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Abstract. Preparing for episodes with risks of anomalous

weather a month to a year ahead is an important challenge

for governments, non-governmental organisations, and pri-

vate companies and is dependent on the availability of reli-

able forecasts. The majority of operational seasonal forecasts

are made using process-based dynamical models, which are

complex, computationally challenging and prone to biases.

Empirical forecast approaches built on statistical models to

represent physical processes offer an alternative to dynamical

systems and can provide either a benchmark for comparison

or independent supplementary forecasts. Here, we present a

simple empirical system based on multiple linear regression

for producing probabilistic forecasts of seasonal surface air

temperature and precipitation across the globe. The global

CO2-equivalent concentration is taken as the primary pre-

dictor; subsequent predictors, including large-scale modes of

variability in the climate system and local-scale information,

are selected on the basis of their physical relationship with

the predictand. The focus given to the climate change signal

as a source of skill and the probabilistic nature of the fore-

casts produced constitute a novel approach to global empiri-

cal prediction.

Hindcasts for the period 1961–2013 are validated against

observations using deterministic (correlation of seasonal

means) and probabilistic (continuous rank probability skill

scores) metrics. Good skill is found in many regions, partic-

ularly for surface air temperature and most notably in much

of Europe during the spring and summer seasons. For pre-

cipitation, skill is generally limited to regions with known

El Niño–Southern Oscillation (ENSO) teleconnections. The

system is used in a quasi-operational framework to generate

empirical seasonal forecasts on a monthly basis.

1 Introduction

The provision of reliable seasonal forecasts is an impor-

tant area in climate science and understanding the limita-

tions and quantifying uncertainty remains a key challenge

(Doblas-Reyes et al., 2013; Weisheimer and Palmer, 2014).

Operational seasonal forecasting, although once limited to a

handful of research centres, is now a regular activity across

the globe. Much recent focus has been given to the skill

and reliability of seasonal climate predictions. Dynamical

(process-based) forecast systems are arguably the most im-

portant tool in producing predictions of seasonal climate at

continental and regional scales. Such systems are based on

numerical models that represent dynamical processes in the

atmosphere, ocean and land surface in addition to the linear

and non-linear interactions between them. However, the de-

velopment of dynamical systems is a continuous challenge;

climate models are inherently complex and computationally

demanding and often contain considerable errors and biases

that limit model skill in particular regions and seasons.

As an alternative to dynamical forecast systems, empiri-

cal approaches aim to describe a known physical relation-

ship between regional-scale anomalies in a target variable

(the predictand) – say, temperature or precipitation – and pre-

ceding climate phenomena (the predictors). In its simplest

form, an empirical forecast may be based on persistence in

which observations of a given variable at some lead time are
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taken as the forecast for that variable. Such forecasts have

frequently performed better at short lead times than those

simply prescribed by the long-term climatology, particularly

so in the tropics. More sophisticated statistical methods in-

clude analog forecasting (van den Dool, 2007; Suckling and

Smith, 2013) and regression-based techniques, which may

in turn take predictive information from spatial patterns us-

ing, for instance, empirical orthogonal functions (EOFs) (e.g.

van Oldenborgh et al., 2005b), maximum covariance analy-

sis (MCA) (e.g. Coelho et al., 2006), and linear inverse mod-

elling (LIM) (e.g. Penland and Matrosova, 1998). Empiri-

cal predictions for the phase and strength of the El Niño–

Southern Oscillation (ENSO) have historically shown com-

parable skill to those produced by dynamical systems (e.g.

Sardeshmukh et al., 2000; Peng et al., 2000; van Oldenborgh

et al., 2005b). Additionally, an inherent advantage of empir-

ical methods is the ease with which knowledge of climate

variability gained from analysis of up-to-date observations

can be incorporated into a prediction system (Doblas-Reyes

et al., 2013), which in turn facilitates the development of

new methodologies and statistical techniques (van den Dool,

2007).

Empirical forecasts serve both as a baseline for dynamical

models and can be used to improve the forecasts by limit-

ing the effects of dynamical model biases. However, differ-

ences in the development and output of dynamical and empir-

ical statistical approaches make systematic comparison trou-

blesome, and understanding the relative skill of each fore-

cast type is challenging. Recent attempts have been made in

developing empirical benchmark systems for multiple vari-

ables, such as land and sea surface temperature, on decadal

timescales (e.g. Ho et al., 2013; Newman, 2013), concluding

that the usefulness of such systems merits further develop-

ment. While comparison of dynamical and empirical systems

for seasonal forecasts is not novel, a systematic global com-

parison for multiple variables, including probabilistic mea-

sures, has been lacking. A key potential benefit of such com-

parison is the identification of regions where empirical mod-

els are skilful and may be able to provide useful forecast in-

formation to complement the output of dynamical systems.

Supplementing dynamical forecasts with empirical forecasts

is of great importance in situations where dynamical systems

are known to have weaknesses. It has also been shown that

combining the output of empirical and dynamical systems

can produce marked improvement over single-system fore-

casts (e.g. Coelho et al., 2006; Schepen et al., 2012).

A fundamental criticism of empirical systems is the ques-

tion of their applicability in a future, perturbed climate. In

other words, to what extent will the predictor–predictand re-

lationships underpinning a statistical model remain station-

ary under climate change? Sterl et al. (2007) found that,

within the statistical uncertainties, no changes could be de-

tected in ENSO teleconnections. Doblas-Reyes et al. (2013)

recently noted that the temporal evolution of seasonal cli-

mate should be considered as forced not only by the inter-

nal variability of the climate system but also by changes in

concentrations of greenhouse gas and aerosols as a result of

anthropogenic activities. Such external forcings are consid-

ered in climate change simulations and also to an increasing

extent in the field of decadal prediction (e.g. Krueger and

Von Storch, 2011). Current seasonal forecast systems now

include these forcings (Doblas-Reyes et al., 2006; Liniger

et al., 2007), but the resulting trends are sometimes not re-

alistic.

Here we present and validate a simple empirical system

for predicting seasonal climate across the globe. The predic-

tion system, based on multiple linear regression, produces

probabilistic forecasts for temperature and precipitation us-

ing a number of predictors based on well-understood phys-

ical relationships. The global equivalent CO2 concentration

is an indicator of the climate change signal and is used as the

primary predictor in all forecasts. Additional predictors de-

scribing large-scale modes of variability in the climate sys-

tem, starting with ENSO, and local-scale information are

subsequently selected on the basis of their potential to pro-

vide additional predictive power. The system presented will

have two purposes: (a) to serve as a benchmark for assessing

and comparing the skill of dynamical forecast systems, and

(b) to act as an independent forecast system in combination

with predictions from dynamical systems. Key to achieving

these goals will be the system’s implementation in a quasi-

operational framework with empirical forecasts made on a

monthly basis and the availability of a set of hindcasts.

The method implemented here constitutes a relatively sim-

ple approach to empirical forecasting. The global and auto-

mated nature of the prediction system calls for the underlying

empirical method to be parsimonious in terms of the predic-

tive sources used to construct it. The statistical model and the

selection of predictors will thus be based on physical princi-

ples and processes to the fullest extent so as to elicit the max-

imum predictive power of, first of all, the long-term trend as-

sociated with the climate change signal and, secondly, as few

additional predictors as is necessary in order to minimise the

risk of overfitting. The final system will also be sufficiently

flexible to facilitate its future development. Such develop-

ment may involve inclusion of additional predictors should

more complete and reliable data sets become available, or the

application of the system to alternative predictands includ-

ing those relating to the magnitude and frequency of extreme

events.

Producing empirical forecast output in similar format to

dynamical systems is crucial when designing a framework

for robust comparison. A weakness of current dynamical–

empirical system comparison is the general lack of a com-

mon set of validation measures. Whereas dynamical sys-

tems inherently provide output in the form of ensemble fore-

casts, which may be validated in probabilistic terms, valida-

tion of empirical systems does not always extend beyond de-

terministic measures, such as bias, root-mean-squared error

(RMSE) and correlation (Mason and Mimmack, 2002). Here,
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the uncertainties are explicitly parametrised as an ensemble

of forecasts and we employ a rigorous validation framework

designed to assess both the deterministic and probabilistic

aspects of the forecast system.

The remainder of the paper is structured as follows. Sec-

tion 2 describes the prediction system in full, including the

observational data used for empirical model fitting and vali-

dation. An analysis of the potential usefulness of the predic-

tors is given in Sect. 3. The skill of the prediction system is

then assessed in Sect. 4 with a discussion and outlook given

in Sect. 5.

2 Prediction system outline

Key to achieving the goals set out in Sect. 1 is the devel-

opment of an automated forecast system that can be applied

globally and, in principle, for any number of predictands. For

these reasons, the regression-based prediction system devel-

oped here is relatively simple in comparison with more so-

phisticated statistical models, with emphasis given to a basis

of physical processes and the avoidance of overfitting.

Our system incorporates a multiple linear regression ap-

proach for estimating seasonal (3-month) surface air temper-

ature (SAT) and precipitation (PREC) as a function of global

and local atmospheric and oceanic fields. The approach used

assumes the predictand time series x to consist of two com-

ponents:

x = xext
+

int, (1)

where xext is the response to externally forced low frequency

variability associated with anthropogenic activity and xint

represents the internal variability independent of changes in

external forcing (Krueger and Von Storch, 2011). We seek

first to utilise the predictive information in xext which is as-

sumed to be linearly dependent on the global CO2-equivalent

concentration (CO2EQV), based on historical estimates until

2005 and according to Representative Concentration Path-

way (RCP) 4.5 thereafter, which constitutes the net forcing

of greenhouse gases, aerosols, and other anthropogenic emis-

sions (Meinshausen et al., 2011). Secondly, we seek to iden-

tify a set of predictors that best represents xint. The predic-

tand time series x may be modelled as a function of a set of

predictors:

x = α+βC+

n∑
i=1

(8iFi)+ ε, (2)

where C is CO2EQV at a given lead time and F is a set of

n additional predictors at the same lead time that describes

xint. The regression parameters β and 8 are those required

to transform C and F , respectively, α is the constant regres-

sion term and ε is the set of residuals specific to the model fit.

In this case, predictors are taken from the previous 3-month

season at a lead time of 1 month (e.g. the forecast for the

season March–April–May is estimated using predictors from

November–December–January). An independent regression

model is calibrated at each grid point. Whereas CO2EQV

is included as a predictor by default, all additional predic-

tors are included on the basis of their predictive potential,

which is determined by a predictor selection procedure prior

to model fitting. In the remainder of this section we (a) iden-

tify potential predictors and describe the sources of both pre-

dictor and predictand data (Sect. 2.1) and (b) provide further

details on the predictor selection approach, the model fitting

procedure and the validation framework (Sect. 2.2).

2.1 Potential predictors

As additional predictors F , we consider first of all vari-

ables that describe large-scale modes of variability. ENSO

is the most important of these in terms of its contribution

to the skill of seasonal predictions, particularly in the trop-

ics (van Oldenborgh et al., 2005a; Balmaseda and Ander-

son, 2009; Weisheimer et al., 2009; Doblas-Reyes et al.,

2013). Circulation and precipitation patterns in the tropical

Pacific associated with ENSO sea surface temperature (SST)

anomalies are subsequently linked to climate variability in

other parts of the globe (Alexander et al., 2002). In addition,

modes of variability in other tropical oceans, including the

tropical Atlantic and Indian basins, are known to contribute

substantially to variability in SAT and PREC, particularly

in surrounding regions (Doblas-Reyes et al., 2013). Many

such phenomena are linked in some way to ENSO, although

variability in the Indian Ocean Dipole (IOD) is known to

occur independently (Zhao and Hendon, 2009). Similarly,

the Pacific Decadal Oscillation (PDO), defined as the lead-

ing empirical orthogonal function of North Pacific monthly

SST anomalies, is considered as a representation of vari-

ability on interdecadal timescales that is not otherwise ap-

parent in interannual ENSO variability (Liu and Alexander,

2007). Drought occurrence in the United States is known

to be linked to the phase of both PDO and Atlantic Multi-

decadal Oscillation (AMO). Atmospheric anomalies, includ-

ing troposphere–stratosphere interactions, are also known

to have predictive potential. The Quasi-Biennial Oscillation

(QBO) (Ebdon and Veryard, 1961; Baldwin et al., 2001) has

recently been considered in a multiple regression model for

predicting European winter climate (Folland et al., 2012).

With this in mind, the following indices are considered as

predictors: NINO3.4 (representative of ENSO), PDO, AMO,

IOD and QBO. The system is designed to be flexible enough

for the inclusion of additional predictors in the future.

External forcing and global modes of variability are not the

only source of skill in seasonal forecasts. Many studies, in-

cluding those based on dynamical systems, have found links

between local climate and variations in preceding nearby cli-

mate phenomena (e.g. van den Hurk et al., 2012; Quesada

et al., 2012). The most simple of these is persistence; that

is, the value of the predictand (either SAT or PREC) for the
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Table 1. Description of predictor variables and their sources.

Predictor Source

CO2EQV CO2-equivalent concentrations (Meinshausen et al., 2011)

NINO3.4 Calculated from SST fields from HadISST (Rayner et al., 2003)

PDO University of Washington (http://research.jisao.washington.edu/pdo/)

QBO At 30 hPa from the reconstruction of Brönnimann et al. (2007)

AMO Calculated by van Oldenborgh et al. (2009); based on HadSST (Kennedy et al., 2011a, b)

IOD Calculated from SST fields from HadISST (Rayner et al., 2003)

LSST HadSST3 (Kennedy et al., 2011a, b)

CPREC GPCC Full Data Reanalysis version 6 (Schneider et al., 2011)

same location at some lead time. Here, we seek to elicit pre-

dictive information from persistence (PERS) and other vari-

ables that vary from grid point to grid point in addition to

the set of large-scale modes of variability described above.

For coastal locations in particular, we seek to maximise the

potential of short-term memory contained within neighbour-

ing sea surface temperatures to provide greater predictability

than PERS at the specified lead time. We derive a local sea

surface temperature (LSST) index for each predictand grid

cell, defined as the mean of the k nearest grid cells contain-

ing SST information. Here, k = 5 throughout the analysis al-

though this value could of course be altered or optimised for

region-specific analysis. Finally, as a proxy for soil moisture,

which has been shown to impact on local temperature (e.g.

van den Hurk et al., 2012), we also consider accumulated

rainfall (CPREC) as a potential predictor.

Further details of the sources of predictor data are given

in Table 1. Our list of predictors is not exhaustive. Much re-

cent work has sought to identify predictability arising from

the extent of sea ice and snow covered land, the reflective

and insulative attributes of which are relevant for SAT and

PREC in several regions of the extra-tropics (e.g. Shongwe

et al., 2007; Dutra et al., 2011; Brands et al., 2012; Cheval-

lier and Salas-Mélia, 2012). However, these variables are not

considered for the present system due to the absence of suffi-

ciently long and reliable data sets, although some effects are

effectively captured by persistence. The design of the pre-

diction system facilitates inclusion of additional predictors

should high quality observational or reanalysis data become

available.

2.2 Model fitting and validation

Global observational data sets provide the predictand (SAT

and PREC) fields required for model calibration and vali-

dation. SAT is taken from the Cowtan and Way (2014) re-

construction of the Hadley Centre–Climatic Research Unit

Version 4 (HadCRUT4) (Morice et al., 2012), which uses

kriging to account for missing data in unsampled regions.

PREC is taken from the Global Precipitation Climatology

Centre (GPCC) Full Data Reanalysis version 6 (Schneider

et al., 2011) for the period 1901–2010 combined with addi-

tional data for the period 2011–2013 taken from the GPCC

monitoring product following bias correction.

Analysing the degree of additional predictive skill offered

by each predictor will form an important precursor to the im-

plementation of the system. A two-step predictor selection

procedure is used to determine the fewest numbers of pre-

dictors necessary to provide greatest predictive skill. The se-

lection procedure may be considered “offline” in the sense

that it is implemented prior to model fitting. In the first

step, global maps of linear correlation between predictand–

predictor pairs form a basis for a physical understanding of

the factors governing variability. Predictors that show good

potential and do not exhibit colinearity with other predictors

are included in the second step: the selection of predictors to

be passed to the empirical forecast model itself.

To achieve this, the linear trend associated with CO2EQV

is first of all removed from both the predictand x and the set

of predictors F by fitting the models

x = α1+β1C+ ε
x (3)

and

Fi = α2+β2C+ ε
Fi , (4)

where α1, β1 and α2, β2 are the respective regression pa-

rameters for each model fit and εx and εFi are the time se-

ries of residuals that equate to the detrended predictand and

predictors, respectively. Correlation is performed between

εx and each of the N predictors within the set εFi (where

i = 1,2, . . .N ). Predictors that exhibit significant (at the 90 %

level) correlation are identified. The two-step approach is de-

signed to avoid overfitting, which would lower skill scores,

and to ensure that the empirical model is built on physical

principles to the fullest extent. The first step is to an extent

qualitative and undertaken only once for each predictand, i.e.

for each predictand there is an agreed set of potential pre-

dictors independent of season or location. However, the fully

quantitative second step is performed independently at each

grid point and for each season. Following the selection of

predictors, all significant predictors are then entered into a

multiple linear regression along with CO2EQV; Eq. (2) is

Geosci. Model Dev., 8, 3947–3973, 2015 www.geosci-model-dev.net/8/3947/2015/
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Figure 1. Correlation between SAT and the set of predictors with a 1 month lead time (1961–2013) for (a) MAM, (b) JJA, (c) SON, and

(d) DJF. Correlation between CO2EQV is shown in the top left panel; subsequent panels show correlation between predictand–predictor

pairs following removal of the CO2EQV trend. Stippling is used to indicate significance at the 95 % level.
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Figure 2.

thus modified:

x = α+βC+

k∑
i=1

(8iF
S
i )+ ε, (5)

where F S is the subset of k predictors from F that meet the

significance criteria outlined in the selection procedure. An

estimate for the unknown predictand x̂ at forecast time t may

be determined:

x̂t = α+βCt +

k∑
i=1

(8iF
S
it
). (6)

A key component of the empirical prediction system is the

provision of probabilistic output. The residuals ε from the

regression fit in Eq. (5) are randomly sampled (with replace-

ment) and subsequently used to generate a forecast ensem-

ble. The kth member of the ensemble x̂ens at forecast time t

is thus given by

x̂ens
t,k = x̂t + εk, (7)

where εk is a randomly sampled member of ε. Sampling of

the residuals is performed 51 times, reflecting the typical en-

semble size in an operational dynamic forecast. The ensem-

ble allows for the calculation of probabilistic skill scores and

will provide a basis for full comparison with the output of dy-

namical systems. It is anticipated that future development of

the system will consider more complex methods of ensemble

generation.

The model is calibrated and validated in a hindcast frame-

work using a causal approach: hindcasts are produced for

www.geosci-model-dev.net/8/3947/2015/ Geosci. Model Dev., 8, 3947–3973, 2015
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Figure 2.

1961–2013 using data since 1901 prior to the hindcast start

date. The causal approach was chosen instead of a leave-one-

out framework in order to replicate the set of observational

data that would have been available for each hindcast were it

produced in real time. The predictor selection procedure, in

addition to being location-specific, is also implemented inde-

pendently for each hindcast. In other words, for a given grid

point, a given predictor would only be included in the regres-

sion model for hindcasts with fitting periods during which it

demonstrates predictive potential, allowing for the maximum

value to be taken from predictor information in the fairest

way. It is also important to note that, in setting the earliest

hindcast to 1961, we seek to limit the impact of poor quality

available predictand and predictor data in the early 20th cen-

tury. Additionally, to ensure robustness, the multiple linear

regression model requires a complete predictand–predictor

time series of at least 30 years in the fitting period for a fore-

cast to be produced.

Both the deterministic and probabilistic aspects of the pre-

diction system must be systematically validated using a num-

ber of measures. Global maps of correlation between hind-

cast estimates and observations provide a view on the degree

of representation of temporal variability. Verification scores

originally developed in the context of numerical weather pre-

diction, including the root-mean-squared error skill score

(RMSESS) and the continuous rank probability skill score

(CRPSS) (e.g. Ferro, 2013), provide a quantification of the

degree of bias and the skill of the probability distribution pro-

duced by the ensemble, respectively. Such verification mea-

sures are also used to determine skill scores that describe

Geosci. Model Dev., 8, 3947–3973, 2015 www.geosci-model-dev.net/8/3947/2015/
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Figure 2.

forecast skill against a reference ensemble forecast. The ref-

erence forecast is produced by random sampling of the cli-

matology, i.e. the observations for each year in the fitting pe-

riod.

3 Analysis of potential predictors

3.1 Surface air temperature

The surface air temperature (SAT) shows a clear trend almost

everywhere, which is assumed to be proportional to the forc-

ing of greenhouse gases, described by CO2EQV. Separate

spatially varying aerosol forcings have not yet been imple-

mented. As mentioned in Sect. 2, this trend is treated dif-

ferently from the other predictors in the sense it is always

included in the empirical model; other predictors are con-

sidered only in cases where they appear to add value (fol-

lowing step one of the predictor selection process). Figure 1

shows seasonal correlation between SAT and CO2EQV in

the top left panels. Subsequent panels show the correlation

derived from predictor–predictand pairs (following removal

of the linear trend associated with CO2EQV). Correlation

between SAT and CO2EQV is in general strongly positive

across the majority of the globe and particularly so when

the response of SAT to the internal variability of the climate

system is known to be small compared to the response to

the signal associated with anthropogenic forcing, for exam-

ple in the Northern Hemisphere during spring (MAM) and

summer (JJA). Additionally, correlation between SAT and

www.geosci-model-dev.net/8/3947/2015/ Geosci. Model Dev., 8, 3947–3973, 2015
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Figure 2. Correlation between PREC and the set of predictors (1961–2013) for (a) MAM, (b) JJA, (c) SON, and (d) DJF. As in Fig. 1,

correlation with CO2EQV is shown in the top left panel; subsequent panels show correlation between predictand–predictor pairs following

removal of the CO2EQV trend. Stippling is used to indicate significance at the 95 % level.

CO2EQV is in general strongly positive throughout tropical

land masses at all times of year.

Among the indices describing variability in the climate

system, NINO3.4 shows the second strongest relationship

with SAT; the importance of ENSO in governing variability

in temperatures across the tropics is highlighted by correla-

tions stronger than ±0.5 in parts of South America, Africa

and northern Australia in addition to the tropical Pacific and

Indian oceans. ENSO-based relationships in extra-tropical

land regions are less apparent, although positive correlation

in the northern half of the North American continent and

negative ones around the Gulf of Mexico show the well-

known influence on winter (DJF) and spring (MAM) SAT

(Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989).

Very low correlations are found across Europe.

The PDO and IOD correlation patterns are very similar to

those for NINO3.4. Much of the signal associated with PDO

is likely captured by NINO3.4. However, inclusion of PDO

alongside NINO3.4 in the prediction system may yield ad-

ditional skill in the northern Pacific as a result of enhanced

cyclonic circulation around the deepened Aleutian Low as-

sociated with a positive, warm PDO phase (Liu and Alexan-

der, 2007). The AMO correlation patterns clearly act inde-

pendently of ENSO and feature correlations throughout the

high northern latitudes and the North Atlantic but curiously

not so much in western Europe (van Oldenborgh et al., 2009).
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Figure 3.

www.geosci-model-dev.net/8/3947/2015/ Geosci. Model Dev., 8, 3947–3973, 2015



3960 J. M. Eden et al.: A global empirical system for probabilistic seasonal climate prediction

C
O

2E
Q

V

                                        (b) JJA

N
IN

O
3.

4

−
60

−
30

0
30

60

P
D

O

A
M

O

−
60

−
30

0
30

60

IO
D

P
E

R
S

−
60

−
30

0
30

60

LS
S

T

−120 −60 0 60 120

C
P

R
E

C

−120 −60 0 60 120

−
60

−
30

0
30

60

−1.0 −0.5 0.0 0.5 1.0

1

1

Figure 3.

Geosci. Model Dev., 8, 3947–3973, 2015 www.geosci-model-dev.net/8/3947/2015/



J. M. Eden et al.: A global empirical system for probabilistic seasonal climate prediction 3961

C
O

2E
Q

V

                                        (c) SON

N
IN

O
3.

4

−
60

−
30

0
30

60

P
D

O

A
M

O

−
60

−
30

0
30

60

IO
D

P
E

R
S

−
60

−
30

0
30

60

LS
S

T

−120 −60 0 60 120

C
P

R
E

C

−120 −60 0 60 120

−
60

−
30

0
30

60

−1.0 −0.5 0.0 0.5 1.0

1

1

Figure 3.
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Figure 3. Correlation between SAT hindcasts and observations (1961–2013) for (a) MAM, (b) JJA, (c) SON, and (d) DJF. The top left panel

shows correlation between observations and SAT hindcasts constructed using the CO2 equivalent as the sole predictor; stippling is used to

indicate significance at the 95 % level. Subsequent panels show differences in correlation following the inclusion of additional predictors.
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Figure 4. Correlation between observations and SAT hindcasts generated using the regression model with all predictors (1961–2013). Stip-

pling is used to indicate significance at the 95 % level.

The PDO, IOD and AMO indices are all included in the pre-

diction system.

Correlation associated with the QBO is poor with the no-

table exception of northern and central Russia during the bo-

real autumn (not shown). In agreement with Folland et al.

(2012) we found no significant correlation for winter in Eu-

rope with a 1-month lead time. This is surprising given the

link found in previous work between the QBO and the Arc-

tic Oscillation (AO), and thus on European surface climate,

although the authors suggest that predictability requires a

shorter optimal lead time than that used here (Marshall and

Scaife, 2009). QBO is thus withdrawn and not included in

the prediction system.

Persistence (PERS) shows strong correlations in some key

regions and is particularly important for high latitude seas

in the Northern Hemisphere during winter, reflecting the la-

tent heat of melting of the sea ice. Over land, however, there

are relatively few regions associated with strong correlation

outside of the tropics. Correlation is greater than 0.4 in parts

of western Europe (MAM), south-east Europe (JJA), central

North America (JJA) and parts of central Asia (JJA). How-

ever, aside from these examples, the memory of land surface

temperature outside of the tropics does not appear to extend

to the predictor period.

Local SST (LSST) produces similar correlation to persis-

tence over the oceans but offers no skill over most continen-

tal regions. It is anticipated that LSST may be beneficial in

coastal regions but this is not clear at the present spatial reso-

lution. Both predictors are made available for selection in the

SAT forecast system. The relationship between antecedent

precipitation (CPREC) and SAT is in general quite poor but

correlation is around 0.3 in northern Europe during spring

(MAM), most likely representing the connection of a mild,

wet winter to a mild spring. There is negative correlation

(although not significant) during summer (JJA) in parts of

Europe, which suggests that CPREC is partly able to repre-

sent the link between soil moisture and SAT at this time of

year shown in previous work (van den Hurk et al., 2012). The

correlation is also strong (negative) in parts of Australia and

south-east Asia, in addition to southern Africa (MAM) and

northern South America (DJF and MAM).
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Figure 5. Root-mean-squared error skill score (RMSESS) and the continuous rank probability skill score (CRPSS) of the SAT hindcasts

expressed as a skill score against a climatology ensemble forecast (1961–2013). For CRPSS, stippling is used to indicate significance at the

95 % level following a one-sided t test.
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Figure 6.

3.2 Precipitation

Correlation between PREC and the predictors is shown in

Fig. 2. As expected, the response of PREC to the trend in

CO2EQV is not as strong as that of global temperature. In-

creased PREC in northern high latitudes during the boreal

winter has a known association with global warming (Hart-

mann et al., 2013). However, the response of precipitation to

global warming is not yet visible above the noise in much of

the mid-latitudes and these regions are associated with low

correlation at all times of the year. Notable exceptions are

significant negative correlation in northern Africa (all times

of year) and significant positive correlation in Greenland,

northern Europe and Asia (MAM, SON and DJF).

The strong correlation exhibited between NINO3.4 and

PREC in many parts of the world provides an important ba-

sis for predictability. In addition to ENSO-related changes in

tropical precipitation patterns, there are a number of known

links with precipitation in the extra-tropics (Alexander et al.,

2002; Doblas-Reyes et al., 2013), although only a weak one

in MAM is found in Europe (van Oldenborgh et al., 2000).

Correlation patterns for the PDO (not shown) are again sim-

ilar for NINO3.4. For the IOD, correlations of around 0.3

exist in eastern Africa during autumn (SON) and winter

(DJF), but again these patterns are very similar to those for

NINO3.4. Correlation of IOD and PREC following removal

of the NINO3.4 signal (not shown) indicates an ENSO-

independent relationship, particularly during DJF in eastern

Africa, which is supported by the findings of previous work
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Figure 6.

(Goddard and Graham, 1999), and also parts of Europe. In

the absence of known links between the phase of PDO and

precipitation anomalies that are independent of ENSO, PDO

is not considered for inclusion in the prediction system. QBO

is also omitted on the basis that there are few areas of cor-

relation of statistical significance (not shown). AMO on the

other hand produces significant correlation in regions influ-

enced by the Atlantic where NINO3.4 does not, including the

Sahel (JAS, visible in JJA and SON) and eastern South Amer-

ica (JJA). The AMO–PREC relationship does not appear to

extend to extra-tropical regions; there are no discernible ar-

eas of strong correlation in Europe or eastern North America.

This contrasts with the strong link previously identified be-

tween the AMO and JJA precipitation in Europe during the

1990s (Sutton and Dong, 2012). The use of long-term time

series, correlations rather than composites and an absence of

temporal filtering here results in lower correlations.

For PERS, there are a number of regions, particularly in

the extra-tropics, where significant correlation offers poten-

tial for predictability. The most obvious of such correlation

is during DJF and MAM in the mid- to high-latitudes of the

Northern Hemisphere; the persistence of dry (wet) conditions

during autumn in much of central Eurasia is an indicator for

similar conditions during winter and into spring. There are

relatively few regions where LSST is significantly correlated

with PREC. These include the western United States (MAM)

and south-east Asia where SST has variability that is inde-

pendent from ENSO and adds to the skill in dynamical sys-

tems (van Oldenborgh et al., 2005a). It remains unclear to
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Figure 6.

what extent LSST may offer additional value to this empiri-

cal prediction system.

4 Prediction system development and validation

For each hindcast between 1961 and 2013, and for each sea-

son and grid point, predictors are selected on the basis of

the significance of the (detrended) correlation with the pre-

dictand for the fitting period. For validation, causal hindcast

estimates are compared with observations to determine the

skill of the deterministic and probabilistic aspects of the pre-

diction system.

4.1 Surface air temperature

Following the assessment of potential predictors (step one of

the predictor selection process), the following were chosen

in addition to CO2EQV for inclusion in the prediction sys-

tem: NINO3.4, PDO, AMO, IOD, PERS, LSST, and CPREC.

Hindcasts were produced with each predictor added in turn

and verified against observations. Figure 3 shows the corre-

lation between observations and a hindcast constructed using

the CO2 equivalent only (top left panel on each page) and the

incremental correlation attained by including additional pre-

dictors cumulatively (subsequent panels on each page). The

observation–hindcast correlation following the inclusion of

all predictors is given in Fig. 4. Note that these are the cor-

relations of a causal system that only uses information from

www.geosci-model-dev.net/8/3947/2015/ Geosci. Model Dev., 8, 3947–3973, 2015
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Figure 6. Correlation between PREC hindcasts and observations (1961–2013) for (a) MAM, (b) JJA, (c) SON, and (d) DJF. The top left

panel shows correlation between observations and SAT hindcasts constructed using the CO2 equivalent as the sole predictor; stippling is used

to indicate significance at the 95 % level. Subsequent panels show difference in correlation following the inclusion of additional predictors.

before the hindcast date, the values are therefore much lower

than the full correlations of Fig. 1. If the correlations are spu-

rious – i.e. there was no physical connection but the predictor

was included because the correlation exceeded the 90 % sig-

nificance criterion (this happens by chance on 10 % of the

grid points without connection) – the hindcast skill is de-

graded by the inclusion of this predictor, visible as the light-

blue background in the panels of Fig. 3. We tried to minimise

this by the first step in the predictor selection process.

The correlation of observations with hindcasts estimated

using CO2EQV (Fig. 3) only is much lower than that with

hindcasts estimated as a function of all potential predictors

(Fig. 4). This is due to the fact that over the first half of the

hindcast period the trend is not yet very strong and does not

contribute to the skill. This measure therefore underestimates

the skill expected in forecasts, which are made at a time that

the trend plays a much larger role, although this depends also

on the reference period chosen for the forecasts.

The inclusion of NINO3.4 clearly adds value across the

Pacific and in the parts of the tropics. There are no land-

based areas where either PDO or IOD add value, but AMO

does improve correlation substantially in the North Atlantic

and in parts of northern (SON) and eastern (JJA) Europe, al-

though its inclusion degraded the hindcasts in eastern Europe

in DJF. The addition of PERS improves correlation in only a

handful of locations and LSST; while it is important to corre-
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Figure 7. Correlation between observations and PREC hindcasts generated using the regression model with all predictors (1961–2013).

Stippling is used to indicate significance at the 95 % level.

lation over some parts of the ocean and hence for islands and

coastal regions not resolved by our coarse data sets, it adds

little value further from the coast. As suggested in Fig. 1,

CPREC adds little global value except in parts of Australia.

The final model shows good skill was found in many re-

gions of the globe (Fig. 4). Key areas of high correlation

include the majority of the tropics where the dominance of

ENSO on interannual variability is greatest. Correlation is

strong at all times of year throughout much of northern South

America, central and southern Africa, and south Asia. Strong

correlation is also found in important extratropical regions,

including much of Europe except during SON. Correlation

is strong in much of western and central Europe during the

spring and summer (MAM until ASO). Over North Amer-

ica, the skill depends strongly on the season, varying from

slightly negative skill (due to overfitting) during SON to good

skill in large parts during MAM. Global patterns of RMSE

skill scores are broadly similar; regions of strong correlation

are generally associated with small differences from obser-

vations (Fig. 5; left panels).

Global maps of CRPSS exhibit broad patterns of skill sim-

ilar to those for correlation (Fig. 5, right panels). The highest

skill scores (relative to the climatology-based forecast) are

found in the tropics and are evident during all seasons. In

Europe, skill is again greatest during spring and summer, al-

though some parts of eastern Europe and Scandinavia are as-

sociated with negative skill scores. Very little of North Amer-

ica is associated with high skill; indeed, the prediction sys-

tem fails to outperform the climatology-based forecast over

the majority of the eastern and southern United States. This

lack of skill is known to extend to dynamical forecasts, par-

ticularly during winter (e.g. Kim et al., 2012).

4.2 Precipitation

The following predictors were included in the PREC predic-

tion system: NINO3.4, AMO, PERS, and LSST. Figure 6

shows total and incremental correlation results in the same

format as Fig. 3 for SAT. Using CO2EQV as a sole predictor

fails to yield any notable regions of significant correlation,

with the exception of parts of northern Eurasia during win-

ter (DJF). As for SAT, we would expect the forecast skill

to be greater than the hindcast skill given that the a large

portion of hindcasts were made before the trend becomes

important. The addition of NINO3.4 increases hindcast–

observation correlation in many parts of the tropics, partic-
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Figure 8. Root-mean-squared error skill score (RMSESS) and the continuous rank probability skill score (CRPSS) of the PREC hindcasts

expressed as a skill score against a climatology ensemble forecast (1961–2013). For CRPSS, stippling is used to indicate significance at the

95 % level following a one-sided t test.
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ularly during the boreal autumn (SON) and winter (DJF). In

spite of some evidence for a relationship with PREC in parts

of Eurasia as shown in Fig. 2, AMO fails to add any improve-

ment to the empirical model’s skill except in northeastern

Brazil and to some extent the Sahel. The same is largely true

for PERS and LSST, suggesting that almost all skill is cap-

tured by NINO3.4 and, to some extent, the climate change

signal.

For the final model, high correlation (> 0.6) is limited to

south-east Asia and northern parts of South America (be-

tween ASO and JFM) (Fig. 7). Another area of high cor-

relation to the north is in south-east South America during

the Austral spring (SON–DJF). However, the RMSE for the

hindcast is rarely an improvement on that derived from the

climatology (Fig. 8, left panels). In addition, there are only

a few areas where the hindcast produces a positive CRPSS,

which would indicate an improvement on the ensemble fore-

cast derived from the climatology (Fig. 8, right panels). This

leads us to conclude that, while the deterministic compo-

nent of the system is able to reproduce some components of

seasonal precipitation variability, probabilistically the system

does not perform well outside of limited areas in its present

guise.

5 Discussion and outlook

A global empirical system for seasonal climate prediction has

been developed and validated. Multiple linear regression was

chosen as the basis of the system; a simple predictor selec-

tion scheme sought to maximise the predictive skill of a num-

ber of predictors describing global-scale modes of variabil-

ity and local-scale information alongside that of the climate

change signal. Probabilistic hindcasts of surface air temper-

ature (SAT) and precipitation (PREC) have been produced

using prediction models based on multiple linear regression

and validated against observations using correlation and skill

scores. The prediction system shows good skill in many re-

gions. For SAT, the trend and interannual variability are well

represented throughout the tropics and in a number of extra-

tropical regions, including parts of Europe, particularly dur-

ing spring and summer, southern Africa and eastern Aus-

tralia. Skill associated with the probabilistic component of

the seasonal predictions shows similar spatial patterns. For

PREC, few areas of notable skill are found outside of regions

with known ENSO teleconnections and, probabilistically, the

system does not perform better than a climatological ensem-

ble throughout most of the world.

As outlined in Sect. 1, the system presented here has been

designed to serve both as a benchmark for dynamical pre-

diction systems and as an independent forecast system to

be combined with dynamical output to produce more robust

forecasts. Concerning the second purpose, it is important to

identify seasons and regions where dynamical systems lack

skill and to determine whether our system may potentially

add value in such instances. In general, dynamical system

skill is limited to regions that are strongly linked to ENSO;

in extra-tropical regions, where seasonal variability in the at-

mospheric state is governed to a greater extent by random

internal variability, skill is inevitably lower than in the trop-

ics (Kumar et al., 2007; Arribas et al., 2011). The good skill

in many parts of Europe, particularly for forecasts of SAT, is

an encouraging property of our system and a detailed com-

parison with dynamical European forecasts is forthcoming.

The inclusion of locally varying predictors, in combination

with predictors describing large-scale modes of variability,

provides a basis to elicit more skill than can be attained us-

ing global indices alone.

An important outcome of this work is the system’s imple-

mentation in a quasi-operational framework and the provi-

sion of regular forecasts. Monthly forecasts are generated for

each forthcoming 3-month season and made publicly avail-

able through the KNMI (Royal Netherlands Meteorological

Institute) Climate Explorer along with uncertainty parame-

ters and updated hindcast validation. The system’s frame-

work permits the potential to test empirical prediction meth-

ods other than linear regression, such as neural networks that

potentially capture non-linear aspects of the climate system.

Additionally, as mentioned in Sect. 2, the current list of pre-

dictors considered for inclusion is not exhaustive and there

is scope to better exploit the predictive information in other

locally varying predictors. Further avenues for system devel-

opment include region-specific and case-based analyses and

application to alternative predictands from century-long re-

analyses or those describing extreme events. Focus will also

be given to alternative methods of ensemble generation us-

ing, for instance, derived uncertainty in regression parame-

ters and spatial patterns.
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