation and air-temperature inputs,

gridded data (e.g., Daymet: http://daymet.ornl.gov/) can be

used, or a single weather station can be assumed to represent

the recharge area. All examples used a daily time step.

Model spin-up is the initial simulation period in which an-

tecedent effects of the system are not fully incorporated into

the simulation, which can result in large errors. When the

simulation is past the number of time steps equal to the sys-

tem memory, then the system antecedent effects are fully in-

corporated into the model. Therefore, the model input record

must start n time steps prior to the calibration period, where

n is the system memory, as a number of time steps. Because

the system memory is not known until the IRF is estimated, it

is useful to start the simulation at the earliest date for which

input data are available. Estimated system-input values can

be used if observation data are not available for the spin-up

period, and a constant value equal to the long-term mean can

be used if a better estimate is not available; in this case, the

antecedent effects will be smoothed. Another option is to se-

lect a period from the input data record and use this as input

for the spin-up period.

The parameter optimization software PEST (Doherty,

2005) was used for parameter estimation in these examples.

RRAWFLOW is a stand-alone model independent of PEST

and, therefore, can be used with any optimization method,

including trial and error. For optimization of nonparametric

IRFs, the last control point was used to set the system mem-

ory by assigning a fixed (non-optimized) value of zero to that

control point (Fig. 3). Posterior to this point, a series of con-

trol points fixed at zero was specified, resulting in a spline fit

with a constant value of zero.

3.1 Streamflow in Boxelder Creek

Boxelder Creek is located in the Black Hills of South Dakota,

USA, with a watershed area of 250 km2 upstream from US

Geological Survey streamgage 06422500, with daily stream-

flow available from http://waterdata.usgs.gov/nwis. The wa-

tershed primarily is pine forest and contains metamorphic

rocks of Precambrian age (Carter et al., 2001). Gridded

daily precipitation and air-temperature data from the Daymet

data set are available at 1 km grid spacing for 1980–2013.

These data were obtained from the Geo Data Portal (http:

//cida.usgs.gov/gdp/) and spatially averaged for the water-

shed to produce a daily time series of precipitation and air

temperature for 1980–2013, which was used as model input.

The calibration period was 1980–1996, and conditional val-

idation was applied to 1997–2013 (Fig. 4). A 5-year model

spin-up period was applied by inserting data for 1980–1984

into the period 1975–1979. This estimated spin-up period af-

fected the calibration period minimally, because the system

memory was only about 3 months long.

The example models described used system-input option 1

(precipitation recharge, Table 1). Five example models are

presented for Boxelder Creek, all of which used single-

gamma IRFs (Table 2). All other trials with double-gamma

IRFs resulted in minimization of one of the IRFs, indicat-

ing that single-gamma IRFs were appropriate for this system.

All Boxelder Creek gamma functions optimized to η < 1, the

reverse-J shape (Fig. 5). Example BC1 used TV option 1

(time-invariant IRF, Table 1), resulting in Ecal and Eval val-

ues of 0.62 and 0.46, respectively (Table 2). Examples BC2

and BC3 used TV option 2 (time-variant IRF) with wet–dry

options 1 and 2, respectively. For BC3,Eval was higher (0.56)

than for BC1 and BC2 (Table 2). Example BC4 and BC5
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Figure 4. Example B3: observed (gray) and simulated (black) flow for Boxelder Creek.

Table 2. Summary of example models. Rows in bold type indicate the best choices (– indicates not applicable).

Site Example Figure Time- Wet- Description of impulse- No. of Time Ecal Eval Comments

variance switch response function (IRF) optimized variant

option 1 option 2 IRF parameters

Boxelder Creek

BC1 – 1 – single-gamma IRF (static) 3 no 0.62 0.46 low Eval

BC2 – 2 1 single-gamma IRFs 6 yes 0.63 0.47 low Eval

BC3 5 2 2 single-gamma IRFs 6 yes 0.61 0.56 best Eval

BC4 – 3 – single-gamma, variable- 4 yes 0.63 0.46 low Eval

scale IRF; 1-year window

BC5 – 3 – single-gamma, variable- 4 yes 0.68 0.53 good Eval

scale IRF; 10-year window and small

number of

parameters

Barton Springs

F1 – 1 – single-gamma IRF (static) 3 no 0.84 0.63 low Eval

F5 – 2 2 single-gamma IRFs 6 yes 0.88 0.72 good Eval

F7 – 2 2 double-gamma IRFs 12 yes 0.90 0.63 over-fit

F8 6 2 2 7 optimized control points 7 yes 0.88 0.72 good Eval

F9 7 2 2 16 optimized control points 16 yes 0.92 0.61 over-fit

F2 – 3 – single-gamma, variable- 4 yes 0.80 0.46 low Eval

scale IRF; 1-year window

F3 – 3 – single-gamma, variable- 4 yes 0.84 0.61 lowEval

scale IRF; 10-year window

Well LA88C

W1 8 2 2 double-gamma IRFs 12 yes 0.92 0.73 –

W2 9 2 2 18 optimized control points 18 yes 0.93 0.70 –

(double-peaked IRF)

W3 10 2 2 10 optimized control points 10 yes 0.88 0.75 best Eval

(double-peaked IRF) and smallest

number of

parameters

used TV option 3, in which a time-variant IRF that changes

continually was used with a single-gamma IRF and MA win-

dows of 1 and 10 years (Eq. 6), respectively. Of the five ex-

amples, BC3 had the highest Eval value; BC5 had the sec-

ond highest Eval value but with fewer parameters (Table 2).

Comparison of model fit for examples BC4 and BC5 indi-

cates that the time-variant aspects of this system respond to

general climatic changes over decadal periods more so than

annual. Table 3 shows optimized IRF parameters for selected

example models.

3.2 Spring flow from Barton Springs

Barton Springs is a group of springs that flow from the Ed-

wards aquifer, a carbonate aquifer in south-central Texas that

is contained mostly within the Edwards Group (Lower Cre-

taceous geologic age). Model input data consisting of daily

precipitation and air-temperature and system-response obser-

vation data used for model evaluation are described in Long

and Mahler (2013) along with details describing the hydro-

geology, physiography, and climate. These example models

used system-input option 1 (precipitation recharge, Table 1).
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Table 3. Impulse-response function parameters for selected example models.

Example BC3 BC5 F5 F7 W1

Site Boxelder Creek Boxelder Creek Barton Springs Barton Springs Well LA88C

Dry period

λ1 1.45× 10−2 2.08× 10−2 2.15× 10−4 5.26× 10−4 5.15× 10−3

η1 5.40× 10−1 4.15× 10−1 6.26× 10−1 6.61× 10−1 1.15

ε1 8.32 1.07× 101 2.01× 101 1.65× 101 1.08× 102

λ2 0 0 0 3.82× 10−2 1.31× 10−2

η2 0 0 0 5.10× 101 6.36

ε2 0 0 0 4.98 1.42× 102

Wet period

λ3 6.34× 10−3 0 6.39× 10−3 7.77× 10−3 1.57× 10−3

η3 3.12× 10−1 0 1.14 1.22 1.16

ε3 9.68 0 1.09× 101 1.11× 101 2.50× 102

λ4 0 0 0 9.53× 10−2 1.89× 10−2

η4 0 0 0 4.95× 101 3.86× 101

ε4 0 0 0 8.03× 10−1 5.28× 101

Figure 5. 
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Figure 5. Example B3: impulse-response functions (IRFs) for Box-

elder Creek using single-gamma IRFs.

Seven example models are presented for Barton Springs (Ta-

ble 2). Model fit varied more widely than for the Boxelder

Creek models, possibly as a result of karst features in the

Edwards aquifer that result in complex groundwater flow.

For this reason, IRFs with added complexity were tested for

the Barton Springs examples, and examples of over-fitting

are demonstrated. Generally, Ecal is proportional to the num-

ber of optimized parameters for each example; however, high

Ecal values often resulted in low values of Eval, which might

indicate over-fitting (Table 2).

Examples F1–F9 used wet-switch option 2. Examples F1,

F5, and F7 used gamma functions with an increasing num-

ber of parameters for the three examples, which were char-

acterized as low Eval (F1), good Eval (F5), and an over-fit

model (F7) that is indicated by a high Ecal and low Eval (Ta-

ble 2). Example F5, with a moderate number of parameters,

is considered the best choice of the three. Examples F8 and

F9 used 7 and 16 optimized control points, respectively, in

total (Figs. 6 and 7); F8 was considered a good choice, and

F9 was over-fit with too many control points (Table 2). Of

the time-variant examples F5–F9, the two examples with the

smallest number of optimized parameters (F5 and F8) had

the largest Eval values (Table 2).

Examples F2 and F3 used TV option 3, with a single-

gamma IRF and MA windows of 1 and 10 years (Eq. 6), re-

spectively, but resulted in low Eval values. Similarly to Box-

elder Creek, increasing the MA window from 1 to 10 years

improved Ecal and Eval values, which indicates that the time-

variant aspects of this system respond to general climatic

changes over decadal periods more so than annual.

PEST was used to calculate 95 % confidence intervals for

the optimized parameters, as described in Doherty (2005),

which are shown graphically for example F8 (Fig. 6). Ex-

ample F9, with a total of 16 control points, had 32 % wider

parameter confidence intervals than example F8, with 7 con-

trol points, did. Confidence intervals generally widen with

an increasing number of parameters because of a decrease in

individual parameter sensitivity.

3.3 Groundwater level in well LA88C

Well LA88C, located in western South Dakota, is open to

the karstic Madison aquifer that is composed of limestone

and dolostone of Mississippian geologic age. Model input

data consisting of daily precipitation and air-temperature and

system-response observation data used for model evaluation

are described in Long and Mahler (2013) along with details

describing the hydrogeology, physiography, and climate. The

example models described used system-input option 1 (pre-

cipitation recharge, Table 1).
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Figure 6. Example F8: nonparametric impulse-response functions

(IRFs) for Barton Springs using a total of seven control points show-

ing (a) optimized IRFs and (b) upper and lower 95 % confidence

limits for the IRFs.
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Figure 7. Example F9: nonparametric impulse-response functions

for Barton Springs using a total of 16 control points.

Examples W1–W3 used TV option 2 with wet-switch op-

tion 2 for time variance (Table 1). All three examples for

well LA-88C optimized to double-peaked IRFs, which were

necessary for this system, as indicated by additional tests

of single-peaked IRFs, probably as result of karst features

(Figs. 8–10). In example W2, the last two control points for

the wet period and the last control point for the dry period

were optimized to zero, resulting in only 15 non-zero control

points. Of the three examples for well LA88C, W3 had the

fewest optimized IRF parameters and resulted in the largest

Eval value (Table 2), indicating that this is a good choice.

IRFs for example W3 approach zero abruptly, resulting in

negative values in the spline curve (Fig. 10); in these cases,

RRAWFLOW sets all negative IRF ordinates to zero.

4 Discussion and conclusions

Although RRAWFLOW can be applied to any type of wa-

tershed or aquifer, karst aquifers might require more com-

plex models. A non-karst system was compared with two

karst systems, which indicated that the best model choices

for the karst systems generally had a larger number of pa-

rameters than the best choices for the non-karst system (Ta-

ble 2). Also, differences between wet- and dry-period IRFs

were more pronounced for the karst systems than for Box-

elder Creek (Figs. 5–9), possibly as a result of heterogene-

ity. Example F5 is a karst example with a reverse-J (η < 1)

dry-period IRF and a delayed-peak (η > 1) wet-period IRF
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Figure 8. Example W1: impulse-response functions (IRFs) for well

LA88C using double-gamma IRFs for both periods, i.e., wet and

dry.
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Figure 9. Example W2: nonparametric impulse-response functions

for well LA88C using a total of 18 control points.

(Table 3), indicating a distinct difference between wet and

dry periods. In karst aquifers, fluctuating groundwater levels

might saturate or desaturate different conduit networks that

result in different hydrologic responses between wet and dry

periods.

Watersheds simulated by Long and Mahler (2013) and

Long (2009), which included karst and non-karst systems,

had IRF shapes that were similar in some cases to the reverse-

J shape for Boxelder Creek (Fig. 5), except that double-

exponential IRFs were used to achieve this shape. A single

reverse-J gamma function (Fig. 5) requires only three pa-

rameters, whereas the double-exponential IRF requires four

parameters. IRFs for karst and non-karst watersheds com-

monly have quick-flow and slow-flow components (Jakeman

and Hornberger, 1993; Long, 2009; Long and Mahler, 2013).

The reverse-J IRF (Fig. 5) also exhibits quick-flow and slow-

flow components in the form of a high peak and long tail,

respectively, but fewer parameters for the gamma function is

an advantage over the exponential function.

Examples F5 (gamma function) and F8 (control points) are

the two preferred models for Barton Springs and are nearly

identical in terms of Eval and the number of optimized pa-

rameters (Table 2). Choosing between these two models,

therefore, might be a matter of modeler preference. Use of

the gamma function has the advantage of being a common

function. The control-points method has the advantage of

not being constrained to a parametric function, and confi-

dence intervals for the IRF can be easily shown in a graph

(Fig. 6). Showing confidence intervals for a gamma func-

tion also could be done but with additional steps involved,

in which the gamma function would be calculated for all

combinations within the 95 % parameter confidence intervals

(i.e., Monte Carlo analysis). Then this family of curves would
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Figure 10. Example W3: nonparametric impulse-response func-

tions for well LA88C using a total of 10 control points.

be plotted, and the maximum upper and lower curve extents

would show the confidence intervals for the IRF. A disad-

vantage of the control-points method is the need to select the

temporal locations of control points and also to set the sys-

tem memory a priori by setting a zero-value control point at

the end of the IRF. These settings generally require trial and

error.

RRAWFLOW is useful for estimation of missing peri-

ods of a hydrologic record and is suitable for hydrograph-

separation methods to estimate stream base flow, as described

by Jakeman and Hornberger (1993) and Long (2009). For the

simulated hydrograph, RRAWFLOW can be used to com-

pute the base-flow component by executing the model with-

out the quick-flow IRF. If using a single reverse-J gamma

IRF instead of a double-exponential IRF that can be eas-

ily separated, the reverse-J function would need to be sep-

arated into its quick-flow (peak) and slow-flow (tail) com-

ponents. To estimate the base-flow component of the ob-

served hydrograph, a graphical separation program can be

used, such as PART (Rutledge, 1998); however, because the

different options and settings in PART (or similar programs)

result in different base-flow estimates, the RRAWFLOW es-

timated base flow is helpful as a guide to using PART (Long,

2009). For example, the PART settings can be adjusted so

that the observed hydrograph separation has similar charac-

teristics to those of the simulated hydrograph separation. The

RRAWFLOW-simulated hydrograph separation also could

be used as a benchmark model for comparison to more elab-

orate methods, such as geochemical hydrograph separation

(e.g., Rimmer and Hartmann, 2014).

Comparison of the modified Nash–Sutcliffe coefficient of

efficiency for the calibration and conditional validation pe-

riods (Ecal and Eval) is useful for assessing over-fitting.

Conceptual-model options that maximize Eval can be evalu-

ated by multiple tests. Too many fitting parameters, as well as

too few, can result in low values of Eval. The ratio Eval/Ecal

might be a useful metric for comparison of different models

and possibly in setting the lengths of the calibration and vali-

dation periods. As in any model, this all should be considered

in reference to a physical understanding of the system; e.g.,

two distinct permeability domains might be best simulated

by two gamma functions.

The record length of the observed response should be con-

sidered in light of the system memory: there is less confi-

dence in the predictive strength of a model if the observed

response is shorter than the system memory than when it is

longer, because, in the former case, the effects of the IRF tail

are not fully tested against observation. Ideally, the valida-

tion period alone should be longer than the system memory,

and when it is several times longer, then the full range of the

IRF is tested several times over.

Konikow and Bredehoeft (1992) discuss the numerous

uses of the term “validation,” which has resulted in confu-

sion, and also highlighted philosophical considerations asso-

ciated with this term. They argue that conditional validation,

as described herein (split-sample test in Konikow and Brede-

hoeft, 1992), is not useful for distributed groundwater models

because of their limited predictive accuracy that results from

non-unique solutions in calibration of complex models. Fur-

ther, they argue that the split-sample test period must be in-

dependent of any antecedent effects from the calibration pe-

riod, which they say rarely can be achieved for a large-scale

aquifer system. These arguments highlight an advantage of

lumped models, because (1) a small number of parameters

minimizes the problem of non-unique solutions, (2) select-

ing one model from multiple models via a validation process

also reduces the problem of non-unique solutions, and (3)

a lumped model provides an estimate of the system mem-

ory, which indicates the time span for antecedent effects fol-

lowing a calibration period. With regard to this third point,

more than one half of the groundwater sites simulated by

Long and Mahler (2013) had conditional validation periods

that extended beyond the antecedent effects of the calibration

period; therefore, Eval could be calculated for this restricted

period only if desired.

Additional functionality can be added to RRAWFLOW

by the user and could possibly be included in future ver-

sions. For example, additional methods to estimate paramet-

ric or nonparametric IRFs (e.g., the dispersion-model IRF)

or the degree-day method for estimating snowmelt (Rango

and Martinec, 1995) could be added. If there were a need to

include precipitation recharge and sinking-stream recharge

simultaneously in one system, this could easily be added.

An adjustment to the calculation of the soil-moisture index

s could be included to account for watershed changes such

as tree coverage. The shape and scale of the solute-transport

IRF could be weighted by a variable recharge rate. Revisions,

additions, and corrections to the RRAWFLOW code can be

sent to the author of this article for potential incorporation

into subsequent official versions. The code is not yet avail-

able in the comprehensive R archive network (CRAN) but

could be included in the future. Optimization packages also

are available in CRAN and could be built seamlessly into

RRAWFLOW.
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Appendix A: Precipitation recharge

To simulate recharge from direct precipitation, a soil-

moisture index s (unitless) is estimated for each time step

in RRAWFLOW. Quantitatively, s is the fraction of precip-

itation that infiltrates and becomes recharge. To account for

the antecedent effects of rainfall on soil moisture, the past

rainfall record is weighted by a backward-in-time exponen-

tial decay function (Jakeman and Hornberger, 1993):

si = cri +
(

1− κ−1
i

)
si−1

= c

[
ri +

(
1− κ−1

i

)
ri−1+

(
1− κ−1

i

)2

ri−2+ . . .

]
(A1)

i = 0,1, . . .,N 0≤ s ≤ 1,

where c (L−1) is a scaling coefficient to constrain the value

of s, κ (unitless) adjusts the effect of antecedent rainfall

and is related to evapotranspiration, r is total rainfall (L),

and i is the time step. In RRAWFLOW, this method is op-

tion 1 for system input (Table 1). For watershed modeling,

the value of c can be set to satisfy the assumption that the

total recharge volume within a watershed is equal to the total

outflow volume for the calibration period. This assumption

neglects the net change in total watershed storage during this

period, which is assumed to be small in comparison to the

total inflow or outflow for the same period. Also, this as-

sumption does not apply if recharge to the watershed exits

the watershed through deep groundwater and bypasses the

stream outlet. Recent rainfall has the largest effect on s in

Eq. (A1), whereas earlier rainfall has the least effect.

The effect of changing air temperatures on evapotranspi-

ration is accounted for by (Jakeman and Hornberger, 1993):

κi = α exp
[
(20− Ti)f

]
f>0, (A2)

where α (unitless) is a scaling coefficient, T (◦C) is mean air

temperature at the land surface, and f is a temperature mod-

ulation factor (◦C−1). As air temperature T decreases, s in

Eq. (A1) increases with sufficient past rainfall. RRAWFLOW

can be executed without air-temperature data when unavail-

able (air-temperature option 2 in Table 1). Recharge for each

time step ui (L) is calculated as the fraction s of precipitation

by

ui = risi . (A3)

Typically, s is largest during wet periods and rarely reaches

a maximum value of 1.0 (Fig. A1).

A1 Considerations for parameters c and κ

An additional function of parameters c and κ is to adjust

for differences in the runoff effects between watershed and

groundwater modeling. Also, for groundwater applications, c

in Eq. (A1) cannot be determined empirically if the recharge

area that affects a spring or well is not precisely defined.

Therefore, for groundwater applications, c can be set to a

value that results in a predefined maximum s value or es-

timated mean recharge rate, or c can be optimized through

model calibration. In practice, the error in the estimation of

c is compensated by an adjustment in the IRF area during

model calibration; e.g., an overestimation of c by 10 % would

result in a 10 % underestimation in IRF area.

Depending on the values of c and κ , the value of s

can incorrectly have values < 0 or > 1; when this occurs,

RRAWFLOW sets s to 0 or 1, respectively. This is most

likely to occur early in the calibration process when param-

eter values might be far from optimum, and forcing the con-

straint 0≤ s ≤ 1 assists in the efficiency of the calibration

process. To ensure that the range of s is appropriate for the

model area, this parameter should always be plotted after

model calibration; i.e., s should be a physically plausible

function that fluctuates in response to local precipitation and

air temperature (Fig. A1). For example, in humid climates

with high annual precipitation, s might frequently have a

value > 0.9, which is less likely in dry climates.

www.geosci-model-dev.net/8/865/2015/ Geosci. Model Dev., 8, 865–880, 2015



878 A. J. Long: RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

Year
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

1
D

im
en

si
o

n
le

ss

Figure A1. The soil-moisture parameter s (Eq. A1) for example BC2. The function s typically is largest during wet periods (shaded gray).

A2 Snow precipitation

For cold climates where winter snowfall is common, a

method proposed by Long and Maher (2013) is applied. To

determine the form of precipitation for each time step, an air-

temperature threshold value Ts is set, below which precipita-

tion is assumed to occur as snow (typically Ts = 0 ◦C). To de-

termine time steps when melting occurs, a melting threshold

value Tm is set. If daily snow-depth data are available, Tm can

be determined empirically as the mean air temperature for

time steps when snow depth decreases to zero from a previ-

ous time step with a snow depth greater than zero. Long and

Mahler (2013) determined that Tm = 9 ◦C for a study area

in central North America. Sublimation is accounted for by

a sublimation fraction Sf. Snow precipitation is summed for

each series of snow-precipitation time steps occurring prior

to each snowmelt time step by

pm = (1− Sf)

N∑
i=1

pi Ti<Ts, (A4)

where pm is the accumulated snow precipitation that is as-

sumed to melt when Ti > Tm, Sf is the sublimation fraction

(unitless), pi is the snow precipitation in height of water, and

N is the number of snow-precipitation time steps occurring

between melt time steps. Prior to calculating Eq. (A1), pm

is added to the rainfall record for the time step following a

snowmelt time step because snowmelt is assumed to have

the same effect as rainfall on the value of s.
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Code availability

The RRAWFLOW program written in R language,

RRAWFLOW manual, quick-start guide, and an ex-

ample model are included in a download package

available at http://sd.water.usgs.gov/projects/RRAWFLOW/

RRAWFLOW.html. The model included is example BC3 for

Boxelder Creek (Table 2). It is not necessary to know the

R language to execute the model, but R must be installed

on the user’s computer. The example is set up to run on the

Microsoft® Windows operating system but could be slightly

modified to run on a Linux operating system. RRAWFLOW

is in the public domain, and no license is needed.

Although the example model is set up for parameter

optimization using the PEST software program (Doherty,

2005), RRAWFLOW can be used with any optimization rou-

tine, including trial and error. All RRAWFLOW input and

output files are included along with PEST input, output,

and executable files. The file 00_Quick_Start_Guide.pdf in

the download package contains instructions for executing

RRAWFLOW in the R environment and basic instructions

for PEST execution for this example. The RRAWFLOW

manual has detailed input and output instructions. The down-

load package can be used as a template for a new mod-

eling project by editing the input files accordingly. The R

language program and PEST can be downloaded at no cost

from http://www.r-project.org/index.html and http://www.

pesthomepage.org/, respectively.

Acknowledgements. This study was supported by the Depart-

ment of Interior South Central Climate Science Center. I thank

Jeff Raffensperger and Janet Carter of the US Geological Survey

(USGS) for their constructive review comments in an early draft of

this manuscript as well as the reviewers selected by Geoscientific

Model Development. Although the R language has been used

by the USGS, no warranty, expressed or implied, is made by the

USGS or the US government as to the accuracy and functioning

of the program and related program material, nor shall the fact of

distribution constitute any such warranty, and no responsibility is

assumed by the USGS in connection therewith.

Edited by: H. McMillan

References

Arkesteijn, L. and Pande, S.: On hydrological model complexity,

its geometrical interpretations and prediction uncertainty, Water

Resour. Res., 49, 7048–7063, 2013.

Bailly-Comte, V., Martin, J. B., and Screaton, E. J.: Time variant

cross correlation to assess residence time of water and impli-

cation for hydraulics of a sink-rise karst system, Water Resour.

Res., 47, W05547, doi:10.1029/2010WR009613, 2011.

Berendrecht, W. L., Heemink, A. W., Van Geer, F. C., and Gehrels,

J. C.: Decoupling of modeling and measuring interval in ground-

water time series analysis based on response characteristics, J.

Hydrol., 278, 1–16, 2003.

Besbes, M. and de Marsily, G.: From infiltration to recharge: use of

a parametric transfer function, J. Hydrol., 74, 271–293, 1984.

Beven, K.: Changing ideas in hydrology – The case of physically-

based models, J. Hydrol., 105, 157–172, 1989.

Beven, K. and Young, P.: A guide to good practice in modeling se-

mantics for authors and referees, Water Resour. Res., 49, 5092–

5098, 2013.

Blank, D., Delleur, J. W., and Giorgini, A.: Oscillatory kernel func-

tions in linear hydrologic models, Water Resour. Res., 7, 1102–

1117, 1971.

Carter, J. M., Driscoll, D. G., and Hamade, G. R.: Estimated

recharge to the Madison and Minnelusa aquifers in the Black

Hills area, South Dakota and Wyoming, water years 1931–98,

US Geol. Surv., Reston Virginia, Water-Resources Investigations

Report 00-4278, 66 pp., 2001.

Delleur, J. W. and Rao, R. A.: Linear systems analysis in hydrol-

ogy: the transform approach, kernel oscillations and the effect

of noise, in: Systems Approach to Hydrology, Water Resources

Publications, Fort Collins, Colorado, 116–142, 1971.
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