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Abstract. Sea surface temperature is the key variable when

tackling seasonal to decadal climate forecasts. Dynamical

models are unable to properly reproduce tropical climate

variability, introducing biases that prevent a skillful pre-

dictability. Statistical methodologies emerge as an alterna-

tive to improve the predictability and reduce these biases. In

addition, recent studies have put forward the non-stationary

behavior of the teleconnections between tropical oceans,

showing how the same tropical mode has different impacts

depending on the considered sequence of decades. To im-

prove the predictability and investigate possible teleconnec-

tions, the sea surface temperature based statistical seasonal

foreCAST model (S4CAST) introduces the novelty of con-

sidering the non-stationary links between the predictor and

predictand fields. This paper describes the development of

the S4CAST model whose operation is focused on study-

ing the impacts of sea surface temperature on any climate-

related variable. Two applications focused on analyzing the

predictability of different climatic events have been imple-

mented as benchmark examples.

1 Introduction

Global oceans have the capacity to store and release heat as

energy that is transferred to the atmosphere altering global

atmospheric circulation. Therefore, fluctuations in monthly

sea surface temperature (SST) may be considered as an im-

portant source of energy affecting seasonal predictability and

improving the ability to forecast climate-related variables.

Much research has been conducted to study the impacts of

worldwide sea surface temperature anomalies (SSTA) by

means of dynamical models, observational studies and sta-

tistical methods. In this way, tropical oceans receive greater

relevance (Rasmusson and Carpenter, 1982; Harrison and

Larkin, 1998; Klein et al., 1999; Saravanan and Chang, 2000;

Trenberth et al., 2002; Chang et al., 2006; Ding et al., 2012;

Wang et al., 2012; Ham, 2013a, b; Keenlyside et al., 2013).

Because of the persistence shown by SSTA, alterations that

occur in the oceans are slower than changes occurring in the

atmosphere. Once the thermal equilibrium between the ocean

and the atmosphere is broken, oceans are able to release their

energy, changing the atmospheric circulation for some time

before dissipating, leading in turn to an influence on other

variables. This fact explains why the SSTA can be used as

potential predictor of the anomalous associated impacts.

The S4CAST model presented in this work is focused on

the study of the predictability and teleconnections of climate-

related variables based on the remote influence of the SSTA.

It has been shown that such variables can be SST (Rasmusson

and Carpenter, 1982; Latif and Barnett, 1995; Harrison and

Larkin, 1998; Klein et al., 1999; Trenberth et al., 2002), rain-

fall (Janicot et al., 2001; Drosdowsky and Chambers, 2001;

Giannini et al., 2001, 2003; Rowell, 2001, 2003; Chung and

Ramathan, 2006; Haylock et al., 2006; Polo et al., 2008; Joly

and Voldoire, 2009; Lu, 2009; Gaetani et al., 2010; Shin

et al., 2010; Fontaine et al., 2011; Nnamchi and Li, 2011;

Bulić and Kucharski, 2012; López-Parages and Rodríguez-

Fonseca, 2012) and other climate-related variables. In this

way, there are studies that have focused on the role of the

Published by Copernicus Publications on behalf of the European Geosciences Union.



3640 R. Suárez-Moreno and B. Rodríguez-Fonseca: S4CAST v2.0

tropical Pacific on vegetation, crop yields and the economic

consequences resulting from these impacts (Hansen et al.,

1998, 2001; Adams et al., 1999; Legler et al., 1999; Li and

Kafatos, 2000; Naylor et al., 2001; Tao et al., 2004; Deng et

al., 2010; Phillips et al., 1998; Verdin et al., 1999; Podestá

et al., 1999; Travasso et al., 2009). Regarding human health,

tropical SST patterns have been widely linked to the devel-

opment and propagation of diseases (Linthicum et al., 2010),

where El Niño–Southern Oscillation (ENSO)-related vari-

ability plays a crucial role mainly affecting tropical and sub-

tropical regions around the world (Kovats, 2000; Patz, 2002;

Kovats et al., 2003; Patz et al., 2005; McMichael et al., 2006).

The study of the impacts of tropical global SST on climate

has become increasingly important during the last decades.

Thus, there are dynamical and statistical prediction models

that attempt to define and predict seasonal averages from in-

terannual to multidecadal timescales. In this way, general

circulation models (GCMs) emerged from the need to re-

produce the ocean–atmosphere interactions, responsible for

much of climate variability whose major component is at-

tributed to ENSO phenomenon (Bjerknes, 1969; Gill, 1980).

Numerous research centers have done a hard work to cre-

ate their own prediction systems in which coupled ocean–

atmosphere GCMs are used in conjunction with statistical

methods to achieve reliable ENSO variability predictions and

analyze the skill of these models (Cane et al., 1986; Barnett

and Preisendorfer, 1987; Zebiak and Cane, 1987; Barnston

and Ropelewski, 1992; Barnett et al., 1993; Barnston et al.,

1994, 1999; Ji et al., 1994a, 1994b; Van den Dool, 1994;

Mason et al., 1999). Predictability of rainfall has become a

scope for these models, finding research that has focused on

this issue by means of dynamical and statistical models (Gar-

ric et al., 2002; Coelho et al., 2006). However, the difficulty

of GCMs to adequately reproduce the tropical climate vari-

ability remains a real problem, so that in recent years the

number of studies focusing on specific aspects of the biases

of these models has increased exponentially (Biasutti et al.,

2006; Richter and Xie, 2008; Wahl et al., 2011; Doi et al.,

2012; Li and Xie, 2012; Richter et al., 2012; Bellenger et al.,

2013; Brown et al., 2013; Toniazzo and Woolnough, 2013;

Vannière et al., 2013; Xue et al., 2013; Li and Xie, 2014).

Statistical models have been widely used as an alternative

way of climate forecasting, including several techniques de-

scribed below. Model output statistics (MOS) determine a

statistical relationship between the predictand and the vari-

ables obtained from dynamic models (Glahn and Lowry,

1972; Klein and Glahn, 1974; Vislocky and Fritsch, 1995).

Stochastic climate models were defined in the 1970s to be

first applied to predict SSTA and thermocline variability

(Hasselmann, 1976; Frankignoul and Hasselmann, 1977) and

later addressing non-linearity problems (Majda et al., 1999).

Moreover, linear inverse modeling (Penland and Sardesh-

mukh, 1995) has been used in predicting variables such as

tropical Atlantic SSTA (Penland and Matrosova, 1998) and

the study of Atlantic meridional mode (Vimont, 2012). Sta-

tistical modeling with neural networks is also applied in

climate prediction (Gardner and Dorling, 1998; Hsieh and

Tang, 1998; Tang et al., 2000; Hsieh, 2001; Knutti et al.,

2003; Baboo and Shereef, 2010; Shukla et al., 2011) with

the potential to be a nonlinear method capable of addressing

the problems in atmospheric processes that are overlooked

in other statistical methodologies (Tang et al., 2000; Hsieh,

2001).

A special mention goes to two linear statistical methods:

maximum covariance analysis (MCA) used in the S4CAST

model and canonical correlation analysis (CCA). These

methods have been widely used in seasonal climate forecast-

ing, either to complement dynamical models or to be applied

independently. In this way, Climate Predictability Tool (CPT)

developed at International Research Institute for Climate and

Society (IRI) allows the user to apply multivariate linear re-

gression techniques (e.g., CCA) to get their own predictions

(Korecha and Barnston, 2007; Recalde-Coronel et al., 2014;

Barnston and Tippet, 2014). In essence, these techniques

serve to isolate co-variability coupled patterns between two

variables that act as predictor and predictand, respectively

(Bretherton et al., 1992). Based on the ability of the SSTA as

predictor field, these methods were originally applied to ana-

lyze the predictability of phenomenon like ENSO (Barnston

and Ropelewski, 1992), 500 mb height anomalies (Wallace

et al., 1992) or global surface temperature and rainfall (Barn-

ston and Smith, 1996). Nevertheless, there is research dis-

cussing the use of these methods, focusing on the differences

between the two techniques (Cherry, 1996, 1997) and on the

limitations in their applications (Newman and Sardeshmukh,

1995).

The co-variability patterns between SSTA themselves

might fluctuate from one given study period to another, de-

termining non-stationary behavior along time. In this way,

teleconnections associated with El Niño or with the tropi-

cal Atlantic are effective in some periods but not in others.

In this way, Rodríguez-Fonseca et al. (2009) suggested how

the interannual variability in the equatorial Atlantic could be

used as predictor of Pacific ENSO after the 1970s, a the-

ory that has been subsequently reinforced by further anal-

ysis (Martín-Rey et al., 2012, 2014, 2015; Polo et al., 2015).

The non-stationarity in terms of predictability of rainfall has

also been found for West African rainfall (Janicot et al.,

1996; Fontaine et al., 1998; Mohino et al., 2011; Losada et

al., 2012; Rodriguez-Fonseca et al., 2011, 2015), and Eu-

rope (López-Parages and Rodriguez-Fonseca, 2012; López-

Parages et al., 2014). Thus, the existence of non-stationarities

is a key factor in the development of the statistical model.

The present paper describes a statistical model based on

the predictive nature of SSTA treating the stationarity in

the relationships between the predictor and predictand fields.

Section 2 describes the theoretical framework including the

statistical methodology and the significance of the statisti-

cal analysis. Section 3 is dedicated to S4CAST model de-

scription including the determination of stationary periods,
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hindcast and forecast calculations and validation. Section 4

describes two case studies concerning the predictability of

Sahelian rainfall and tropical Pacific SSTA.

2 Theoretical framework

2.1 Statistical methodology

Maximum covariance analysis is a broadly used statisti-

cal discriminant analysis methodology based on calculat-

ing principal directions of maximum covariance between

two variables. This statistical analysis considers two fields,

Y (predictor) and Z (predictand) (Bretherton et al., 1992;

Cherry, 1997; Widmann, 2005) for applying the singular

value decomposition (SVD) to the cross-covariance matrix

(C) in order to be maximized. SVD is an algebraical tech-

nique that diagonalizes non-squared matrices, as it can be

the case of the matrices of the two fields to be maximized.

In the meteorological context, C is dimensioned in time

(nt ) and space domains (nY and nZ for Y and Z, respec-

tively), although the spatial domain can be more complex

depending on the user requirements. SVD calculates linear

combinations of the time series of Y and Z, named as expan-

sion coefficients (hereinafter U and V for Y and Z, respec-

tively) that maximize C. The expansion coefficients are com-

puted by diagonalization of C. Since C is non-squared, diag-

onalization is first done to A= CCT and then to B= CTC.

The singular vectors R and Q are the resultant eigenvectors

from each diagonalization, which are the spatial configura-

tions of the co-variability modes. The associated loadings on

time domain are the expansion coefficients U and V . The

eigenvalues are a measure of the percentage of variance ex-

plained by each mode.

Mathematically, the time anomalies of both, Z and Y fields

are calculated by removing the climatological seasonal cycle

to the seasonal means.

Z′ = Z− Z̄ (1)

Y′ = Y− Ȳ (2)

Then, the cross-covariance matrix is calculated as

CY′Z′ =
Y′Z′

T

(nt − 1)
. (3)

MCA diagonalizes Eq. (3) by SVD methodology, obtaining

the singular vectors R and Q from which the expansion co-

efficients are obtained according to the following expression:

U =RTY, (4)

V =QTZ. (5)

Using the eigenvectors, the percentage of explained covari-

ance is calculated as

scfk =
λ2
k

r∑
i

λ2
i

;λk = [λ1,λ2, . . .,λn] , (6)

where k is the eigenvalue for each k mode and r represents

the number of modes taken into account for the analysis.

The expression from which an estimation of the predictand

is obtained is a linear model as

Ẑ=8Y, (7)

where 8 is the so-called regression coefficient and Ẑ denotes

an estimation of the data to be predicted (hindcast).

Taking into account that S is the regression map of the field

Z onto the direction of U

S= UZT , (8)

assuming good prediction Ẑ, it follows that

S= U ẐT (9)

Introducing the equality
(
UUT

)(
UUT

)−1
= I and multiply-

ing in Eq. (9) the following expression is obtained:(
UUT

)(
UUT

)−1

S= U ẐT . (10)

Removing U from both terms

Ẑ=

[
UT

(
UUT

)−1

S

]T
. (11)

Considering now the expression U = YTR it follows that

Ẑ= YR
(
UUT

)−1

S. (12)

Comparing this expression with Eq. (7) and introducing

Eq. (8) it can be concluded that

8=R
(
UUT

)−1

UZT . (13)

Which is the regression coefficient to be calculated when

defining the linear model from which the predictions and

hindcasts will be obtained.

2.2 Statistical field significance

There are many statistical tests to assess the robustness of

a result. The S4CAST uses a non-parametric test because, a

priori, the model does not know the distribution of the predic-

tand field. Thus, applying Monte Carlo testing assesses the

robustness of the results and is used to validate the S4CAST

model skill. This method involves performing a large num-

ber (N > 500) of permutations from the original time series.
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Figure 1. Schematic diagram illustrating the structure of the model.

Each permuted time series is used to repeat the calculation

and compare the obtained results with the real values. Once

this is done, the values obtained with the N permutations are

taken to create a random distribution to finally determine the

position of the real value within the distribution, which will

indicate the statistical significance of the obtained value. This

method has been described and used in previous research

(Livezey and Chen, 1983; Barnett, 1995; Maia et al., 2007).

The user inputs the level of statistical significance at which

the test is applied, being the most used 90 % (0.10), 95 %

(0.05) and 99 % (0.01).

3 S4 CAST model

S4CAST v2.0 model is conceived as a statistical tool to

study the predictability and teleconnections of variables that

strongly co-vary with SSTA variability in remote and nearby

locations to a particular region of study. The code has been

developed as a MATLAB® toolbox. The software require-

ments are variable and depend on user needs. The spatial

resolution and size of data files used as inputs are directly

proportional to memory requirements. The software gener-

ates an “out of memory” message whenever it requests a

segment of memory from the operating system that is larger

than what is currently available. The model software consists

of three main modules (Fig. 1), each composed of a set of

sub-modules whose operation is described below.

3.1 Model Inputs

S4CAST v2.0 has a direct execution mode. By simply typing

“S4cast” in the command window, the user is prompted to

enter a series of input parameters in a simple and intuitive

way.

3.1.1 Loading databases

The model is ready to work with Network Common Data

Form (NetCDF) data files. There are different conventions to

set the attributes of the variables contained in NetCDF files.

In this way, the data structure must conform as far as possi-

ble to the Cooperative Ocean/Atmosphere Research Service

(COARDS) convention. Execution errors that may occur due

to the selection of data files are easily corrected by minor

modifications of data assimilation scripts. Data files can be

easily introduced at the request of the user. Once downloaded

from the website of a determined center of climate and envi-

ronmental research, the user inserts data files into the direc-

tory set by default (S4CAST_v2.0/data_files).

3.1.2 Input parameters

In order to correctly introduce the input parameters, it is con-

venient to present some terms commonly used in seasonal

forecasting. In this way, the forecast period corresponds to

the n-month seasonal period concerning the predictand for

which the forecast and hindcasts are performed. Moreover,

the lead time refers to time expressed in months between the

last month comprising the predictor monthly period and the

first month comprising the forecast period. Thus, a medium-

range forecast refers to a lead-time set to zero, while a long-

range forecast refers to a lead-time equal or larger than 1

month. Strictly, we cannot speak about lead-time when the

predictor monthly period partially or totally overlaps the

forecast period. In this case we refer to lag-time expressed

in moths between the last month comprising the forecast pe-

riod and the last month for predictor period. The relationship

between lead-time and lag-time depends on the number of

months comprising the forecast period. Finally, the forecast

time is commonly used to describe the time gap expressed in

months between the predictor and predictand monthly peri-

ods, assuming the same concept represented by the lead time.

In the first step, predictand and predictor data files are se-

lected. In this way, the predictand field can be precipitation,

SST, or any variable susceptible to be predicted from SSTA.

The predictor is restricted to SST.

Once predictor and predictand fields are selected, the

available common time period between them is analyzed and

displayed so that the user is prompted to select the whole

common period for analysis or other within it. The same

temporal dimension in both fields is required in the statis-

tical analysis to construct the cross-covariance matrix (see

Sect. 2.1).

The next step is for selecting the n-month forecast period

in which the predictand is considered. The model allows for a

selection from 1 (n= 1) to 4 (n= 4) months. From the fore-

cast period, the user determines a specific lead time, rela-

tive to the predictor, from which medium range (lead time

0) or long range (lead time> 0) forecast can be performed.

In order to study and evaluate possible teleconnections, the

Geosci. Model Dev., 8, 3639–3658, 2015 www.geosci-model-dev.net/8/3639/2015/
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temporal overlapping between the forecast period and the

predictor is also available by defining the monthly lags be-

tween both fields from monthly lag 0 (synchronous) referred

to the case in which the predictor and the predictand fields are

taken at the same n-month period, through partial overlap-

ping to eliminate the overlapping (medium-range forecast).

Note that synchronous and partially overlapping seasons be-

tween predictor and predictand fields are not useful when re-

ferring to predictability, although this option is available in

order to perform simulations focused on the study of physi-

cal mechanisms (teleconnections) between the predictor and

predictand fields. Thus, it is worth noting that the model may

be focused in the study of the predictability but it can be also

used to detect teleconnections between SST (predictor) and

a predictand field.

Monthly lags indicating forecast times (lead times) are

user selectable. To illustrate the above, taking a hypothet-

ical case in which the forecast period corresponds to the

months of February–March–April (FMA) whatever the re-

gion, the synchronous option will consider the predictor in

FMA, while partially overlapping occurs when the predictor

is taken for January–February–March (JFM) and December–

January–February (DJF). Avoiding overlapping, lead time

0 will be NDJ (November–December–January), lead time

1 will be OND (October–November–December), lead time

2 will be SON (September–October–November), etc., with-

out overlapping the FMA season of the previous year. Thus,

the user can select any 3-month isolated period from FMA

(synchronous) to MJJ (May–June–July).

Next, the spatial domains of both predictor and predictand

fields are easily selected from its latitudinal and longitudinal

values. Considering the above options, the user can select a

sequence of successive monthly lags or only one so that the

predictor is taken for the total amount of selected information

(e.g., NDJ+OND+SON).

Later, there is the possibility of applying a filter to the time

series of predictor and predictand fields. The current version

uses a Butterworth filter, either as high-pass or low-pass fil-

ter frequently used in climate-related studies (e.g., Roe and

Steig, 2004; Enfield and Cid-Serrano, 2006; Mokhov and

Smirnov, 2006; Ault and George, 2012; Schurer et al., 2013),

although the selection of low-pass filter is not suitable for

seasonal forecast and subsequently is not useful in the current

version. Anyway, the possibility of selecting a low-pass filter

is maintained in order to include decadal predictability in a

future version of the model. The application of a filter allows

the user to isolate the frequencies at which the variability op-

erates, which can have different sources of predictability. In

this way, the user selects the cutoff frequency, following the

expression 2dt/T , being dt the sampling interval and T the

period to be filtered both in the same units of time. If no filter

is applied, the raw data are used. There are plenty of filters

that could be applied and future versions of the model will

include different possibilities.

Figure 2. Predictand (Z) and predictor (Y ) fields represented

by their corresponding data matrices. The illustration relates to

an example in which the forecast period covers the months

February–March–April (FMA) and the predictor is selected for

four distinct seasons: August–September–October (ASO, lead

time= 3); September–October–November (SON, lead time= 2);

October–November–December (OND, lead time= 1); November–

December–January (NDJ, lead time= 0). Each of these sub-

matrices for the predictor has the same temporal dimension (nt ) and

spatial dimension (ns2). The predictand may have a different spa-

tial dimension (ns1) but the same temporal dimension (nt ) to enable

matrix calculations required by MCA methodology.

In the case of multiple time selection for predictor, the sta-

tistical methodology is first applied considering the largest

lead time and successively adding information for other lead

times up to the present. Therefore, continuing with the ex-

ample above in which the forecast period corresponds to

FMA if selected lead times are from 0 to 3, the first pre-

dictor selection is made considering the 3-months lead-time

period (SON). After, the 2-months lead-time period is added

(ASO+SON), next up to the period of 1-month delayed

(ASO+SON+OND) and finally the case up to the period

with a lead time equal to zero (ASO+SON+OND+NDJ).

Previous example is illustrated in Fig. 2.

Once the matrices are determined for each predictor time

selection, the statistical methodology is applied. Up to now,

the model applies the MCA discriminant analysis technique,

although other statistical methodologies will be included in

future releases, including CCA or nonlinear methods as neu-

ral network and Bayesian methodologies. As indicated in

the previous section, MCA determines a new vector base

in which the relations between the variables are maximized.

Thus, it is important to choose a number of modes (principal

directions) to be considered in the computations, selecting ei-

ther a single mode or a set of them, always consecutive. The

analysis of stationarity is performed for a single mode selec-

tion. For multi-mode selection, the whole time series will be

considered.

The statistical field significance level is set for the first

time to assess the analysis of stationarity. Thus, the model

www.geosci-model-dev.net/8/3639/2015/ Geosci. Model Dev., 8, 3639–3658, 2015
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runs for the entire period and for those periods for which the

relationships are considered stationary within it. This is in-

ternally established by applying the method explained later

in the Sect. 3.2.1.

3.1.3 Data preprocessing

From selected data files and input parameters previously de-

fined, preprocessing of data is performed so that the data are

prepared for implementing statistical methodology.

3.2 Statistical tools

At this point the statistical procedure described in the

methodology is applied considering different periods based

on the previously described stationary analysis.

3.2.1 Analysis of stationarity

Stationarity refers to changes along time in the co-variability

pattern between two variables. Thus, we speak about sta-

tionarity when such a pattern of co-variability keeps invari-

ant within a time period and therefore will be non-stationary

when showing changes. To evaluate how much the predictor

(Y ) and the predictand (Z) fields are related to each other,

the model calculates running mean correlations between the

expansion coefficients indicated in Eqs. (4) and (5) for the

selected kth mode along the record. This technique has been

widely used to determine the stationarity of the relationships

between the time series of climate indices (e.g., Camberlin

et al., 2001; Rimbu et al., 2003; Van Oldenborgh and Burg-

ers, 2005). Next, the significance level of correlation coef-

ficients is calculated according to the method explained in

Sect. 2.2. In this way, stationary relationships between the

predictor (Y ) and the predictand (Z) fields are established

by applying a 21-year moving correlation window analysis

between the leading expansion coefficients of both fields ob-

tained from the discriminant analysis method (Sect. 2.1) us-

ing the whole record in accordance with the evolution of

the correlation coefficient. To do this, three types of 21-year

moving correlation windows are user selectable: “delayed”

to correlate 1 year and the 20 previous years; “centered” to

correlate 1 year, the 10 previous years and the 10 next years;

or “advanced” to correlate 1 year and the 20 next years. Note

that delayed correlation coefficients are the most suitable in

a forecast context when referring to future prediction. Nev-

ertheless, centered and advanced correlation coefficients are

also available for application no matter the aim of the user.

From previous analysis, three different periods are ana-

lyzed depending on the stationarity of the predictability: use

the significant correlation period (hereinafter SC) for which

the expansion coefficients are significantly correlated, use

no significant correlation period (hereinafter NSC) and work

with the entire period (hereinafter EP). The model performs

all calculations for each period separately and, from them,

the simulated maps (hindcasts) of the predictand for each

year are calculated by applying cross-validation.

3.2.2 Model validation

Cross-validation is used in climate forecasting as part of sta-

tistical models when assessing forecast skill (Michaelsen,

1987; Barnston and Van den Dool, 1993; Elsner and

Schmertmann, 1994). This method is intended as a model

validation technique in which the data for the predictor and

the predictand for a given time step is removed from the anal-

ysis to make an estimate of it with the rest of data, compar-

ing the simulated value with the removed one. In this way, a

cross-validated hindcast is obtained. In the S4CAST model,

the leave-one-out method is applied as described by Dayan et

al. (2014). From the comparison between the predicted value

and the original one, the skill of the model can be inferred us-

ing different skill scores. S4CAST considers the Pearson cor-

relation coefficients and the root mean square error (RMSE)

although other scores will be introduced in future versions.

3.3 Model outputs

Modes of co-variability are related to spatial patterns of dif-

ferent variables that co-vary over time, and thus are linked

to each other. In the case of MCA, the covariance matrix

is computed and the SVD method is applied to provide a

new basis of eigenvectors for the predictor and predictand

fields which covariance is maximized. The obtained singu-

lar vectors describe spatial patterns of anomalies in each of

the variables that tend to be related to each other. Regres-

sion and correlation maps and corresponding expansion co-

efficients determine each mode of co-variability for the pre-

dictor and predictand fields. The expansion coefficients indi-

cate the weight of these patterns in each of the time steps.

Thus, regression and correlation co-variability maps can be

represented. This is done with the original anomalous matrix,

highlighting those grid points whose time series are highly

correlated with the obtained expansion coefficients, showing

large co-variability and determining the key regions of pre-

diction. To represent it, regression and correlation maps are

calculated to analyze the coupling between variables and to

understand the physical mechanisms involved in the link.

On the other hand, the time series of the expansion coeffi-

cients determine the scores of the regression and correlation

maps at each time along the study period. The model repre-

sents the expansion coefficients used to calculate the regres-

sion coefficients. Thus, those years in which the expansion

coefficients for the predictor and the predictand are highly

correlated will coincide with years in which we can expect a

better estimation.

In the current version of the model, the RMSE and the

Pearson correlation coefficients skill scores have been in-

cluded. These techniques are applied to compare the ob-

served and simulated maps (hindcasts) of the predictand field
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obtaining correlation and RMSE maps and time series. On

the one hand, maps are obtained calculating for each grid

point the skill scores between the hindcast and the observed

maps. On the other hand, time series are obtained for each

time by applying correlation and RMSE between the area

average of the observed and estimated maps. Some com-

ments on these techniques are addressed by Barnston (1992).

The S4CAST model generates the hindcast within the EP, SC

and NSC periods separately from applying the one-leave-out

method (Dayan et al., 2014) and then the statistical method-

ology.

4 Application of the model: case studies

Two different case studies have been simulated as benchmark

examples. Both cases are focused on the predictive ability

of the tropical Atlantic SSTA. In a first simulation, the pre-

dictand field corresponds to Sahelian rainfall. In a second

simulation, winter tropical Pacific SSTA have been used as

predictand field. The links between tropical Atlantic Ocean

and the two variables selected as predictand fields have been

widely studied exhibiting non-stationary relationships. The

results obtained by applying the model have been contrasted

in the following sections. Tables 1 and 2 list the entries for

both case studies to be easily reproduced by the user.

4.1 Tropical Atlantic – Sahelian rainfall

In this first case study the model has been applied to val-

idate its use in the study of seasonal rainfall predictability

in the Sahel taking tropical Atlantic as predictor field. The

West African Monsoon (WAM) is characterized by a strong

seasonal rainfall regime that occurs from July to September

related to the semi-annual shift of the Intertropical Conver-

gence Zone (ITCZ) together with the presence of a strong

thermal gradient between the Sahara and the ocean in the

Gulf of Guinea. The interannual fluctuations in seasonal rain-

fall are due to various causes; the changes in global SST are

the main driver of WAM variability (Folland, 1986; Palmer,

1986; Fontaine et al., 1998; Rodríguez-Fonseca et al., 2015).

Particularly, several observational studies suggest the influ-

ence of tropical Atlantic SSTA on the WAM at interannual

timescales (Giannini et al., 2003; Polo et al., 2008; Joly and

Voldoire, 2009; Nnamchi and Li, 2011).

Regarding the input parameters (Table 1), the predic-

tand field corresponds to precipitation from GPCC Full

Data Reanalysis monthly means of precipitation appended

with GPCC monitoring data set from 2011 onwards with

a resolution of 1.0◦× 1.0◦ covering the period from Jan-

uary 1901 to March 2015 (Rudolf et al., 2010; Becker et al.,

2013; Schneider et al., 2014; http://gpcc.dwd.de). The fore-

cast period consists of July–August–September (JAS), com-

puting seasonal anomalous rainfall in the Sahelian domain

(18◦W–10◦ E; 12–18◦ N). No frequency filter is applied for

Figure 3. Shown are 21-year moving correlation windows (green

line) between the expansion coefficients U corresponding to trop-

ical Atlantic SSTA (predictor, blue bars) and V corresponding to

Sahelian anomalous rainfall (predictand, red line) obtained for the

leading mode of co-variability from MCA analysis. Shaded trian-

gles indicate significant correlation under a Monte Carlo Test at

90 %.

predictand. The predictor field corresponds to NOAA Ex-

tended Reconstructed SST (ERSST) V3b monthly means

of SST with a resolution of 2.0◦× 2.0◦ spanning the pe-

riod from January 1854 to May 2015 (Smith and Reynolds,

2003, 2004; Smith et al., 2008; http://www.esrl.noaa.gov/

psd/data/gridded/data.noaa.ersst.html). The spatial domain

corresponds to southern subtropical and equatorial Atlantic

band (60◦W–20◦ E; 20◦ S–4◦ N). A high-pass filter with cut-

off frequency set to 7 years has been applied to the predictor

time series in order to analyze the influence of SSTA inter-

annual variability, which includes leading oceanic interan-

nual variability modes such as the Atlantic equatorial mode

(AEM) (Polo et al., 2008) or the South Atlantic Ocean dipole

(SAOD) (Nnamchi et al., 2011). Medium-range forecast has

been taken into account setting the lead time to zero (equiv-

alent to monthly lag 3). In this way, April–May–June (AMJ)

is the selected season for predictor.

For applying the methodology, the leading mode of co-

variability (k = 1) has been selected. The correlation curve

(Fig. 3) reflects the stationary periods (SC and NSC) within

EP period as stated in Sect. 3.2.1. The SC period is almost

restricted to years from 1932 to 1971 with some exceptions.

The remaining years are taken to analyze the predictability

for the NSC period.

Figure 4 show regression maps associated with the lead-

ing mode for the periods SC, EP and NSC explaining 50,

32 and 41 % of co-variability, respectively. For the SC pe-

riod (Fig. 4, top panels), the co-variability pattern exhibits a

quasi-isolated cooling in the tropical Atlantic associated with

a rainfall dipole over West Africa with negative anomalies in

the region of the Gulf of Guinea and opposite in the Sahel.

The opposite co-variability pattern takes place under nega-

tive scores of the expansion coefficient. These results are in

agreement with those found in the last decades of the 20th

century by several authors who have discussed the role of
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Table 1. Input parameters used to reproduce the first case study. Left column represents the statements reproduced by the model with the

same format as in the simulation. Right column represents the input parameters entered by the user.

Statements reproduced by the model Input parameters

entered by the user

Enter the NetCDF file containing the predictand data in the path /S4CAST_v2.0/data_files/predictand/

Press enter to continue

PREDICTAND data available from Jan 1901 to Mar 2015

Enter the NetCDF file containing the predictor data in the path /S4CAST_v2.0/data_files/predictor/

Press enter to continue

PREDICTOR data available from Jan 1854 to May 2015

Select a common analysis period

The common longest analysis period extends from Jan 1902 to Mar 2015

Do you want to select this period? y/n

“y”

The selected analysis period extends from Jan 1902 to Mar 2015

Select the forecast period

Type 1 to select a set of months

Type 2 to select 1 month

1

Enter the forecast period using the initials of the months “JAS”

2015 forecast available from lead time 1 (monthly lag 4) to lead time 6 (monthly lag 9)

Enter PREDICTAND spatial domain

West longitude from −179.5 to 179.5

−18

East longitude from −179.5 to 179.5 10

South latitude from −89.5 to 89.5 12

North latitude from −89.5 to 89.5 18

Do you want to standardize the predictand? y/n “y”

Do you want to apply a Butterworth filter to the predictand? y/n “n”

Enter PREDICTOR spatial domain

West longitude from −180 to 178

−60

East longitude from −180 to 178 20

South latitude from −88 to 88 −20

North latitude from −88 to 88 5

Do you want to standardize the predictor? y/n “n”

Dou you want to apply a Butterworth filter to the predictor? y/n “y”

Type 1 to apply a high-pass filter

Type 2 to apply a low-pass filter

1

Introduce the cutoff frequency 7

Select the predictor monthly periods

Type 1 to select a set of chronological monthly periods

Type 2 to select one monthly period

2

Enter the monthly lag regarding the predictand 3

Select the number of modes for MCA analysis

Do you want to select a set of modes? y/n

“n”

Enter the mode number 1

To assess the stationarity the model will analyze 21 years moving correlation windows between the expansion

coefficients of the PREDICTOR and PREDICTAND fields obtained from MCA method

Indicate delayed, centered or advanced moving correlation windows

“delayed”

To assess the significant stationary periods, indicate the degree of statistical significance from 0 to 100 90

To validate the model skill, indicate the degree of statistical significance from 0 to 100 90
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Figure 4. Regression maps obtained for the leading mode by applying MCA between SSTA in the tropical Atlantic (predictor) and western

Sahel rainfall (predictand). Left column represents the homogeneous regression map done by projecting the expansion coefficient U onto

global SSTA (◦C). Right column represents the heterogeneous regression map done by projecting expansion coefficientU onto the anomalous

Sahelian rainfall (mm day−1). Period SC (top panels), EP (middle panels) and NSC (bottom panels). Rectangles show the selected regions

for predictor and predictand fields considered in the MCA analysis. Values are plotted in regions where statistical significance under a Monte

Carlo test is higher than 90 %.

the tropical Atlantic SST as a dominant factor in the WAM

variability at interannual and seasonal timescales (Janowiak,

1988; Janicot, 1992; Fontaine and Janicot, 1996). Losada et

al. (2010b) found how the response to an isolated positive

equatorial Atlantic Niño event is a dipolar rainfall pattern in

which the decrease of rainfall in Sahel is related to the in-

crease of rainfall in Guinea (as in Fig. 4) due to changes

in the sea–land pressure gradient between Gulf of Guinea

SSTs and the Sahel. Mohino et al. (2011) and Rodríguez-

Fonseca et al. (2011) have found in the observations how

this dipolar behavior takes place for some particular decades

coinciding with the SC periods, confirming in this way the

correct determination of the leading co-variability mode by

the model. When considering the EP period (Fig. 4, middle

panels), a co-variability pattern similar to that observed for

the SC period is appreciated with small differences. Regard-

ing the predictand field, the anomalous rainfall signal is less

intense when compared to SC. For the predictor, the cool-

ing in the tropical Atlantic is accompanied by opposite weak

anomalies in the north subtropical and tropical Pacific. Re-

garding the NSC period (Fig. 4, bottom panels), as for the

previous periods (SC, EP) a cooling in the tropical Atlantic

is observed concerning the predictor associated with negative

rainfall anomalies in the Gulf of Guinea and a weak positive

signal in the eastern Sahel, virtually disappearing the rainfall

dipole. The global SSTA regression map shows a significant

warming in the tropical Pacific. The opposite pattern should

be considered under negative scores of the expansion coeffi-

cient.

The results presented above support the existence of a non-

stationary behavior of the teleconnections between SSTA

variability and rainfall associated with WAM. Several au-

thors have addressed the dipolar anomalous rainfall pattern

as a response of an isolated tropical Atlantic warming (cool-

ing) (Rodríguez-Fonseca et al., 2011; Losada et al., 2010a,

b; Mohino et al., 2011) restricted to the period 1957–1978 in

the observations. The uniform rainfall signal over the whole

of West Africa, with negative anomalies related to a cool-

ing over the tropical Atlantic and an opposite sign pattern

over the tropical Pacific, is only observed for the period

from 1979 in advance. These results agree with Losada et

al. (2012), who focused on non-stationary influences of trop-

ical global SST in WAM variability, explaining how the dis-

appearance of the dipole was due to the counteracting effect

of the anomalous responses of the Pacific and Atlantic on

the Sahel. Recently, Diatta and Fink (2014) have documented

similar non-stationary relationships.

The associated skill of the model to reproduce the rainfall

is shown in Fig. 5 in terms of correlation maps and time se-

ries for SC and EP periods. A qualitative improvement is ob-
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Figure 5. Skill-score validation using Pearson correlation coefficients between observations and hindcasts. Left column corresponds to the

spatial validation for each point in space. Right column corresponds to validation time series (green line) between hindcasts and observations

considering only the regions indicated by positive significant spatial correlation. Period SC (top panels) and EP (bottom panels). Significant

correlation values for time series are indicated by shaded triangles. Blue bars correspond to the expansion coefficient (U ) of the SSTA

(predictor). Significant values are plotted from a 90 % statistical significance under a Monte Carlo test.

served when considering the SC periods instead of the whole

period (EP). This result points to a better spatial distribution

of the significant values for particular decades in which the

signal extends to a larger spatial domain. In order to analyze

the performance of the simulation for each particular year,

the correlation between observed and predicted maps at each

time step is calculated and shown in Fig. 5. There is no skill

when NSC period is considered (Fig. 6). Since it has only

been considered the leading mode of co-variability, the time

series of validation between observed and simulated rainfall

should evolve following the absolute values of the expansion

coefficients. Thus, when the expansion coefficient (U ) of the

predictor (SST) shows high scores in the leading mode, good

hindcasts are obtained.

4.2 Tropical Atlantic – tropical Pacific

A non-stationary behavior in the association between tropi-

cal Atlantic and tropical Pacific SSTA has been recently doc-

umented in some research suggesting that the tropical At-

lantic SSTA during the boreal summer could be a potential

predictor of winter tropical Pacific SSTA variability after the

1970s (Rodríguez-Fonseca et al., 2009; Ding et al., 2012). In

this section, the S4CAST model has been applied to corrobo-

rate the non-stationarity in the teleconnection between tropi-

cal Atlantic considered as predictor field and tropical Pacific

variability, a feature that has been also demonstrated in Mar-

tin del Rey et al. (2015).

The input parameters are listed in Table 2. Both predictor

and predictand fields corresponds to NOAA ERSST intro-

duced in the previous section (Sect. 4.1), covering the period

from January 1854 to May 2015. The forecast period con-

sists of December–January–February–March (DJFM). The

Figure 6. Skill-score validation using Pearson correlation coeffi-

cients between observations and hindcasts for each point in space

corresponding to NSC period. Significant values are plotted from a

90 % statistical significance under a Monte Carlo test.

selected region for predictand corresponds to SSTA in the

tropical Pacific domain (120◦E–60◦W; 30◦ S–20◦ N), while

the predictor corresponds to tropical Atlantic SSTA (60◦W–

20◦ E; 20◦ S–4◦ N) and has been considered for the pe-

riod July–August–September–October (JASO), which means

long-range forecast sets the lead time to 1 month. A high-

pass filter with cutoff frequency set to 7 years has been ap-

plied to both predictor and predictand time series in order

to analyze the predictability considering interannual variabil-

ity. For applying the methodology and assess the stationary

periods (SC and NSC) within EP, the leading mode of co-

variability (k = 1) has been selected.
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Table 2. Input parameters used to reproduce the second case study. Left column represents the statements reproduced by the model. Right

column represents the input parameters.

Statements reproduced by the model Input parameters

entered by the user

Enter the NetCDF file containing the predictand data in the path /S4CAST_v2.0/data_files/predictand/

Press enter to continue

PREDICTAND data available from Jan 1854 to May 2015

Enter the NetCDF file containing the predictor data in the path /S4CAST_v2.0/data_files/predictor/

Press enter to continue

PREDICTOR data available from Jan 1854 to May 2015

Select a common analysis period

The common longest analysis period extends from Jan 1855 to May 2015

Do you want to select this period? y/n

“y”

The selected analysis period extends from Jan 1855 to May 2015

Select the forecast period

Type 1 to select a set of months

Type 2 to select 1 month

1

Enter the forecast period using the initials of the months “JAS”

2016 forecast not available

Enter PREDICTAND spatial domain

West longitude from −179.5 to 179.5

120

East longitude from −179.5 to 179.5 −60

South latitude from −89.5 to 89.5 −30

North latitude from −89.5 to 89.5 20

Do you want to standardize the predictand? y/n “n”

Dou you want to apply a Butterworth filter to the predictand? y/n “y”

Type 1 to apply a high-pass filter

Type 2 to apply a low-pass filter

1

Enter the cutoff frequency 7

Enter PREDICTOR spatial domain

West longitude from −180 to 178

−60

East longitude from −180 to 178 20

South latitude from −88 to 88 −20

North latitude from −88 to 88 5

Do you want to standardize the predictor? y/n “n”

Dou you want to apply a Butterworth filter to the predictor? y/n “y”

Type 1 to apply a high-pass filter

Type 2 to apply a low-pass filter

1

Introduce the cutoff frequency 7

Select the predictor monthly periods

Type 1 to select a set of chronological monthly periods

Type 2 to select one monthly period

2

Enter the monthly lag regarding the predictand 5

Select the number of modes for MCA analysis

Do you want to select a set of modes? y/n

“n”

Enter the mode number 1

To assess the stationarity the model will analyze 21 years moving correlation windows between the expansion

coefficients of the PREDICTOR and PREDICTAND fields obtained from MCA method

Indicate delayed, centered or advanced moving correlation windows

“delayed”

To assess the significant stationary periods, indicate the degree of statistical significance from 0 to 100 90

To validate the model skill, indicate the degree of statistical significance from 0 to 100 90
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Figure 7. Shown are 21-year moving correlation windows (green

line) between the expansion coefficients U corresponding to trop-

ical Atlantic SSTA (predictor, blue bars) and V corresponding to

tropical Pacific SSTA (predictand, red line) obtained for the leading

mode of co-variability from MCA analysis between predictor and

predictand fields. Shaded triangles indicate significant correlation

under a Monte Carlo Test at 90 %.

The correlation curve (Fig. 7) presents the SC period

clearly divided into two intervals: from 1889 to 1939 and

from 1985 up to the present (2015). Consequently, the NSC

period corresponds to the remaining years within the study

period (1854–2015).

The leading mode (Fig. 8) for the periods SC, NSC and

EP explains 52, 28 and 43 % of co-variability, respectively.

Regarding the SC (Fig. 8; top panels) and EP (Fig. 8; middle

panels) periods, it is observed how a cooling (warming) in the

tropical Atlantic is related to a warming (cooling). Thus, the

co-variability pattern is defined by opposite sign anomalies

between predictor and predictand fields, although the mag-

nitude of the anomalies is greater concerning the SC period.

Considering the NSC period (Fig. 8; bottom panels), a signal

in tropical Pacific is not observed in response to the tropical

Atlantic cooling (warming).

Previous results are in agreement with former studies in

which a similar tropical SSTA pattern with opposite tem-

perature anomalies in the equatorial Atlantic and Pacific in

summer has been documented to occur in the decades within

the SC period (Rodríguez-Fonseca et al., 2009; Martin-Rey

et al., 2012). Thus, Martín-Rey et al. (2014, 2015) point to

a non-stationary relationship that seems to take place in the

early 20th century and after the 1970s, confirming the cor-

rect determination of the leading co-variability mode by the

model.

The mechanism, from which the teleconnection takes

place, has been explained by Polo et al. (2015), who sug-

gest that a cooling in the equatorial Atlantic results in en-

hanced equatorial convection, altering the Walker circulation

and consequently enhancing subsidence and surface wind di-

vergence over the equatorial Pacific during the period JASO.

The anomalous wind piles up water in the western tropical

Pacific, triggering a Kelvin wave eastward from autumn to

winter, setting up the conditions for a cold event in the equa-

torial east Pacific during the period DJFM. Considering a

cooling in the tropical Atlantic, the opposite sequence takes

place.

The skill of the model in reproducing tropical Pacific

SSTA (Fig. 9) is also restricted to stationary conditions.

Thus, depending on the considered sequence of decades

within the period EP (Fig. 9; middle panels), the model pro-

vides better results for period SC (Fig. 9; top panels), while it

is not able to produce reliable estimations when period NSC

(Fig. 9; bottom panels) is taken into account. These results

highlight the need to consider different periods and possible

modulations when tackling seasonal predictability of tropical

Pacific SSTA, in agreement with recent results of Martin del

Rey et al. (2015).

5 Discussion and conclusions

It is well known how dynamical models need to be to pro-

duce very accurate seasonal climate forecast for non-ENSO

events, partly due to the presence of strong biases in some re-

gions, such as the tropical Atlantic (Barnston et al., 2015). In

contrast, statistical models, despite being a useful and effec-

tive supplement, are mostly unable to reproduce the nonlin-

earity in the ocean–atmosphere system, exceptions include

neural networks and Bayesian methods. Attempts to imple-

ment new statistical models constitute a fundamental con-

tribution aimed to enhance and complement the dynamical

models. Nevertheless, statistical models have evolved linked

to dynamical models, either as an alternative or within them

as a hybrid model.

Following this reasoning, this paper introduces the

S4CAST v2.0 model. The model was created from the first

version (S4CAST v1.0) developed as the main part of a co-

operation project between the Laboratoire de Physique de

l’Atmosphère et de l’Océan Siméon Fongang of the Univer-

sity Cheik Anta Diop (UCAD) in Dakar (Senegal) and the

Complutense University of Madrid (UCM) within the VIII

UCM Call for Cooperation and Development projects (VR:

101/11) and was named “Creation and Donation of a sta-

tistical seasonal forecast model for West African rainfall”.

Thereby, the authors wanted to respect the number of the do-

nation version despite not having a publication. As a brief

explanation on the history, the original model was restricted

to study the predictability of West African rainfall from trop-

ical global SSTA using much more limited input parameters

that those described in this work for version 2.0. Thus, the

reason for developing and improve the model for publication

is the motivation arising from colleagues in different institu-

tions along Africa and Europe to expand the model and use

it as an alternative tool to look for SST-related predictability

due to the strong SST bias that coupled dynamical models

exhibit nowadays.

The model is based on the predictive power of the SST.

Concerning the association along time between SSTA and

Geosci. Model Dev., 8, 3639–3658, 2015 www.geosci-model-dev.net/8/3639/2015/



R. Suárez-Moreno and B. Rodríguez-Fonseca: S4CAST v2.0 3651

Figure 8. Regression maps obtained for the leading mode by applying MCA between SSTA in the tropical Atlantic (predictor) and SSTA

in the tropical Pacific (predictand). Left column represents the homogeneous regression map done by projecting the expansion coefficient

U onto global SSTA (◦C) for predictor seasonal period. Right column represents the heterogeneous regression map done by projecting

expansion coefficient U onto global SSTA (◦C) for predictand seasonal period. Period SC (top panels), EP (middle panels) and NSC (bottom

panels). Rectangles show the selected regions for predictor and predictand fields considered in the MCA analysis. Values are plotted in

regions where statistical significance under a Monte Carlo test is higher than 90 %.

any climate-related variable susceptible of being predicted

from it, the concept of stationarity is raised as one of the

motivating factors in creating the S4CAST model. The sta-

tionarity refers to changes in the co-variability patterns be-

tween the predictor and the predictand fields along a given

sequence of decades, so that it can be kept invariant (station-

ary) or changing (non-stationary). This concept has been ad-

dressed by different authors (Janicot et al., 1996; Fontaine

et al., 1998; Rodríguez-Fonseca et al., 2009, 2011; Mohino

et al., 2011; Martín-Rey et al., 2012; Losada et al., 2012)

and becomes the main novelty and contribution introduced

by S4CAST as a key factor to consider in seasonal forecast-

ing provided by current prediction models, either dynami-

cal or statistical. Thus, S4CAST model is an alternative to

enhance and complement the estimates made by dynamical

models, which have a number of systematic errors to ade-

quately reproduce the tropical climate variability (Biasutti et

al., 2006; Richter and Xie, 2008; Wahl et al., 2011; Doi et al.,

2012; Richter et al., 2012; Bellenger et al., 2013; Brown et

al., 2013; Li and Xie, 2013; Toniazzo and Woolnough, 2013;

Vannière et al., 2013; Xue et al., 2013). For the time being,

the S4CAST model cannot be applied for strict operational

forecasts, although its application in determining stationary

relationships between two fields and their co-variability pat-

terns can be crucial for improving the estimates provided by

the operating prediction models currently used.

The model is proposed for use in two areas: the study of

seasonal predictability and the study of teleconnections, both

based on the influence of SST. On the one hand, we refer

to predictability when predictor is considered from a lead

time equal to 0 months (medium-range forecast) in advance

(long-range forecast). On the other hand, we speak about the

study of teleconnections when predictor seasonal selection

partially or totally overlaps (synchronous) the forecast pe-

riod, meaning that one cannot speak about lead time, instead

we speak about a monthly lag between the last month in the

forecast period and the last month comprising the predictor

monthly period.

In addition to previous considerations, the model always

provides the predictions in hindcast mode for the different

periods of stationarity (SC, NSC and EP), while the fore-

cast mode depends on input parameters and data files used

for predictor and predictand fields. For instance, consider-

ing from SON as the forecast period concerning the pre-

dictand and selecting a lead time of 2 months for the pre-

diction, which means taking the predictor 2 months before

September (from AMJ), the prediction for SON 2015 will

be performed if the predictand field is available at least until

November 2014 and the predictor is available at least until
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Figure 9. Skill-score validation using Pearson correlation coefficients between observations and hindcasts. Left column corresponds to the

spatial validation for each point in space. Right column corresponds to validation time series (green line) between hindcasts and observations

considering only the regions indicated by positive significant spatial correlation. Period SC (top panels), EP (middle panels), and NSC (bottom

panels). Significant correlation values for time series are indicated by shaded triangles. Blue bars correspond to the expansion coefficient (U )

of the SSTA (predictor). Significant values are plotted from a 90 % statistical significance under a Monte Carlo test.

June 2015. Thus, the model constructs the regression coeffi-

cient by using the common period until November 2014. Re-

gression coefficients along with predictor data (AMJ 2015)

will provide the forecast for SON 2015. In this way, the

model first checks data availability related to the input pa-

rameters and shows by screen if future forecast is enabled. If

enabled, the model performs three types of forecast by com-

puting the regression coefficient for each period (SC, NSC,

EP). Finally, the user should determine the better forecast by

a study of the modulations of each stationary period and the

sequence of hindcasts immediately preceding the present.

In the applications shown in this paper, we have focused

in the results from MCA. This statistical methodology, along

with canonical correlation analysis (CCA), have been widely

used on studies of predictability during the last decades

(Barnston and Ropelewski, 1992; Bretherton et al., 1992;

Wallace et al., 1992; Barnston and Smith, 1996; Fontaine et

al., 1999; Korecha and Barnston, 2007; Barnston and Tip-

pet, 2014; Recalde-Coronel et al., 2014). Integration of the

methodology and intuitive use through a user interface are

some of the main advantages of the S4CAST model, allow-

ing the selection of a big number of inputs. Future releases of

the model will include other methodologies that are currently

being introduced and tested.

Originally, the model was created to tackle the study of the

predictability of anomalous rainfall associated with WAM,

which co-varies in a different way with the tropical band

of Atlantic and Pacific ocean basins, being an indicator of

non-stationarity (Losada et al., 2012). The transition between

SC and NSC periods, around the 1970s, has served as the

starting point of many studies focusing on the influence of

global SSTA before and after that period (Mohino et al.,

2011; Rodríguez-Fonseca et al., 2011, 2015; Losada et al.,

2012) while being one of the motivations to create S4CAST.

The choice of the case study related to Sahelian rainfall

predictability is motivated by the following reasons: on the

one hand, SST in the tropical Atlantic is well known to

strongly influence the dynamics of the ITCZ (Fontaine et

al., 1998) which in turn determines the subsequent WAM.

Nevertheless, dynamical models do not reproduce the in-

fluence of SST on the ITCZ (Lin, 2007; Richter and Xie,

2008; Doi et al., 2012; Toniazzo and Woolnough, 2013) be-

coming the statistical prediction an alternative way to pre-

dict WAM variability. The second reason is related to the

non-stationary influence of the tropical Atlantic on Sahelian

rainfall reported in some studies (Janicot et al., 1996, 1998;

Ward, 1998; Rodríguez-Fonseca et al., 2011; Mohino et al.,

2011; Losada et al., 2012).

The second case study has served as a benchmark to cer-

tify the ability of the S4CAST model in the study of SSTA

predictability by the corroboration of the equatorial Atlantic

variability as predictor of ENSO. This is a recently discov-
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ered relationship (Rodríguez-Fonseca et al., 2009; Ding et

al., 2012; Polo et al., 2015) that has been found to be non-

stationary (Martín del Rey et al., 2014, 2015).

The application of moving correlation windows between

expansion coefficients obtained from MCA analysis results

in three periods of stationarity depending on the statistically

significant correlation: entire period (EP), significant correla-

tion period (SC) and no-significant correlation period (NSC).

For the case in which non-stationarity is considered, we re-

fer to EP period, assuming changes in co-variability patterns.

Stationarity is referred to SC and NSC periods. These peri-

ods may slightly vary depending on the type of moving cor-

relation windows: advanced, centered or delayed. Stationary

analysis to determine the three different work periods (SC,

NSC, EP) is limited to the selection of a single mode of co-

variability. When selecting a set of modes, the stationarity

analysis is not applied so that simulations are only developed

for EP period, whereby the whole time series is considered

for both the predictor and predictand fields.

Three conditions may enhance the degree of confidence in

a given predictor. The first has to do with the selection of

moving correlation windows (see Sect. 3.1.2) used to deter-

mine the working scenarios (SC, NSC, EP). Delayed moving

correlation windows can help in this task. Thus, if correla-

tion coefficients between the expansion coefficients (U and

V ) exhibit significant values for the present year and the pre-

vious 21 study years, greater confidence is assumed for the

predictor. The second condition is determined by the value

of the expansion coefficient (U ) for the current year so that

the higher its value, the better the forecast. The last condition

has to do with the percentage of variance explained by the se-

lected co-variability mode, the higher its value, the better the

forecast. Nevertheless, despite previous conditions, the influ-

ence of other remote and nearby oceanic predictors must be

considered in order to provide a full and reliable predictabil-

ity study.

So far, the data files used as predictor and predictand

fields correspond to observations and reanalysis from sev-

eral institutions. The use of new data files is simple and can

be performed according to user needs. The upgrade of data

files from respective websites must be checked periodically

to strengthen the results. In addition, it is also advisable to

launch the same simulations using different data files in or-

der to compare the results and assess the robustness of the

forecast. The results shown in this work for different selec-

tions have been verified by following these criteria.

The results obtained by using the S4CAST model put

forward the consideration of non-stationarity in the co-

variability patterns and therefore in climatic teleconnections.

Thus, it is important to determine the multidecadal modula-

tor of the interannual variability in order to know which pre-

dictor is the one affecting in particular periods and regions

(Rodríguez-Fonseca et al., 2015).

Code availability

The model consists of a software package organized in fold-

ers containing libraries, functions and scripts developed as

a MATLAB® toolbox from version R2010b onwards. Two

of the folders, named as mexcdf and netcdf_toolbox, corre-

sponds to libraries needed for working with NetCDF files and

have been downloaded from www.mexcdf.sourceforge.net

and built into the model. The file containing the model core

with the executable code is named S4core. Once the tool-

box has been added to the MATLAB® path and by sim-

ply typing “S4cast” in the command window, the user is

prompted to enter a number of input parameters required

to launch a simulation. The software package S4plot ded-

icated to plot figures has been added so that the user

can use this software by typing “figures” in the com-

mand window. Note that figures presented in this work

have been further improved manually. The code is open

access and can be downloaded from the Zenodo reposi-

tory (doi:10.5281/zenodo.15985) in the URL https://zenodo.

org/record/15985. To facilitate the execution of the model

leading to the results shown in this paper, used data files

that have been previously defined in Sect. 4, are included

in the directories /S4CAST_v2.0/data_files/predictand and

/S4CAST_v2.0/data_files/predictor. The second case study

requires NOAA ERSST as predictor and predictand. The

code has been thoroughly analyzed by using several data files

and input parameters. However, the emergence of software

bugs is not ruled out, being mostly associated with problems

to adapt and use NetCDF files. To solve these hypothetical

code bugs, please do not hesitate to contact authors.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-3639-2015-supplement.
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