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Abstract. Over the anthropocene methane has increased dra-

matically. Wetlands are one of the major sources of methane

to the atmosphere, but the role of changes in wetland emis-

sions is not well understood. The Community Land Model

(CLM) of the Community Earth System Models contains a

module to estimate methane emissions from natural wetlands

and rice paddies. Our comparison of CH4 emission observa-

tions at 16 sites around the planet reveals, however, that there

are large discrepancies between the CLM predictions and the

observations. The goal of our study is to adjust the model

parameters in order to minimize the root mean squared error

(RMSE) between model predictions and observations. These

parameters have been selected based on a sensitivity analysis.

Because of the cost associated with running the CLM simu-

lation (15 to 30 min on the Yellowstone Supercomputing Fa-

cility), only relatively few simulations can be allowed in or-

der to find a near-optimal solution within an acceptable time.

Our results indicate that the parameter estimation problem

has multiple local minima. Hence, we use a computationally

efficient global optimization algorithm that uses a radial basis

function (RBF) surrogate model to approximate the objective

function. We use the information from the RBF to select pa-

rameter values that are most promising with respect to im-

proving the objective function value. We show with pseudo

data that our optimization algorithm is able to make excel-

lent progress with respect to decreasing the RMSE. Using the

true CH4 emission observations for optimizing the parame-

ters, we are able to significantly reduce the overall RMSE

between observations and model predictions by about 50 %.

The methane emission predictions of the CLM using the op-

timized parameters agree better with the observed methane

emission data in northern and tropical latitudes. With the

optimized parameters, the methane emission predictions are

higher in northern latitudes than when the default parameters

are used. For the tropics, the optimized parameters lead to

lower emission predictions than the default parameters.

1 Introduction and motivation

Methane is the second most important greenhouse gas in

terms of radiative forcing (Myhre et al., 2013) and thus a

major concern regarding climate change. Natural wetlands

as well as human activities such as agriculture (for exam-

ple, rice cultivation) contribute to the methane emissions

(Ciais et al., 2013). The role of wetlands in the total bud-

get of methane, as well as in driving inter-annual variability

and changes in the methane growth rate is not well under-

stood (e.g. Bloom et al., 2010; Dlugokencky et al., 2011).

The Community Land Model (CLM), which is the land com-

ponent of the Community Earth System Model (CESM), is

equipped with a methane module that models methane emis-

sions (Meng et al., 2012; Riley et al., 2011). There are several

parameters in CLM related to the methane emission compu-

tations. The methane emissions estimated by the model are

sensitive to the exact parameter values although these param-

eters are not well known (e.g. Meng et al., 2012; Riley et al.,

2011; Wania et al., 2010). Riley et al. (2011) and Meng et al.

(2012) reported significant differences in model simulations

and observations in both site-level methane emissions and
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the global budget. One important source of uncertainty is as-

sociated with the parametrization since the methane module

has numerous parameters and they are yet to be identified

empirically due to the lack of field data (Riley et al., 2011).

In this study our goal is to use surrogate model optimization

techniques in order to adjust the methane-related parameters

of the CLM such that the differences between the simulated

and observed methane emissions at 16 sites around the globe

are minimized.

For computing an objective function value, we have to do

a computationally expensive simulation with CLM4.5bgc in

order to obtain the methane emission predictions at each ob-

servation site. CLM4.5bgc and related codes are determin-

istic models, i.e., the simulated CH4 emissions for a given

parameter set will always be the same whenever we run the

model for the same parameter set. In an optimization frame-

work where the goal is to find the best set of parameters to

minimize the objective function, one obstacle is the computa-

tion time that is needed to obtain a single objective function

value. Only a few hundred function evaluations can be al-

lowed in order to obtain a solution within a reasonable time.

Moreover, the objective function value must be computed by

running a simulation model, and thus an analytic description

of the objective function is not available (black-box). There-

fore, gradient information, which is important for many op-

timization algorithms, is not available. Due to the black-box

nature of the objective function, it is also not known whether

or not the objective function is convex and has only one lo-

cal minimum (which corresponds to the global minimum) or

if there are several local and global minima in the objective

function landscape.

These characteristics of the objective function (computa-

tionally expensive, black-box, possibly multi-modal) do not

allow the application of a gradient-based optimization algo-

rithm because, on the one hand, the derivatives would have

to be computed numerically (which may be inaccurate and

requires many expensive function evaluations), and, on the

other hand, gradient-based algorithms generally stop at a lo-

cal minimum if the initial guess is not close to the global

minimum.

For calibrating the parameters of other CLM modules,

Markov Chain Monte Carlo (MCMC) methods and Kalman

filters have been used in the literature (Lo et al., 2010; Pri-

hodko et al., 2008; Schuh et al., 2010; Solonen et al., 2012;

Sun et al., 2013; Tian et al., 2008; Turner et al., 2009; Zeng

et al., 2013). MCMC, however, requires generally thousands

of function evaluations (Ray and Swiler, 2014) and is thus

not applicable for obtaining solutions in an acceptable time

for computationally expensive problems. When using En-

semble Kalman Filters, assumptions about the underlying

parameter distributions must be made and generally a large

number of observations is necessary for the method to be

effective. Furthermore, evolutionary strategies such as sim-

ulated annealing, particle swarm, and differential evolution

methods have been used for parameter tuning in the climate

area (Yang et al., 2012, 2013). However, these methods gen-

erally require many function evaluations in order to obtain

good solutions.

Other methods that have recently gained interest for pa-

rameter tuning are based on data assimilation (see, for exam-

ple, Han et al., 2014; Moore et al., 2008). In order to produce

good parameter estimates, these methods require in general

many observations. In our optimization problem, however,

the number of observations at each site is very low (between

10 and 79 observations distributed over 1 to 3 years), and

thus data assimilation techniques are not suitable because

of the low number of observations. Ray and Swiler (2014)

use a computationally cheap surrogate for CLM on which

MCMC is used to reduce the number of costly simulations re-

quired during the optimization. In contrast to Ray and Swiler

(2014), we apply an adaptive surrogate model during the op-

timization. Instead of relying on a surrogate that is based only

on a limited number of initial sample points, we iteratively

improve our surrogate by incorporating new data (new ob-

jective function values) that become available during the op-

timization.

We use surrogate model based global optimization algo-

rithms because they have been shown to find near-optimal

solutions within a few hundred function evaluations for com-

putationally expensive multimodal black-box problems (Ale-

man et al., 2009; Giunta et al., 1997; Regis, 2011; Simp-

son et al., 2001). Surrogate models are used as computation-

ally cheap approximations of the objective function. During

the optimization, information from the surrogate model is

used to carefully select a new promising point in the vari-

able domain at which the computationally expensive objec-

tive function will be evaluated. The surrogate model is up-

dated throughout the optimization whenever new data are ob-

tained.

Several surrogate model algorithms have been developed

in the literature that use different surrogate model types. The

efficient global optimization algorithm by Jones et al. (1998),

for example, uses a kriging surrogate model and selects a new

sample point by maximizing an expected improvement func-

tion. Gutmann (2001) uses radial basis function (RBF) surro-

gate models to approximate the expensive objective function

and a new sample point is selected by minimizing a so-called

bumpiness measure. Regis and Shoemaker (2007, 2013) also

use RBF models and new function evaluation points are se-

lected by a stochastic method. Müller and Piché (2011) de-

veloped a framework for automatically computing ensembles

of various surrogate model types and Müller and Shoemaker

(2014) extended the study to investigate the influence of dif-

ferent sampling strategies on the solution quality. Here for

the first time we apply a state-of-the-art RBF surrogate opti-

mization algorithm to the problem of land surface emissions

of methane and describe the results. As far as we know, no

other groups have applied optimization techniques to find

better parameters for methane emission models, and thus
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our work represents an innovative approach to an important

land–atmosphere interaction.

The remainder of this paper is organized as follows. In

Sect. 2 we briefly describe the CLM and the configuration we

used for predicting the methane emissions and we give infor-

mation about the individual observation sites. We also pro-

vide the mathematical description of the optimization prob-

lem. In Sect. 3 we summarize the methane-related parameters

in CLM4.5bgc and show the results of a sensitivity analysis

with which we determined the parameters that are most im-

portant for the optimization. We describe the surrogate opti-

mization approach for solving the problem in Sect. 4. Sec-

tion 5 contains information about the setup of our numerical

experiments and we discuss the results of the optimization.

We draw conclusions in Sect. 6. The Appendix contains ad-

ditional information about the methane equations and the ob-

servation sites.

2 Model description, configuration, and mathematical

problem description

2.1 Model description

We used the Community Land Model Version 4.5 (CLM4.5),

a land component of the Community Earth System Model

(CESM) (Hurrell et al., 2013) which contains a detailed

biophysics, hydrology, and biogeochemistry representation

(Koven et al., 2013; Oleson et al., 2013). CLM4.5 is fully

prognostic with respect to the carbon and nitrogen state vari-

ables in the vegetation, litter, and soil organic matter, as well

as methane emissions (Koven et al., 2013; Thornton et al.,

2007, 2009) and it is the most updated version of the model

available.

We selected the latest version of CLM with improved bio-

geochemistry (CLM4.5bgc) over CLM4.0-CN. The major

improvements in CLM4.5bgc include the incorporation of

vertically resolved soil carbon dynamics, an alternate decom-

position cascade from the Century soil model, and a more de-

tailed representation of nitrification and denitrification based

on the Century nitrogen model (Koven et al., 2013). The hy-

drology of CLM4.5 has been improved to better represent

the hydraulic properties of frozen soils, perched water tables,

snow cover fraction, and lakes (Subin et al., 2012; Swenson

and Lawrence, 2012; Swenson et al., 2012).

In previous versions, simulation of ecosystem productivity

was too low in high latitudes and perhaps too high in low lat-

itudes (Thornton et al., 2007, 2009). However, CLM4.5bgc

has substantially increased the productivity in high latitudes,

which may be overpredicted (Koven et al., 2013).

We used a mechanistic methane emission model, which is

a module integrated in CLM4.5bgc (Meng et al., 2012; Ri-

ley et al., 2011). The model simulates the physical and bio-

geochemical processes regulating terrestrial methane fluxes

such as methane production, methane oxidation, methane

and oxygen transport through aerenchyma of wetland plants,

ebullition, and methane and oxygen diffusion through soil

(Riley et al., 2011). Meng et al. (2012) added constraints

on methane emissions such as the effects of redox potential

and soil pH to improve the predictions of methane emissions

as well as the ability to simulate satellite-derived inundation

fraction (Prigent et al., 2007; Ringeval et al., 2010).

The model has been compared to the limited site-level

observations of methane emissions (many of the sites have

very sparse spatial and temporal data coverage, and directly

measured climate forcing was unavailable at any of the

sites) (Meng et al., 2012; Riley et al., 2011). Additionally,

the model was compared with the results from three recent

global atmospheric inversion estimates of methane emissions

(Riley et al., 2011). In these comparisons, simulated emis-

sions agreed relatively well with the observed emissions at

some of the sites. However, there are considerable differ-

ences in seasonality and magnitude at other sites. The sim-

ulated patterns and magnitudes of annual-average methane

emissions are consistent with the results from atmospheric

inversion across most latitude bands. The limitations are dis-

cussed in Riley et al. (2011).

2.2 Model configuration and data

Although the land model can be used interactively within

CESM, we use it at specific points driven by appropriate me-

teorology (Oleson et al., 2013). At each site, we forced the

model with NCEP/NCAR’s reanalysis atmospheric forcing

data sets (Qian et al., 2006). These data sets include precipi-

tation, temperature, wind speeds, and solar radiation. We also

forced the model with transient atmospheric carbon dioxide

concentrations, aerosol deposition data, and nitrogen deposi-

tion data that are available in CLM4.5. Please note that this

model is a deterministic model, and thus will give the same

answer every time it is simulated when driven by observa-

tionally based data sets as done here.

In this study we used a total of six natural wetland sites and

ten rice paddy sites (see Tables B1 and B2 in Appendix B).

We chose the wetland sites from varying geographical re-

gions such as the tropics, mid-latitudes, and high-latitudes to

account for the zonal variability. We selected the rice paddy

sites such as to cover the major rice-growing regions with a

focus on Asia.

The water table depth is one of the critical factors for

methane emissions from natural wetlands because it deter-

mines the extent of anoxic and oxic soil zones where methane

is produced and oxidized, respectively (Bloom et al., 2010;

Grunfeld and Brix, 1999). Methane is produced in the wet-

lands from litter and dead vegetation remnants in anoxic con-

ditions. The changes in the water table position also influ-

ence the moisture conditions of the soil and therefore affect

the methane emissions. Here, we prescribed the measured

water table position at each wetland site (except Panama)

based on previous studies. Since the measured water table
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depths at Panama were not available, we used modeled water

table positions (similar to Walter and Heimann, 2000). For

the point simulations, the methane emissions were calculated

only from the saturated portion of the soil (i.e. below the wa-

ter table) when the water table is below the surface. The pre-

scribed water table depth is used in the methane model for

calculating anaerobic conditions, production, and oxidation.

Most of these wetland sites usually have peat soils with

varying depths underlain by mineral soil. We also forced each

wetland site with measured pH and a specific plant functional

type (PFT). The PFT reflects the phenological and physio-

logical characteristics of the vegetation (Oleson et al., 2013).

Since the wetland PFT was not available in CLM4.5, we

choose PFTs that are available in CLM4.5 and that closely

match the specific vegetation types of the individual sites.

We use C3 arctic grass for Salmisuo, C3 non-arctic grass for

Alberta, Michigan, and Minnesota, and C4 grass for Florida

and Panama. Other surface data required to perform the point

simulation include soil color and soil texture which we ex-

tracted from the global grid data sets available in CLM4.5.

For the point simulations at the rice paddy sites we

only considered the rice growing season. The flooding and

drainage dates are shown in Table C1 in Appendix C. We as-

sumed that the fields were submerged during the simulation

period between initial flooding and final drainage. A com-

mon feature of these sites during the growing season is that

the water was not drained until harvest. We prescribed the

C3 crop PFT for all rice paddy sites, and assumed an optimal

pH for the methane production whenever the pH value was

not available. The dominant soil types at these sites are loam

and clay. Other soil-related information such as soil color and

texture are derived from the global grid data sets.

To bring the terrestrial carbon and nitrogen cycles close

to steady-state conditions, we spun up both wetland and rice

paddy sites for 1850 conditions (atmospheric CO2 concentra-

tions, nitrogen deposition, aerosol deposition, and land use)

driven by a repeating 25-year subset (1948–1972) of the me-

teorological forcing data for more than 2000 years. Then, we

performed transient simulations from 1850 to the simulation

starting year of each site to generate the initial conditions file.

Additionally, we conducted global simulations of methane

emissions from natural wetlands for 1993–2004. For these

simulations, the grid cell averaged methane emissions were

considered which accounts for methane emissions from both

the inundated and non-inundated portion of the grid cell.

Since the CLM4.5 simulated saturated fraction (an index of

inundation) was substantially greater than the estimates from

satellite observations and did not match the spatio-temporal

pattern of variability (Riley et al., 2011), we prescribed the

model with inundation fraction derived from multi-satellite

observations for 1993–2004 (Prigent et al., 2007). Similar

to point simulations, the global simulations were forced with

NCEP/NCAR reanalysis atmospheric forcing data from 1948

to 2004 (Qian et al., 2006). The simulations were also spun

up to steady-state conditions driven by atmospheric CO2,

nitrogen deposition, aerosol deposition, and land use in the

year 1850 and a repeated 25-year (1948–1972) subset of the

meteorological forcing.

2.3 Mathematical problem formulation

The goal of our study is to improve the methane emission

predictions of CLM4.5bgc by tuning the methane-related pa-

rameters such that the model better fits the observations. We

use the CH4 emission observation data for the locations and

observation periods shown in Tables B1 and B2. Given the

observation data at the M = 16 locations, the goal is to min-

imize the root mean squared errors (RMSEs) between the

CLM4.5bgc methane emission predictions and the observa-

tions at each site simultaneously. In order to tackle the prob-

lem, we formulate it such that we minimize the weighted sum

of the RMSEs as follows:

minf (x)=

M∑
i=1

wiri(x) (1a)

s.t. −∞< xlk ≤ xk ≤ x
u
k <∞, k = 1, . . .,d, (1b)

where d denotes the problem dimension (the number of opti-

mization parameters), and xlk and xuk are the lower and upper

bounds of variable xk , respectively. The RMSE

ri(x)=

√√√√ 1

Ni

Ni∑
j=1

[
Oi,j − Si,j (x)

]2
, i = 1, . . .,M, (2)

is computed for each location i. Ni is the number of obser-

vations available at location i, Oi,j denotes the j th methane

emission observation at location i, and Si,j denotes the cor-

responding methane emission predicted by CLM4.5bgc. The

weights wi are computed based on the means of the CH4

emissions at the observation locations as follows. Denote

ai =
1

Ni

Ni∑
j=1

Oi,j (3)

the mean CH4 emission at location i, i = 1, . . .,M . The

weight wi for the ith location is then defined by

wi =
gi∑M
i=1gi

, (4)

where

gi =
maxi=1,...,Mai

ai
, (5)

where it is assumed that ai > 0 for all i. The goal is to give

each location approximately equal influence in the weighted

sum of RMSEs, i.e., we assign locations with large mean

CH4 values small weights such that these locations have ap-

proximately the same influence on the weighted sum as lo-

cations with low emissions. Otherwise, locations with large
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Table 1. CH4 related parameters in CLM4.5bgc and their upper and lower bounds xu
k

and xl
k
, respectively, and the default parameter values

vk .

Parameter ID Parameter name xl
k

xu
k

vk

1 Q10CH4 1 4 1.33

2 F_CH4 0.1 0.4 0.26

3 REDOXLAG 15 45 30

4 OXINHIB 200 600 400

5 PHMAX 8 10 9

6 PHMIN 2 4 2.2

7 VMAX_CH4_OXID 1.25× 10−6 1.25× 10−4 1.25× 10−5

8 K_M 0.0005 0.05 0.005

9 K_M_O2 0.002 0.2 0.002

10 Q10_CH4OXID 1 4 1.9

11 K_M_UNSAT 0.00005 0.005 0.0005

12 VMAX_OXID_UNSAT 1.25× 10−7 1.25× 10−5 1.25× 10−6

13 SCALE_FACTOR_AERE 0.2 2 1

14 NONGRASSPOROSRATIO 0.2 0.5 0.33

15 POROSMIN 0.01 0.2 0.05

16 ROB 2 4 3

17 UNSAT_AERE_RATIO 0.1 0.25 0.1667

18 VGC_MAX 0.05 0.3 0.15

19 SCALE_FACTOR_GASDIFF 1 5 1

20 ATMCH4 1.7× 10−7 1.7× 10−5 1.7× 10−6

21 MINO2LIM 0.1 0.3 0.2

emissions would dominate the sum (1a) because their RM-

SEs would accordingly be larger. In that case the optimiza-

tion would be driven by minimizing the RMSE of the site(s)

with the largest emissions. There are also other methods of

how wi could be determined. In the numerical experiments,

we will investigate also the possibilities of assigning equal

weights to each observation site and assigning weights de-

rived from grouping the observation sites into zones. Another

possibility would be to apply clustering algorithms in order

to determine groups of observation sites with similar char-

acteristics. For this possibility, however, different clustering

methods and different numbers of desired clusters will lead

to different groups and different weight adjustments. Lastly,

the problem could be formulated as multi-objective optimiza-

tion problem, for example, with 16 objectives and the goal

of minimizing each observation site’s RMSE individually, or

as bi-objective optimization problem by minimizing the sum

of the weighted RMSE values of northern and southern lo-

cations at the same time. However, each objective function

evaluation is very expensive, and thus the number of evalu-

ations that can be done to obtain the Pareto front in a multi-

objective setting is limited. Our focus is on demonstrating

that single objective global optimization analysis is useful in

identifying reasonable parameter values.

3 Methane-related parameters in CLM4.5bgc and

sensitivity analysis

CLM4.5bgc has 21 parameters related to the methane emis-

sion predictions. The parameter names, their upper and lower

bounds, and default values are shown in Table 1. The upper

and lower bounds have been derived based on reported val-

ues in the literature (see Table C1 in Appendix C). How these

parameters are used in the model is detailed in Riley et al.

(2011) and Meng et al. (2012) and we repeat the important

equations in Appendix A. The default parameter values vk
are available in the CLM4.5bgc (see Table 1).

Optimization problems become increasingly more com-

plex and difficult to solve as the number of parameters in-

creases (curse of dimensionality). Thus, we determine first

which of these 21 parameters are the most sensitive and thus

the most important for the optimization. By sensitive we re-

fer to parameters that when changed slightly lead to a signif-

icant change in emission predictions. Insensitive parameters,

on the other hand, can be changed and do not (or compara-

tively only very mildly) change the emission predictions and

can thus be excluded from the optimization, which decreases

the problem dimension.

We conducted analyses for each observation site in which

we investigated to which of these 21 parameters the methane

emission predictions of CLM4.5bgc are the most sensitive.

We altered the value of each parameter k = 1, . . .,d by, re-

spectively, adding and subtracting 20 % of the variable range

www.geosci-model-dev.net/8/3285/2015/ Geosci. Model Dev., 8, 3285–3310, 2015
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Table 2. Parameters that are sensitive for most observation sites (out

of 16).

Parameter Parameter # sensitive

ID name sites

1 Q10CH4 16

2 F_CH4 16

7 VMAX_CH4_OXID 16

13 SCALE_FACTOR_AERE 16

9 K_M_O2 15

15 POROSMIN 14

16 ROB 11

8 K_M 10

17 UNSAT_AERE_RATIO 10

10 Q10_CH4OXID 9

21 MINO2LIM 9

and we recorded the absolute change in emission predictions,

i.e. we ran CLM4.5bgc with perturbed parameter values

(a) xk =min{vk+0.2(xuk−x
l
k),x

u
k }, ∀k = 1, . . .,d when in-

creasing vk for 20 %, and

(b) xk =max{vk − 0.2(xuk − x
l
k),x

l
k}, ∀k = 1, . . .,d when

decreasing vk for 20 %

for each parameter separately.

There are several parameters that are relatively important

to the sensitivity test for all 16 observation sites, but there

are also parameters that are important for some locations and

less important for others. Tables 2 and 3 show the sensitive

and insensitive parameters together with the number of lo-

cations (out of 16) for which these parameters are important

and unimportant, respectively. Thus, in the optimization we

consider only the parameters in Table 2 since these param-

eters are the most important at most locations. Please note

that, due to (nonlinear) relationships between the parame-

ters, for many parameters the effects of individual param-

eters will be opposite but act in a similar manner, indicat-

ing that some parameters may be difficult to optimize for. In

order to limit the number of parameters we consider, while

allowing for the largest range in behavior, we combine in-

formation from the sensitivity study with information about

the methane flux equations themselves (described in more

detail in Appendix A). The most important parameters from

the sensitivity study come from the dominant three terms in

the methane flux equation, which are production (parame-

ters 1, 2, and 21), oxidation (parameters 7, 8, 9, and 10), and

aerenchyma transport (parameters 13, 15, 16, and 17). The

first four parameters chosen are also the most important pa-

rameters at all 16 sites (see Table 2). Because production is

the most important term, there are two parameters from pro-

duction that the sensitivity studies indicate are the most im-

portant, namely one that controls globally the methane pro-

duction flux (F_CH4, parameter 2), and one term that con-

trols the temperature dependency of the methane production

Table 3. Parameters that are least sensitive for observation sites (out

of 16).

Parameter Parameter # insensitive

ID name sites

3 REDOXLAG 16

4 OXINHIB 16

5 PHMAX 16

6 PHMIN 16

14 NONGRASSPOROSRATIO 16

18 VGC_MAX 16

20 ATMCH4 15

11 K_M_UNSAT 13

19 SCALE_FACTOR_GASSDIFF 13

12 VMAX_OXID_UNSAT 10

(Q10CH4, parameter 1). Another parameter that influences

methane at all the sites comes from the oxidation equation

(VMAX_CH4_OXID, parameter 7), and the final parameter

that is important at all 16 sites is the parameter controlling

the aerenchyma transport (SCALE_FACTOR_AERE, param-

eter 13). The above four parameters are the most sensitive

parameters, and thus are easy to choose, as well as cover

most of the important processes we want to investigate. For

the last parameter, we include one parameter that controls

how inundation affects methane production (MINO2LIM, pa-

rameter 21). Inundation is an important process for control-

ling methane flux, since there is an order of magnitude more

methane coming from wet areas than dry, and thus having

one parameter which changes the model’s sensitivity to in-

undation is appropriate.

4 Surrogate models and surrogate model algorithms

4.1 Surrogate models

Surrogate models are used in optimization algorithms that

aim to solve computationally expensive black-box problems.

Surrogate models serve as computationally cheap approxi-

mations of the expensive simulation model (Booker et al.,

1999), i.e., f (x)= s(x)+ e(x), where f (·) denotes the true

expensive objective function, s(·) denotes the computation-

ally inexpensive surrogate model, and e(·) denotes the dif-

ference between both. Surrogate models are used throughout

the optimization to guide the search for promising solutions.

The computationally expensive objective function is evalu-

ated only at few selected points, and thus it is possible to find

near-optimal solutions with only very few expensive function

evaluations.

There are different surrogate model types such as ra-

dial basis functions (RBFs) (Gutmann, 2001; Müller et al.,

2013; Powell, 1992; Regis and Shoemaker, 2007, 2009;

Wild and Shoemaker, 2013), kriging (Davis and Ierapetri-

tou, 2009; Forrester et al., 2008; Jones et al., 1998; Simp-
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son et al., 2001), polynomial regression models (Myers and

Montgomery, 1995), and multivariate adaptive regression

splines (Friedman, 1991). There are also mixture models

(also known as ensemble models) that exploit information

from several different surrogate model types (Goel et al.,

2007; Müller and Piché, 2011; Müller and Shoemaker, 2014;

Viana et al., 2009). In general any type of surrogate model

may be used in a surrogate model optimization algorithm. In

this study, we use RBFs because they have been shown to

perform better in comparison to other surrogate model types

(Müller and Shoemaker, 2014).

An RBF interpolant is defined as follows:

s(x)=

n∑
ι=1

λιφ(‖x− xι‖)+p(x), (6)

where φ(τ)= τ 3 denotes the cubic radial basis function

whose corresponding polynomial tail is linear (p(x)= b0+

bT x), and xι, ι= 1, . . .,n, denotes the points at which the

objective function has already been evaluated. The parame-

ters λι ∈ R, ι= 1, . . .,n, and the parameters b0 ∈ R and b=

[b1, . . .,bd ] ∈ Rd are determined by solving the following

linear system of equations:[
8 P

PT 0

][
λ

c

]
=

[
F

0

]
, (7)

where8ιν = φ(‖xι−xν‖), ι,ν = 1, . . .,n, 0 is a matrix with

all entries 0 of appropriate dimension, and

P=


xT1 1

xT2 1
.
.
.

.

.

.

xTn 1

 , λ=


λ1

λ2

.

.

.
λn

 c=


b1

b2

.

.

.
bd
b0

 , F=


f (x1)
f (x2)
.
.
.

f (xn)

 . (8)

The matrix in Eq. (7) is invertible if and only if rank(P)=

d + 1 (Powell, 1992).

4.2 Surrogate global optimization algorithm

Surrogate global optimization algorithms follow in general

the steps shown in Algorithm 1.

We use the DYCORS algorithm by Regis and Shoemaker

(2013) for the optimization of the methane-related param-

eters of CLM4.5bgc. The reader is referred to this publi-

cation for the details of the algorithm. Since the param-

eters have significantly different ranges (see Table 1), we

scale all parameters to the interval [0,1] when selecting

new sample sites. When doing the computationally expen-

sive CLM4.5bgc simulations, we scale the parameters back

to their original ranges. Thus, the perturbation radius used in

DYCORS is the same for each variable.

We create a symmetric Latin hypercube initial experimen-

tal design with 2(d + 1) points and run CLM4.5bgc at the

selected parameter vectors in order to compute the objec-

tive function values. We then fit the cubic RBF model to

Algorithm 1 General surrogate global optimization algo-

rithm

1: Select points from the variable domain to create an initial ex-

perimental design.

2: Do the expensive objective function evaluations (here the

CLM4.5bgc simulations) at the points selected in Step .

3: Fit the surrogate model (here the RBF model) to the data from

Steps and .

4: Use the information from the surrogate model to select the new

evaluation point xnew.

5: Do the expensive evaluation at xnew: fnew = f (xnew) (here,

run CLM 4.5bgc for the parameter input vector xnew).

6: if Stopping criterion is not met (the maximum number of al-

lowed function evaluations has not been reached) then

7: Update the surrogate model and go to Step .

8: else

9: Return the best solution found during the optimization.

10: end if

the data and generate two sets of candidate points for the

next expensive function evaluation (the next CLM4.5bgc run

at the 16 sites). The first set of candidate points is gener-

ated as described by Regis and Shoemaker (2013) by ran-

domly perturbing the best point found so far. The second set

of candidate points is generated by uniformly selecting ran-

dom points from the whole variable domain. Thus, we create

twice as many candidate points as DYCORS. The goal of us-

ing uniformly random points from the whole variable domain

is to obtain candidates that are far away from the best point

found so far, and hence if selected as a new evaluation point,

the search is more global (exploration by function evaluation

at points that are far away from already sampled points).

We use the same criteria as in DYCORS for determining

the best candidate point (using the RBF approximation to

predict the objective function values at the candidate points,

compute the distance of the candidate points to the set of

already sampled points, and compute a weighted score of

these two measures where the weights cycle through a pre-

defined pattern). In order to guarantee that the matrix in

Eq. (7) is well-conditioned, we ensure (as done in Regis and

Shoemaker, 2013) that the sample points are sufficiently far

away from previously evaluated points by discarding candi-

date points that are closer than a given threshold distance to

previously evaluated points. We run CLM4.5bgc at each of

the 16 observation sites using the one newly selected sam-

ple point as input parameter vector to obtain the correspond-

ing objective function value. We update the RBF model with

the new data and iterate until we have reached the maximum

number of allowed function evaluations.

5 Numerical experiments

In this section we discuss the setup and results of the numer-

ical experiments. In a first set of experiments (pseudo data
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case), we generate synthetic (pseudo) data and treat it as if it

were the real measurement data in order to assess how well

our optimization approach performs. For these experiments

we know the optimal solution. In the second set of experi-

ments (real data case), we use the measured methane emis-

sion data and apply the optimization algorithm. The goal in

the second set of experiments is to find a parameter set that

reduces the objective function value (the weighted RMSE

in Eq. 1a) from its default value (the RMSE when using

CLM4.5bgc’s default parameter settings, see also Table 1,

column vk). Finally, we run CLM4.5bgc globally with the

best set of parameters found during the optimization of the

real data case and investigate how much the default model

predictions and the model predictions with the optimized pa-

rameter values differ from each other.

We did experiments with d = 5 and d = 11 parameters re-

spectively. For the d = 5 experiments, we used parameters 1,

2, 7, 13, and 21 (Table 2). Thus, we have parameters related

to three types of CH4 emission, namely oxidation (parame-

ter 7), aerenchyma (parameter 13), and production (parame-

ters 1, 2, 21). For the 11-parameter optimization, we used all

variables shown in Table 2.

For each set of experiments we ran the optimization algo-

rithm three times in order to examine the influence of the ran-

dom component in the algorithm (random initial experimen-

tal design and random generation of candidate points). We

allowed 800 function evaluations for the five-dimensional

problem and 1000 evaluations for the 11-dimensional prob-

lem. The question of how many function evaluations need

to be performed in order to obtain a fixed level of solution

accuracy is problem dependent. For computationally expen-

sive optimization problems, such as the problem we consider

here, the time for evaluating the objective function and the

totally available time for obtaining a solution usually defines

how many evaluations can be done with any algorithm. Re-

sults for many difficult computationally expensive optimiza-

tion problems (for example, problems with multiple local

minima) indicate that surrogate global optimization methods

can usually obtain more accurate results compared to non-

surrogate methods with the same limited number of evalua-

tions (see, for example, Mugunthan et al., 2005). It is a very

difficult problem to find the best values of the parameters for

climate models, and the more evaluations one does, in gen-

eral the better the answer.

The weights wi in Eq. (1a) were for the pseudo data case

computed based on the pseudo observations (see Sect. 5.1) at

each of the 16 sites at the same dates for which we also have

real measurements. For the real data case, the weights were

computed based on the actual measurements. The weights

are given in Table D1 in Appendix D.

Solving problem (1a) requires running CLM4.5bgc for

each input vector x of parameter values and for each of

the 16 observation sites. We run CLM4.5bgc on the Yellow-

stone Supercomputing Facility (Computational and Informa-

tion Systems Laboratory, 2012). Each simulation at a single
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Figure 1. Progress plot that shows the development of the best ob-

jective function value found vs. the number of function evaluations

for the pseudo data case with d = 5 parameters for optimization tri-

als T1, T2, and T3. The legend shows the lowest RMSE value found

in each trial.

location takes between 15 and 30 min. We do the simulations

for the 16 sites in parallel in order to speed up the objective

function evaluation time.

5.1 Pseudo data case

We assessed the performance of the optimization algorithm

by investigating how well the algorithm could find the model

parameters that were used for creating the pseudo data. For

this purpose, we ran CLM4.5bgc with default parameter val-

ues vk,k = 1, . . .,d, at all 16 sites for the same time span for

which we also have observation data (see Tables B1 and B2

in Appendix B) and we record the model’s predictions for the

same dates at which the methane emissions were measured.

We use this as our pseudo observation data that we want to

match in the optimization, i.e., the goal of the optimization

is to start from a set of parameter vectors that is different

from the default parameter values and to recover the default

parameter values by optimization. For the default parameter

values, the objective function value will be zero, which is the

global minimum of the pseudo data case.

5.1.1 Results for d = 5

Figure 1 shows the progress plots of the three optimization

trials T1, T2, and T3. Illustrated is the development of the

best objective function value found within the given number

of function evaluations (horizontal axis). The fewer evalua-

tions needed for reducing the objective function value, the

better. The plot shows that the objective function value is re-

duced significantly in each of the three trials from a value of

over 30 to about 5 within less than 150 function evaluations

and close to zero towards the end of the optimization. Ta-

ble 4 shows the best parameter values found during each of

the three optimization trials together with the default parame-

ter values. The table shows that the RMSE after 800 function

evaluations is not exactly zero (which can be expected from
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Table 4. Default and optimized parameter values of optimization

trials T1, T2, and T3 for the five-dimensional pseudo data case. We

report four decimal places because the model output is sensitive

to very small changes for some variables. Note that we scaled the

numbers to the interval [0,1].

Param. Default T1 T2 T3

1 0.1100 0.1088 0.1099 0.1091

2 0.5333 0.5366 0.5385 0.5458

7 0.0909 0.0912 0.0943 0.0967

13 0.4444 0.4461 0.4454 0.4443

21 0.5000 0.4936 0.4934 0.4856

RMSE 0 0.28 0.46 0.40

an approximation method), but the default parameter values

are matched closely.

5.1.2 Results for d = 11

Figure 2 shows the objective function value development

as the number of function evaluations increases for the 11-

dimensional case for the three trials T1, T2, and T3. The fig-

ure shows a rapid decrease of the objective function value

from over 50 to less than 10 within 100 evaluations, which

shows that the surrogate model algorithm is very efficient at

finding improved solutions. Although the objective function

value improvement over the following function evaluations

is lower, we can see that the algorithm still makes progress

and if we allowed more than 1000 evaluations, the objective

function value would be further improved (which also fol-

lows from the global convergence property of the DYCORS

algorithm).

Table 5 shows the parameter values of the best of the three

trials (T3) together with the default parameter values and the

variable vector CP that was evaluated during the optimization

and that has a worse objective function value than the best

solution, but that is closer to the default parameter values.

This point has the same parameter values as T3 for all but two

parameters, namely, parameters 10 (Q10_CH4OXID) and 21

(MINO2LIM), which we indicate by bold numbers. For these

two parameters, the point CP is closer to the global optimum,

but it has a worse objective function value. This indicates a

multimodality of the objective function (getting closer to the

true global minimum requires an increase in the objective

function value, i.e., the algorithm has to escape from a local

basin of attraction). This multimodality makes the search for

the global optimum significantly more difficult.

In order to examine the impact of the differences between

default and optimized parameter values on the model predic-

tion, we use the best parameter vector of each trial and plot

the corresponding CH4 emission predictions against the pre-

dictions when using the default parameter values in Figure 3.

We can see that although we do not exactly match the default

parameter values, the model’s predictions when using the op-
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T1 min RMSE: 3.62
T2 min RMSE: 5.25
T3 min RMSE: 2.28

Figure 2. Progress plot that shows the development of the best ob-

jective function value found vs. the number of function evaluations

for the pseudo data case with d = 11 parameters for optimization

trials T1, T2, and T3. The legend shows the lowest RMSE value

found in each trial.

Table 5. Default and optimized parameter values of optimization

trial T3 and parameter values for the point CP that was sampled

during the same optimization trial and that is closer to the default

point, but that has a worse objective function value (11-dimensional

pseudo data case). Bold numbers indicate the parameters for which

CP is closer to the default value than T3 (but CP has a worse objec-

tive function value).

Param. Default T3 CP

1 0.1100 0.1148 0.1148

2 0.5333 0.5806 0.5806

7 0.0909 0.1336 0.1336

8 0.0909 0.1785 0.1785

9 0.0909 0.1248 0.1248

10 0.3000 0.4375 0.4302

13 0.4444 0.7107 0.7107

15 0.2105 0.1778 0.1778

16 0.5000 0.9583 0.9583

17 0.4444 0.2740 0.2740

21 0.5000 0.4436 0.4583

RMSE 0 2.28 2.35

timized parameters are very close to the predictions when us-

ing the default parameter values (all points in the scatter plot

lie close to or on the dashed line which represents agreement

of default and optimized predictions). As also reflected in the

best RMSE value reported in the legend, T3 matches the de-

fault data best and T2 has the largest differences.

This result indicates that the calibration problem is not

“identifiable” for all parameter sets, indicating that more than

one parameter set can give a very similar result in terms

of the objective function value. For example, for the model

y = α
β
x+ γ , there are many combinations of values for α

and β that lead to the same value of y as long as α = κβ for
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Figure 3. CLM4.5bgc CH4 predictions when using the default pa-

rameter values vs. the predictions when using the best solution

found in each of the three optimization trials T1, T2, and T3, re-

spectively, for the pseudo data case with d = 11 parameters. The

legend shows the lowest RMSE value found in each trial.

some constant κ . With only five parameters as described in

the previous section, the parameter values obtained from the

optimization did match very closely with those of the default

case used to create the pseudo data, and thus with this small

set of parameters the problem was identifiable. However, for

11 parameters, we did encounter the identifiability problem.

In some disciplines such parameters are called “hidden”. For

example, estimating α and γ in the previous example with

y = α
β
x+γ when β is given would be identifiable. However,

estimating α, β, and γ is no longer identifiable.

It would be desirable to have an identifiable model, but the

CLM (and probably other climate modules) have a number of

interacting parameters and multiplicative nonlinearities, and

thus there is no guarantee that all parameters are identifiable.

This is reinforced by the data in Table 5, which indicates that

the surface over which the optimization algorithm searches in

the 11 parameter case is multi-modal, i.e., there are multiple

local minima and it is possible for two (or more) parameter

sets to yield the same objective function value (here RMSE).

Hence the inability of the optimization to find the exact set

of parameters that was used for generating the pseudo data

is a problem caused by the complexity and multiplicative

nonlinearities of the CLM model, not by the choice of the

optimization method. However, the optimization analysis for

both pseudo data cases (with 5 and 11 parameters, respec-

tively) shows that the chosen optimization method is able to

find a set of parameter values that has a low prediction error.

The multi-modality in Table 5 does indicate the need for a

global (not a local) optimization method.

5.2 Real data case

In the real data case, we use the actual methane emission

measurements at each of the 16 observation sites for com-
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Figure 4. Progress plot that shows the development of the best ob-

jective function value found vs. the number of function evaluations

for the real data case with d = 5 parameters for optimization tri-

als T1, T2, and T3. The legend shows the lowest RMSE value found

in each trial. The first function evaluation (left side of the graphs)

corresponds to the RMSE when using the default parameters.

puting the objective function value. Since we only have very

few observations for each site and no information about mea-

surement errors, we did not exclude any of the measurements

from the optimization although there might be outliers. Also

for the real data case we examine the case for d = 5 and

d = 11 variables.

5.2.1 Results for d = 5

The progress of the development of the objective function

value for the three trials T1, T2, and T3, respectively, is il-

lustrated in Fig. 4 which also shows in the legend the lowest

RMSE value found in each of the three trials. The RMSE was

efficiently reduced from over 155 to below 115 within the

first 150 function evaluations. Thereafter the objective func-

tion value improvement was at a significantly lower rate. All

three trials return a solution with approximately the same ob-

jective function value.

The parameter values of the best solutions found in the

three trials are shown in Table 6 where also the default pa-

rameter values are given for comparison. We can see that

the three optimized solutions are approximately the same and

significantly different from the default case. We can also see

that three of the five optimized parameter values are on or

very close to the boundary of the variable domain (shown

in bold), indicating that improvements of the objective func-

tion value may be possible by increasing the parameter range.

However, it is not possible due to physical constraints and at

this point, we do not have information about possible wider

parameter ranges than the ones we used in this study.

Figures 5 and 6 show the CH4 emission predictions of

CLM4.5bgc when using the default and the optimized pa-

rameter values for two selected observation sites (one wet-
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Table 6. Default and optimized parameter values of optimization

trials T1, T2, and T3 for the five-dimensional real data case. Bold

indicates optimized parameters that are on (or close to) the variable

boundary (all variables are scaled to [0,1]).

Param. Default T1 T2 T3

1 0.1100 0 0 0

2 0.5333 0.1705 0.1747 0.1699

7 0.0909 0.7878 0.7518 0.7865

13 0.4444 0 0 0.0267

21 0.5000 1 1 1

RMSE 156.40 114.24 114.11 114.24
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Figure 5. CH4 emission observations and predictions when using

the optimized parameters of optimization trials T1, T2, and T3, re-

spectively, and when using the default parameters for the wetland

site Alberta, Canada, for the real data case with d = 5 parameters.

The legend shows the lowest RMSE value found in each trial.

land and one rice paddy site) together with the actual obser-

vation data. The legends show the associated RMSE value

before applying the weights for computing (Eq. 1a). We can

see that the optimized solution actually worsens the predic-

tions for Alberta (the RMSE value with default parameters

is about 209 and with optimized parameters, the value is

about 221, which is about 6 % worse). For Central Java, on

the other hand, the RMSE values of the optimized solutions

are significantly better than for the default values (the de-

fault RMSE is about 221 and the optimized RMSE values

are about 48, which is an improvement of over 350 %). In

both figures we can also see that despite the large differences

between optimized and default parameter values, the trend

in the predictions of CLM4.5bgc is the same, i.e., when the

predicted CH4 emissions with default parameters increase so

do the predicted emissions when using the optimized param-

eters and vice versa.
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Figure 6. CH4 emission observations and predictions when using

the optimized parameters of optimization trials T1, T2, and T3, re-

spectively, and when using the default parameters for the rice paddy

site Central Java, Indonesia, for the real data case with d = 5 param-

eters. The legend shows the lowest RMSE value found in each trial.
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Figure 7. Progress plot that shows the development of the best ob-

jective function value found vs. the number of function evaluations

for the real data case with d = 11 parameters for optimization tri-

als T1, T2, and T3. The legend shows the lowest RMSE value found

in each trial. The first function evaluation (left side of the graphs)

corresponds to the RMSE when using the default parameters.

5.2.2 Results for d = 11

Figure 7 shows the progress plots for each of the three trials

together with the best objective function values found (leg-

end) for the 11-dimensional case. The best objective func-

tion value found is about equal for each of the three trials.

The figure shows that in each trial the algorithm is able to

efficiently reduce the objective function value within the first

200 function evaluations. The improvement after 200 func-

tion evaluations is significantly slower.

Table 7 shows the parameter values of the best solution

found in each of the three trials and the default parameter

values. The table shows that for some parameters, for exam-
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Table 7. Default and optimized parameter values of optimization

trials T1, T2, and T3 for the 11-dimensional real data case. Bold

indicates optimized parameters that are on the variable bound (all

variables are scaled to [0,1]).

Param. Default T1 T2 T3

1 0.1100 0 0 0

2 0.5 333 0.4220 0.3298 0.3813

7 0.0909 0.7093 0.6889 0.7260

8 0.0909 1 1 0.9754

9 0.0909 0 0.2335 0.6971

10 0.3000 0.7702 0.6195 0.6195

13 0.4444 1 1 0.8063

15 0.2105 0.6987 1 1

16 0.5000 0.0865 0.4274 0.2473

17 0.4444 0.8543 0.3113 0.5359

21 0.5000 0.5064 0.7449 0.5586

RMSE 164.46 107.24 107.58 107.41

ple, parameters 1, 7, and 8, all trials lead to approximately

the same values (which are different from the default param-

eter values). For the remaining parameters, the values cor-

responding to the best solution found differ significantly for

each trial and differ also from the default parameter values.

Also for the 11-dimensional problem, some parameter values

corresponding to the best solution found are on the upper or

lower boundary of the parameter range (for example, param-

eters 1, 8, 13, 15, indicated in bold).

Since all three solutions have approximately the same ob-

jective function values, but the points differ greatly, it is

an indicator that we either have a multi-modal surface in

which some minima assume approximately the same objec-

tive function values, or we have a very flat valley in which

many points assume similar objective function values. Both

possibilities make it very difficult for gradient-based opti-

mization algorithms to find the global optimum. In the first

case, the optimization algorithm will get trapped in a local

optimum if it is not started close to the global minimum. In

the second case, the gradient-based algorithm would require

many function evaluations because many steps and gradient

computations are necessary due to a very small step size. The

surrogate optimization algorithm overcomes this problem.

Table 8 shows the unweighted RMSE values (before ap-

plying the weights in Eq. (1a) for computing the objective

function value) between observations and simulations using

the default parameters (column 5), the best parameters of op-

timization trial T1 of the 11-dimensional case (column 4),

and the best parameters of trial T2 of the 5-dimensional

case, respectively. The table shows that with our optimiza-

tion we were able to decrease the default RMSE for four

sites in the 5-dimensional case and for six sites in the 11-

dimensional case. The RMSE is lower at seven sites for the

11-dimensional case than for the 5-dimensional case. Since

we minimized a weighted sum of all RMSE values, it can
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Figure 8. CH4 emission observations and predictions when using

the optimized parameters of optimization trials T1, T2, and T3, re-

spectively, and when using the default parameters for the wetland

site Alberta, Canada, for the real data case with d = 11 parameters.

The legend shows the lowest RMSE value found in each trial.
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Figure 9. CH4 emission observations and predictions when using

the optimized parameters of optimization trials T1, T2, and T3, re-

spectively, and when using the default parameters for the rice paddy

site Central Java, Indonesia, for the real data case with d = 11 pa-

rameters. The legend shows the lowest RMSE value found in each

trial.

be expected that the RMSE at some locations may be worse

for the optimized case than for the default case. We can see

that for two of the improved sites (Java and Cuttack), the im-

provement is very large, and thus the overall RMSE of the

optimized solution is lower than for the default parameters.

Figures 8 and 9 show the observed CH4 emissions, the

predictions with the default parameter values, and the pre-

dictions using the optimized parameter values for Alberta

(Canada) and Central Java (Indonesia). For both sites we can

see that the predictions with the optimized parameters have

lower RMSEs than when using the default parameter values

(note that the reported RMSEs in the legend are not weighted

as done in Eq. 1a). For Central Java, for example, the opti-
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Table 8. Unweighted RMSE values for each site using the best parameters found during optimization trial T1 of the d = 11 real data case

and trial T2 of the d = 5 real data case and with default parameter values.

Site Name Unweighted RMSE Unweighted RMSE Unweighted RMSE

d = 5 d = 11 default

1 Alberta 220.34 203.82 209.25

2 Florida 1247.70 1280.29 1180.99

3 Michigan 334.01 337.51 328.10

4 Minnesota 41.05 35.16 34.31

5 Nanjing 97.88 96.14 212.18

6 Vercelli 325.34 326.04 293.36

7 Texas 179.21 139.09 116.85

8 Japan 132.31 161.22 184.88

9 California 372.71 374.59 360.37

10 New Delhi 18.67 19.96 14.21

11 Beijing 66.79 60.89 56.99

12 Java 49.09 54.61 221.52

13 Chengdu 231.93 241.91 198.42

14 Cuttack 72.01 63.75 364.75

15 Panama 446.83 464.59 422.86

16 Salmisuo 156.79 132.16 146.52

Total RMSE 3792.66 3991.73 4345.56
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Figure 10. CH4 emission observations and predictions when using

the optimized parameters of optimization trials T1, T2, and T3, re-

spectively, and when using the default parameters for the wetland

site Salmisuo, Finland, for the real data case with d = 11 parame-

ters. The legend shows the lowest RMSE value found in each trial.

mized parameters greatly improved the model’s predictions,

but we can also see that the temporal variability in the pre-

dictions stays the same although not as pronounced. We no-

ticed this “temporal variability preserving” behavior for sev-

eral sites such as Beijing, California, Cuttack, New Delhi,

Florida, Japan, Michigan, Minnesota, Salmisuo, Texas, and

Vercelli. Compared to the case where we optimized only five

parameters, the solution for Alberta has improved and the

RMSE values for all three trials are for the d = 11 case better

than the default RMSE value. On the other hand, the solution
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Figure 11. Scatterplot showing the mean values of the CH4 predic-

tions using the default and optimized parameter values of trials T1,

T2, and T3, respectively, vs. the mean values of the observations.

The numbers in the legend show the best RMSE value correspond-

ing to each trial. The numbers above/below the boxes indicate the

observation site ID (1: Alberta, 2: Florida, 3: Michigan, 4: Min-

nesota, 5: Nanjing, 6: Vercelli, 7: Texas, 8: Japan, 9: California,

10: New Delhi, 11: Beijing, 12: Central Java, 13: Chengdu, 14: Cut-

tack, 15: Panama, 16: Salmisuo).

for Central Java is worse for T1 in the d = 11 case than in

the d = 5 case.

The temporal variability in the model’s predictions does

not necessarily follow the temporal variability in the obser-

vation data (see, for example, Fig. 10). Note that in Fig. 10

the temporal variability is the same for each of the three tri-
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Figure 12. Average methane emissions (mg CH4 m−2 d−1) simulated by CLM4.5bgc for (a) default parameters, (b) differences between de-

fault parameters and 11-dimensional optimization trial T1, (c) differences between default parameters and optimization trial with unweighted

sum of RMSE, and (d) differences between default parameters and optimization trial with zonally weighted sum of RMSE. Zonal means are

shown on the right side of each spatial plot.

als although the best solutions found in the three trials were

very different (see Table 7). Thus, it seems that the improve-

ment of the model’s predictions is restricted by an underly-

ing model component that enforces the temporal variability.

This is likely to be associated with structural errors either in

the methane or in the carbon model. Notice that the methane

emission is dependent on the temporal variability predicted

in the carbon and land model, especially on the heterotrophic

respiration rate, which could have the wrong magnitude or

temporal evolution.

Figure 11 shows a scatter plot of the mean values of the

CH4 predictions using default and optimized parameter val-

ues vs. the mean values of the observed CH4 emissions. Ide-

ally, if the simulated emissions agreed with the observations,

all points would lie on the dashed line. Thus, the closer a

point to the dashed line, the more simulation and observation

are in agreement. The figure shows that with the optimized

parameters, we obtain better or similar results for Beijing,

Cuttack, Minnesota, Central Java, Nanjing, Japan, Salmisuo,

Alberta, and Michigan. Although not all sites have been

strictly improved by the optimization, the overall RMSE has

been improved (indicated in the legend).

Figure 11 also shows that with default parameters,

CLM4.5bgc predicts less CH4 emissions than observed for

both observation sites in the northern latitudes (Alberta,

ID= 1, and Salmisuo, ID= 16), which is corrected by the

optimization such that the mean emissions at these sites are

closer to the dashed line. Thus, based on the observation

data, CLM4.5bgc with default parameters does not predict

enough emissions in the northern latitudes. On the other

hand, CLM4.5bgc over-predicts the emissions for four lo-

cations, namely Cuttack (ID= 14), Central Java (ID= 12),

Nanjing (ID= 5), and Japan (ID= 8), which are located in

the tropical and/or subtropical zone. For those four locations,

the predictions with the optimized parameters are closer in

agreement with the observations. Hence, the observation data

force the model predictions to increase in the northern lati-

tudes and to decrease in the tropics. This can also be seen

in Figs. 12 and 13 in the following section where we simu-

lated the model globally and compared default and optimized

model predictions for the individual zones (discussed below).

5.2.3 Gobal CH4 emission simulations

We simulated CLM4.5bgc to obtain predictions for the

CH4 emissions on a global scale and compared the predic-

tions when using the default parameter values and the opti-

mized parameter values from the 11-dimensional cases. Fig-

ure 12 shows spatial plots of the average methane emissions

(mg CH4 m−2 d−1) and the zonal means (right hand side of

the plots) when using the default parameters (panel a), and

the difference between the predictions when using the default

and the optimized parameters for trial T1 (panel b). The fig-

ure shows that with the optimized parameters, the CH4 emis-

sion predictions in the northern regions are larger than for the

default parameters. For the tropics, the predictions with the

optimized parameters are lower than when using the default

values.

Figure 13 shows a comparison of the CH4 emission pre-

dictions from several different models (models 1–10). We

can see that globally the predictions with the optimized pa-

rameters (model 12) were only slightly higher than with the
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Figure 13. Comparison of total methane emissions (Tg CH4 yr−1)

between CLM4.5bgc and other models from natural wetlands.

1: Matthews and Fung (1987), 2: Aselmann and Crutzen (1989),

3: Bartlett et al. (1990), 4: Bartlett and Harriss (1993), 5: Cao et al.

(1996), 6: Walter et al. (2001), 7: Bousquet et al. (2006), 8: Bloom

et al. (2010), 9: CLM4Me, Riley et al. (2011), 10: CLM4Me’, Meng

et al. (2012), 11: this study, CLM4.5bgc with default parameters,

12: this study, CLM4.5bgc with d = 11 optimized parameters of

T1, 13: this study, CLM4.5bgc with d = 11 optimized parameters

of unweighted sum of RMSE, and 14: this study, CLM4.5bgc with

d = 11 optimized parameters of zonally weighted RMSE. Note that

number 7 is a top-down approach and number 9 may include the

rice paddy emissions. For number 8, no data were available for the

tropics and the temperate zone.

default parameters (model 11). However, the predictions of

CH4 emissions in the tropics are significantly lower than

for the default model and the predictions are also lower in

comparison to all other models (1–10). On the other hand,

for the northern latitudes, CLM4.5bgc with optimized pa-

rameters predicts significantly more CH4 emissions than the

default model and models 1–10 in the comparison. Hence,

even though the global average of predicted emissions did

not change much, the distribution of the predicted emissions

between the tropical and the northern latitudes changed sig-

nificantly.

As indicated in the previous section, the observation data

drive the model to predict more CH4 emissions in north-

ern latitudes and fewer emissions in the tropics. We inves-

tigated whether our weighting scheme in Eq. (1a) may give

too much influence to individual observation sites or zones.

Thus, we did an additional optimization trial of the parame-

ters in Table 2 where we give each observation site the same

weight wi = 1, i = 1, . . .,16 (“unweighted”). We also did a

second additional optimization trial of the parameters in Ta-

ble 2 where we give each zone the same influence on the total

RMSE in order to account for the location of the various ob-

servation sites (“zonally weighted”). Thus, each location in

the temperate zone (12 sites totally) has wi = 1/36, and each

location in the northern (2 sites) and tropical (2 sites) zone,

respectively, has the weight wi = 1/6.

The spatial plots of the differences between the average

methane emissions when using default and optimized pa-

rameters for the unweighted trial are shown in panel c of

Fig. 12, and the spatial plots of the differences when using

the zonally weighted objective function is shown in panel d

of Fig. 12. The figures show that for both additional trials,

the CH4 emissions in the northern latitudes are even further

increased. Moreover, the bars for models 13 and 14 in Fig. 13

show the total methane emissions of the unweighted and the

zonally weighted trials, respectively. The zonally weighted

trial increases the global emissions, which is caused by larger

emission predictions in the temperate zone and the northern

latitudes. In comparison to the default CLM4.5bgc predic-

tions, the unweighted trial shows a decrease in the predicted

emissions in the tropics and an increase in the predicted emis-

sions in the northern latitudes. Thus, even though it is sug-

gested that CLM4.5bgc with default parameter settings over-

predicts the CH4 emissions in high latitudes (Koven et al.,

2013), the observation data argue that the predictions should

even be increased.

6 Conclusions

In this paper we used a surrogate optimization approach

for calibrating the parameters of the methane module of

the Community Land Model (CLM4.5bgc). Given only rel-

atively few measurements at 16 observation sites (wetlands

and rice paddies) our goal was to explore the use of a sur-

rogate optimization method to improve the model prediction

capability in a computationally efficient way by minimizing

the root mean squared error between the measurements and

the model’s predictions. We identified important methane-

related parameters in CLM4.5bgc by doing a sensitivity anal-

ysis and we were thus able to reduce the problem dimension

from 21 to 11. We then used a surrogate optimization ap-

proach for tuning the most important parameters in order to

solve the problem. We investigated two cases, namely a prob-

lem with five of the most important parameters and a problem

with all 11 parameters, respectively.

We first used pseudo data in order to asses how well the

surrogate optimization performs and showed that we are able

to closely match the pseudo observations. We were able to re-

duce the RMSE to less than a fifth within the first 150 func-

tion evaluations for both pseudo data cases. The objective

function was shown to have multiple local minima, which

indicates that the problem is probably not identifiable when

11 parameters were optimized. Although the RMSE was

greatly reduced by the optimization for the 11 parameter

pseudo data case, the optimization results did not generate

the same values of the parameters in some cases as were

used to generate the pseudo data. This is a problem with the

model, not with the optimization method used. The multiple

local minima detected in Table 5 indicate that a global op-

timization method was needed. We used a surrogate global
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optimization method because the objective function was ex-

pensive to evaluate and has multiple local minima. The surro-

gate has been shown to reduce the number of objective func-

tion evaluations (e.g. climate model simulations) required to

obtain accurate approximations of the global minimum and

so it is designed for computationally expensive models like

climate modules.

By conducting the simulations globally and comparing the

average predicted emissions with default and optimized pa-

rameters, we could show that the total global CH4 emissions

did not change significantly.

However, the distribution of the predicted emissions be-

tween latitudes changed significantly. The observation data

force the optimized model’s CH4 emission predictions in the

northern latitudes to increase and the predicted emissions

in the tropics to decrease. In comparison to other models,

CLM4.5bgc with both default and optimized parameters pre-

dicts significantly more emissions in the northern latitudes

and less emissions in the tropics.
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Appendix A: Model equations

The methane biogeochemical model used in this study

is integrated in the Community Land Model version 4.5

(CLM4.5), which is the land component of the Community

Earth System Model (CESM, Hurrell et al., 2013). As dis-

cussed in more detail in Riley et al. (2011) and Meng et al.

(2012), the model represents five primary processes relevant

to methane emission predictions. These processes include

methane production (P ), oxidation (Roxic), ebullition (E),

transport through wetland plant aerenchyma (A), and diffu-

sion through soil (FDe) (described below). The methane gas

and aqueous phase concentrations (RC) in each soil layer of

each grid box is calculated at every time point using the fol-

lowing equation:

∂RC

∂t
=
∂FDe

∂z
+P −E+A−Roxic. (A1)

In the following sections we consider each of these terms

in more detail.

A1 Methane production

Methane production (P ) in the anaerobic portion of the soil

column is related to the grid cell estimate of heterotrophic

respiration from soil and litter corrected for various factors:

P = RH× F_CH4× Q10CH4× fpHfpES, (A2)

where RH is the heterotrophic respiration from soil and

litter (mol C m−2 s−1), and F_CH4 is the baseline fraction

of anaerobically mineralized C atoms becoming CH4 (i.e.,

CO2/CH4). RH is corrected for its soil temperature depen-

dence through a Q10 factor (Q10CH4), pH (fpH), redox po-

tential (fpE), and a factor accounting for the seasonal inun-

dation fraction (S).

We adjusted the fractional inundation in each grid cell to

account for a changing redox potential.

fpE =
filag

(t)

fi(t)
, (A3)

where the redox potential factor fpE is computed based on

the fractional inundation fi(t) and the adjusted fractional in-

undation filag
(t) that is producing methane.

The adjusted fractional inundation filag
(t) is computed as

filag
(t)= fi(t)− fredox(t), (A4)

where

fredox(t)= fi(t)− fi(t − 1)

+ fredox(t − 1)

(
1−

1t

REDOXLAG

)
(A5)

is the fraction of the grid cell where alternative electron ac-

ceptors (such as O2, NO−3 , Fe+3, SO2−
4 etc.) are consumed

(methane production is completely inhibited), 1t is the time

step, and REDOXLAG is the time constant parameter.

In the non-inundated fraction of a grid cell, we estimated

the delay in methane production as the water table depth in-

creases by estimating an effective depth below which CH4

production can occur (Zilag
):

Zilag
(t)= Zi(t)−Zredox(t), (A6)

where

Zredox(t)= Zi(t)−Zi(t − 1)

+Zredox(t − 1)

(
1−

1t

REDOXLAG

)
(A7)

is the depth of the saturated water layer where alternative

electron acceptors are consumed at time t and Zi(t) is the

actual water depth at time t .

Additionally, we constrained the methane production us-

ing the soil pH function fpH which is represented as

fpH = 10−0.2335pH2
+2.7727pH−8.6, (A8)

where pH represents the soil pH. fpH is bounded by

two parameters, namely PHMIN and PHMAX (i.e., PH-

MIN < pH< PHMAX). The maximum methane production oc-

curs at pH≈ 6.2.

We used a scaling factor (S) to mimic the impacts of sea-

sonal inundation on methane production which is represented

as

S =
MINO2LIM(f − f )+ f

f
, S ≤ 1, (A9)

where f and f are the instantaneous inundation fraction

and annual average inundation fraction weighted by het-

erotrophic respiration, MINO2LIM is the anoxia factor that re-

lates the fully anoxic decomposition rate to the fully oxygen-

unlimited decomposition rate.

A2 Methane oxidation

Methane oxidation (Roxic) is represented with double

Michaelis-Menten kinetics:

Roxic =VMAX_CH4_OXID

[
CCH4

K_M+CCH4

]
[

CO2

K_M_O2+CO2

]
Q10_CH4OXID×Fϑ , (A10)

where VMAX_CH4_OXID is the maximum oxidation rate

(mol m−3 s−1), Q10_CH4OXID is the temperature depen-

dence of the reaction, K_M and K_M_O2 are the half satura-

tion coefficients with respect to CH4 and O2 concentrations

(mol m−3), CCH4
and CO2

are the methane and oxygen con-

centrations in the soil (mol m−3), and Fϑ is the soil moisture
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limitation factor for oxidation applied above the water table

to represent water stress for methanotrophs.

Fϑ is represented as:

Fϑ = exp

{
−P

PC

}
, (A11)

where P and PC are the soil moisture potential and opti-

mum water potential (−2.4× 105 mm). If the soil layer is

above the water table, the soil moisture limitation factor Fϑ
is applied. To account for high-CH4-affinity methanotrophs

in upland soils, we used a lower oxidation rate constant

(VMAX_OXID_UNSAT) and half saturation coefficient with

respect to CH4 concentrations (K_M_UNSAT).

A3 Methane transport through plant aerenchyma

The diffusive transport through aerenchymaA (mol m−2 s−1)

from each soil layer is represented in the model as:

A=
C(z)−Ca

ra+
ROB×z
DpT ρf

, (A12)

where D is the free-air gas diffusion coefficient (m2 s−1),

C(z) and Ca are the gaseous concentrations at depth z and at

the atmosphere (mol m−3), ra is the aerodynamic resistance

between the surface and the atmospheric reference height

(s m−1), ROB is the ratio of root length to vertical depth

(obliquity), p is the porosity, T is the specific aerenchyma

area (m2 m−2), and ρf is the root density as a function of

depth. Oxygen concentrations can also diffuse into the soil

layer from the atmosphere via the reverse of the CH4 path-

way.

Here, aerenchyma porosity is parameterized based on the

plant functional types (PFTs). A ratio is used to multiply up-

land vegetation aerenchyma porosity by comparing to inun-

dated systems:

p = p× UNSAT_AERE_RATIO (A13)

If the PFT is c3_arctic_grass, c3_nonarctic_grass, or

c4_grass, then p = 0.3. For the remaining PFTs, the poros-

ity is multiplied by NONGRASSPOROSRATIO (ratio of root

porosity in non-grass to grass):

p = p× NONGRASSPOROSRATIO. (A14)

A minimum aerenchyma porosity is set to 0.05. Therefore,

p is modified as:

p =max{p, POROSMIN}. (A15)

The aerenchyma area varies over the course of the grow-

ing season. Therefore, it is parameterized using the simulated

leaf area index as

T =
fNNaL

0.22
πR2, (A16)

where L is the leaf area index (m2 m−2) (used from CLM4.5

model simulation), Na is the maximum annual net primary

production (NPP, mol m−2 s−1), R is the aerenchyma radius

(2.9× 10−3 m), and fN is the below-ground fraction of the

current NPP.

The aerenchyma area T is multiplied by a scale factor to

adjust it:

T = T × SCALE_FACTOR_AERE. (A17)

The default value is 1.

A4 Methane ebullition

The representation of the ebullition fluxes in the methane

model is based on Wania et al. (2010). The simulated aque-

ous CH4 concentration in each soil level is used to estimate

the expected equilibrium gaseous partial pressure as a func-

tion of temperature and pressure. When this partial pressure

exceeds VGC_MAX, bubbling occurs to remove CH4 to be-

low this value, modified by the fraction of CH4 in the bub-

bles (taken as 57 %). The VGC_MAX parameter is the ratio of

saturation pressure triggering ebullition.

A5 Aqueous and gaseous diffusion

Gaseous diffusivity in the soil depends on several factors

such as molecular diffusivity, soil structure, porosity, and or-

ganic matter content. The relationship between effective dif-

fusivity (De, m2 s−1) and soil properties is represented as

De =D0θ
2
a

(
θa

θs

) 3
b

× SCALE_FACTOR_GASSDIFF, (A18)

where θa and θs are the air-filled and saturated water-filled

porosity, b is the slope of the water retention curve, and

SCALE_FACTOR_GASSDIFF is the scale factor for the gas

diffusion (the default value is 1).
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Appendix B: Observation sites

Tables B1 and B2 show the information about the wet-

land and rice paddy observation sites, respectively, where

methane emissions have been measured.
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Appendix C: Parameters and references for bounds

Table C1 shows the CH4 related parameters in CLM4.5bgc

and their literature reference information.

Table C1. Parameter names, descriptions, ranges, and literature references.

Number Parameter Description Units Range References

1 q10ch4 Q10 for methane

production

unitless 1–10 Dunfield et al. (1993); Walter and Heimann (2000); Ri-

ley et al. (2011)

2 f_ch4 Ratio of CH4 production

to total C mineralization

unitless 0.05–0.5 Wania et al. (2010); Zhang et al. (2002); Zhu et al.

(2013), Effective value will depend on temperature, re-

dox and pH but cannot exceed 50 % based on stoichiom-

etry (Bill Riley, personal communication)

3 redoxlag Number of days to lag for

production

days 15–45 Meng et al. (2012); Conrad (2002); Cheng et al. (2007)

4 oxinhib Inhibition of methane

production by oxygen

m3 mol−1 200–600 Arah and Stephen (1998); Riley et al. (2011)

5 pHmax Maximum pH for

methane production

unitless 8–10 Cao et al. (1996); Zhang et al. (2002); Zhuang et al.

(2004); Meng et al. (2012)

6 pHmin Minimum pH for

methane

production

unitless 2–4 Cao et al. (1996); Zhang et al. (2002); Zhuang et al.

(2004); Meng et al. (2012)

7 vmax_ch4_oxid Oxidation rate constant mol m−3-w/s 1.25× 10−6–1.25× 10−4 Riley et al. (2011); Walter and Heimann (2000); Dun-

field et al. (1993); Knoblauch (1994)

8 k_m Michaelis-Menten

oxidation rate constant for

CH4 conc.

mol m−3-w 5× 10−4–5× 10−2 Segers and Kengen (1998); Walter and Heimann

(2000); Riley et al. (2011)

9 k_m_o2 Michaelis-Menten

oxidation rate constant

for

O2 conc.

mol m−3-w 0.002–0.2 Segers (1998); Walter and Heimann (2000); Riley et al.

(2011)

10 q10_ch4oxid Q10 oxidation constant unitless 1–4 Meng et al. (2012); Segers (1998); Walter and Heimann

(2000); Zhu et al. (2013); Zhang et al. (2002)

11 k_m_unsat Michaelis-Menten

oxidation rate constant

for

CH4 conc. in upland areas

mol m−3-w 5× 10−5–5× 10−3 Whalen and Reeburgh (1996); Bender and Conrad

(1992); Riley et al. (2011)

12 vmax_oxid_unsat Oxidation rate constant in

upland areas

mol m−3-w/s 1.25× 10−7–1.25× 10−5 Whalen and Reeburgh (1996); Bender and Conrad

(1992); Riley et al. (2011)

13 scale_factor_aere Scale factor on the

aerenchyma area

unitless 0.2–5 Riley et al. (2011)

14 nongrassporosratio Ratio of root porosity in

non-grass to grass

unitless 0.2–0.5 Colmer (2003)

15 porosmin Minimum aerenchyma

porosity

unitless 0.01–0.2 Colmer (2003); Cronk and Fennessy (2001)

16 rob Ratio of root length to

vertical depth (“root

obliquity”)

unitless 2–4 Arah and Stephen (1998); Riley et al. (2011). This

parameter is poorly constrained.

17 unsat_aere_ratio Ratio to multiply upland

vegetation aerenchyma

porosity by compared to

inundated systems

unitless 0.1–0.25 Not available in literature. The reasonable range could

be between 0.1 and 0.25. Meng et al. (2012) used this

range for sensitivity.

18 vgc_max Ratio of saturation

pressure triggering ebulli-

tion

unitless 0.05–0.3 Kellner et al. (2006); Baird et al. (2004)

19 scale_factor_gasdiff Scale factor for gas

diffusion

unitless 1–5 Range not available. Reasonable range is 1–5 for

sensitivity analyses.

20 atmch4 Atm. CH4 mixing ratio to

prescribe

mol mol−1 1.7× 10−7–1.7× 10−5 Range not available. Variable range; global average is

≈ 1.7× 10−6

21 mino2lim Min. anaerobic decompo-

sition rate as a fraction of

potential aerobic rate

unitless 0.05–0.45 Range not available in the literature. The default value

(0.2) is from Riley et al. (2011). The reasonable range

could be between 0.05 and 0.45 to adjust effect of

anoxia on decomposition rate (used to calculate sea-

sonal inundation factor). The range is considered based

on knowledge.
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Appendix D: Weights used for RMSE computation in

Eq. (1) of the paper

Table D1 contains information about the weights used for

each observation site when computing the objective function

value.

Table D1. ID, name of observation sites, and associated weights for

real data and pseudo data case (Eq. 1 of the main document).

ID Location wi real data wi pseudo data

1 Alberta 0.0327 0.0656

2 Florida 0.0078 0.0067

3 Michigan 0.0280 0.1599

4 Minnesota 0.0938 0.0783

5 Nanjing 0.0566 0.0149

6 Vercelli 0.0198 0.0382

7 Texas 0.0267 0.0189

8 Japan 0.0441 0.0153

9 California 0.0421 0.0684

10 New Delhi 0.2787 0.1707

11 Beijing 0.1053 0.1189

12 Central Java 0.0810 0.0143

13 Chengdu 0.0283 0.0571

14 Cuttack 0.0968 0.0104

15 Panama Swamp 0.0177 0.0795

16 Salmisuo 0.0405 0.0827
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