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Abstract. We present a numerical method for calculating

vertically averaged velocity fields using a mass conservation

approach, commonly known as balance velocities. This al-

lows for an unstructured grid, is not dependent on a heuristic

flow routing algorithm, and is both parallelizable and effi-

cient. We apply the method to calculate depth-averaged ve-

locities of the Greenland Ice Sheet, and find that the method

produces grid-independent velocity fields for a sufficient pa-

rameterization of horizontal plane stresses on flow directions.

We show that balance velocity can be used as the forward

model for a constrained optimization problem that can be

used to fill gaps and smooth strong gradients in InSAR ve-

locity fields.

1 Introduction

Balance velocities are useful in evaluating the dynamics of

ice sheets, as a means to fill missing velocity data (e.g.,

Joughin et al., 2010), and as an additional point of compar-

ison for data-derived and modeled velocities (Bamber et al.,

2000). Stemming from a statement of mass conservation, bal-

ance velocity provides an intuitive means for understanding

the distribution of flux within an ice sheet. It has often pro-

vided estimates of velocity with better fidelity to data than

even advanced ice sheet models, while relying on fewer as-

sumptions. It also gives us the means to assess the distance

from equilibrium of an extant ice sheet.

Heretofore, balance velocity has been calculated by ap-

plying discrete routing algorithms to spatially distribute flux.

These have traditionally been drawn from the hydrological

literature (e.g., Tarboton, 1997; Budd and Warner, 1996). To

leading order, hydrological routing and glaciological routing

are similar; flow directions in both cases are governed by

driving stresses, which are determined by surface slope. In

overland routing of liquid water, this method is appropriate.

However, in glacial ice, the flow direction is also determined

by horizontal plane stresses (and, to a lesser extent, vertical

resistive stresses), and neglecting these terms yields an over-

convergent pattern. This emphasis on local slopes also tends

to exacerbate grid dependence, causing the same routing al-

gorithm to produce markedly different velocity fields for dif-

ferent grid resolutions (LeBrocq et al., 2006). Algorithms

overcome this by using a spatially averaged slope rather than

a purely local slope, with smoothing lengths and the shape of

the averaging filter derived heuristically (Testut et al., 2003)

or from theoretical results of parameterizing horizontal plane

stresses (Kamb and Echelmeyer, 1986).

The aim of this paper is to show how balance velocity

can be accomplished by solving a partial differential equa-

tion for the conservation of mass using finite elements rather

than discrete flow routing algorithms. An unstructured grid

also allows for enhanced resolution in regions of special in-

terest, analogous to the mesh refinement used by contempo-

rary next-generation ice sheet models (Larour et al., 2012;

Seddik et al., 2012; Brinkerhoff and Johnson, 2013), or for

simply scaling grid size by ice thickness. This approach also

makes the incorporation of horizontal plane stress gradients

straightforward by parameterizing horizontal plane stresses

by solving an additional linear system. To these ends, we

present the governing equations and the method of their nu-

merical solution with finite elements. We apply this method

to the Greenland Ice Sheet and show that this approach yields

quality and grid-independent balance velocity fields.
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1276 D. Brinkerhoff and J. Johnson: Balance velocity in ice sheets

In addition to the novel, but basic, method for computing

balance velocities, we also present a method by which bal-

ance velocities can be used to fill gaps and smooth spurious

gradients in InSAR-derived velocity data (e.g., Joughin et al.,

2010). This is often advantageous, since further applications,

such as inversion for basal traction or computing local stress

balances, depend on having a smooth and complete velocity

field. The method relies on minimizing a misfit functional

over the velocity field with respect to error bounded thick-

ness, apparent surface mass balance, and flow direction.

2 Continuum formulation

For an incompressible fluid, conservation of mass is stated as

∇ ·u= 0, (1)

where u is the three-dimensional fluid velocity field, with

kinematic boundary conditions on the surface S and bed B

∂S

∂t
+u‖(S) · ∇‖S = w(S)+ ȧ (2)

and

∂B

∂t
+u‖(B) · ∇‖B = w(B)−mb, (3)

respectively. Vertically integrating Eq. (1), applying the Leib-

niz rule, and substitution of Eqs. (2) and (3) yields a ver-

tically averaged statement for conservation of mass, com-

monly called the continuity equation

∂H

∂t
+∇‖ ·u‖H = ȧ−mb, (4)

with surface mass balance ȧ, basal melt mb, and thickness

H . ∇‖· is the divergence operator in the two horizontal di-

rections, and u‖ = [u,v] is the vertically averaged horizontal

velocity vector. We henceforth drop the parallel bars, and as-

sume that all vectors and operators work on the horizontal

plane. This equation is well known to ice sheet modelers as

the prognostic equation for evolving the geometry of an ice

sheet. In this case, we assume an estimate of ∂tH , and group

it with the other source terms, yielding

∇ ·uH = F, (5)

where F = ȧ−mb−∂tH . Equation (5) is often used to calcu-

late H (Morlighem et al., 2011; Johnson et al., 2012). Here,

we assume that H is known, and instead use Eq. (5) to cal-

culate u. As stated, the system is underdetermined, with only

one equation for both velocity components. For closure, we

restate the problem in terms of flow direction N and speed

U =‖ u‖2 (where ‖ ·‖2 denotes the standard L2 norm), such

that

NU = u,‖N‖2 = 1. (6)

This gives the scalar equation for unknown U

∇ ·NHU = F. (7)

Flow direction is specified as the solution to the problems

τ s =∇ · (lH)
2
∇τ s− τ d (8)

with boundary condition

∇τ s ·n= 0 on ∂� (9)

and

N =
τ s

‖ τ s‖2
. (10)

The solution to Eq. (8) is equivalent to the application of

a Gaussian average of variable length scale lH to the driv-

ing stress τ d of the type suggested by Kamb and Echelmeyer

(1986). Theoretical work typically expresses stress coupling

length scales in terms of ice thicknesses, hence the nota-

tion lH ; l is the number of ice thicknesses over which hor-

izontal plane stress coupling should act. Flow direction N

is then proportional to the smoothed driving stress τ s with

unit normalization. In the case where the boundary of the

computational domain corresponds to the complete bound-

ary of an ice mass (balance velocity for all of Greenland,

say), no boundary condition need be specified, as the solu-

tion is implicitly defined to be zero at the ice divide due to

the problem geometry. When considering a partial domain,

a Dirichlet condition must be specified once per flow line.

3 Discretization and stabilization

Equations (5), (8), and (10) are closed, and can be used to

calculate balance velocity. We use the finite element method

in order to discretize the governing equations. Equation (8)

can be discretized with standard Galerkin methods (e.g.,

Zienkiewicz and Taylor, 2000). Its weak form is∫
�

τ s ·φ+∇φ · (lH)
2
∇τ s d�=−

∫
�

τ d ·φ d�,

∀φ ∈H 1
×H 1, (11)

where φ is a vector valued test function, and we have used

Eq. (9) to eliminate the boundary integrals induced through

integration by parts. Equation (10) can be calculated from

Eq. (8) and does not require discretization. Equation (5)

is hyperbolic and requires stabilization in order to sup-

press spurious oscillations. We use the streamline upwind

Petrov–Galerkin (SUPG) method as a stabilization technique

(Brooks and Hughes, 1982). SUPG have been used with suc-

cess for the continuity equation in the ice sheet modeling

context extensively (Morlighem et al., 2011; Larour et al.,

2012). This case differs from previous work in that we are
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here attempting to solve for velocity rather than thickness.

This means that velocity and thickness switch roles in the

stabilization scheme; U is advected by the pseudo-velocity

NH . The SUPG weak form is∫
�

(λ+τ∇ ·NHλ)(∇ ·NHU −F) d�= 0,

∀λ ∈ V, (12)

where λ is a test function that accommodates the influx or

outflux Dirichlet boundary condition if so specified, V =

{λ ∈H 1, λ|0 = 0}; τ is a mesh-dependent stabilization pa-

rameter given by

τ =
h

2 ‖NH‖2
, (13)

and h is the element circumradius. We use linear Lagrange

finite elements for discretization. The inclusion of this un-

usual stabilization term is key to achieving meaningful nu-

merical solutions; without it, the solutions are plagued by

non-physical oscillations. This instability is likely the reason

that this approach has not been seen in the literature previ-

ously.

4 Application to the Greenland Ice Sheet

We apply this balance velocity approach to the Greenland

Ice Sheet. We used the 1 km gridded GLAS/ICESat data set

(DiMarzio et al., 2007) for surface elevations and a bed DEM

from Bamber et al. (2001) for bed elevations. Annual average

surface mass balance rates are derived from RACMO (Et-

tema et al., 2009). We assume that basal melt is small com-

pared to surface mass balance, and neglect it. We also assume

that the ∂tH is negligible, or that the ice sheet is in balance.

This is doubtless an incorrect assumption in some regions

of the ice sheet, but although estimates for this field exist

(e.g., Pritchard et al., 2009), it is not yet possible to determine

what proportion of this signal is a result of ice dynamics, as

opposed to other mechanisms such as firn densification that

should not be included here.

4.1 Grid dependence

In order to assess the degree of grid dependence exhibited by

this solution method, we start with a very coarse mesh, with

an element circumradius of h= 32H and calculate balance

velocity over progressively finer meshes, essentially halving

the element size at each iteration, down to an element cir-

cumradius of h=H or 500 m, whichever is greater. We do

this for smoothing lengths l ∈ {0,4,10,15}. The difference

between the coarse solution and progressively finer solutions

is shown in Fig. 1. We see that for smoothing lengths of

l ∈ {4,10,15} the norm of the difference between the refined

and unrefined solutions stops changing with increasing re-

finement. When l = 0, the solution continues to change as
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Figure 1. Residual between balance velocity solution at coarse and

progressively finer length scales for l ∈ {0,4,10,15}.

the mesh becomes more refined. This indicates that incorpo-

rating a parameterization of horizontal plane stress in flow

routing can overcome the tendency for the flow field to over-

converge, even for very finely resolved meshes.

4.2 Flow direction smoothing radius

Theoretical results from Kamb and Echelmeyer (1986) sug-

gest that the value of l for an ice sheet should fall between

4 and 10 ice thicknesses (although this range is based on

temperate ice). Previous studies of horizontal plane stress

coupling lengths for ice sheets typically indicate a value

of l at the high end of this range (LeBrocq et al., 2006;

Fricker et al., 2000), and often even higher (Testut et al.,

2003; Joughin et al., 1997), in order to achieve heuristi-

cally good results. Identifying the optimal horizontal plane

stress coupling length is also complicated by the fact that l

should almost certainly be spatially variable. Nevertheless,

we present balance velocities for l ∈ {4,10,15}, for a mesh

size of h=H , which, based on results from the previous

paragraph, should be a sufficiently small mesh size such that

any smoothing of the flow is due to horizontal plane stress

coupling rather than a lack of mesh detail. Figure 2 gives the

balance velocity for the Greenland Ice Sheet at these length

scales and mesh sizes, as well as the observed surface veloc-

ity. l = 4 produces an obviously overconvergent flow field, as

evidenced by the abundance of discrete and overly narrow ice

streams. l = 10 produces a better result, and we can see that

most of the main flow features of the ice sheet are captured.

Kangerdlugssuaq and Jakobshavn Isbrae are both robustly

present and have a similar shape and extent to the measured
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Figure 2. Balance velocity solution for a mesh size of h=H and

l ∈ {4,10,15} as well as InSAR surface velocities.

velocity fields. The northeastern ice stream, while apparent,

is less significant than indicated by observations. At l = 15,

features begin to wash out, most notably the characteristic

multi-pronged ice streams of Kangerdlugssuaq glacier.

5 Application: physics-based interpolation of the

surface velocity

Here, we present an application of our new technique for de-

termining the balance velocity. The application is one that

relies on many thousands of evaluations of the continuity

equation in order to numerically optimize model output. It

is conceptually and mathematically similar to the technique

described by Morlighem et al. (2011), but with balance thick-

nesses exchanged for balance velocities. For reasons of com-

putational expense, our example could not be done without

the advances presented earlier in this paper.

Geophysical data describing the cryosphere are in many

cases incomplete or inconsistent with physical law. For ex-

ample, take the surface velocity data of Joughin et al. (2010).

They are characterized by large gaps in coverage and a highly

variable structure in regions having low speed (less than

∼ 20 m a−1). Attributed to regions of high accumulation,

high surface slopes, or incomplete satellite data, these prob-

lem regions frustrate many efforts that depend on complete

coverage, or smoothness of the data. Applications affected

might include inversion for basal traction (Morlighem et al.,

2013; Brinkerhoff and Johnson, 2013) or calculations involv-

ing derivatives, such as resolving the stress balance (Van der

Veen, 2013).

In order to use such data, practitioners are often required

to smooth and/or interpolate the data. The fundamental pro-

cedure of interpolation is to generate a function that (1) is

continuously valued over a given domain, (2) obeys some

fundamental functional form between data points, and (3)

adheres to observed values where data exist, with the under-

standing that such data are subject to error. Standard inter-

polation techniques often use polynomials as an interpolant.

Physics-based interpolation differs by using solutions to the

mass conservation partial differential equation (PDE) as the

interpolating function. It is convenient to formulate this pro-

cedure as an optimization problem, which minimizes some

measure of misfit between data values under the constraint

of mass conservation. In particular, we are interested in mini-

mizing the misfit between (possibly incomplete) velocity ob-

servations and balance velocities. This is expressed symboli-

cally as

I ′[U,uo,H,N ,F ;λ]

= I[Um,uo] +F[N ,U,H,F ;λ] +R[N ,H,F ], (14)

where I is a misfit functional, F a functional that imposes

continuity, and R a Tikhonov regularization used to im-

pose a specified smoothness on the parameters. We depart

from the previous notation by introducing balance velocity

UmN , and observed velocity, uo, in order to keep the quan-

tities being compared clear. We define the observed speed

Uo =‖ uo‖2. Finding the saddle point of Eq. (14) is known

as PDE-constrained optimization.

5.1 Functional forms

I can take on a variety of forms. Here, we write a linear

combination of least squares and log-least squares, or

I =
∫
�e

α(Um−Uo)
2
+βln

(
Uo

Um

)2
d�, (15)

where�e is the domain over which velocity observations ex-

ist. F is defined using a Lagrange multiplier λ to enforce
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conservation of mass

F =
∫
�

λ
(
∇ ·NUH −F

)
d�, (16)

where λ is a Lagrange multiplier. Note that this PDE con-

straint is still hyperbolic and requires the special numerical

treatment defined previously in this paper. R is a Tikhonov

regularization term that penalizes large gradients in the

values of explanatory parameters; f ∈ P ≡ {F,H,N}. We

adopt the following form:

R=
∑
i

ξi

∫
�

∇fi · ∇fid�, (17)

for i in the space of explanatory parameters. ξi is a regular-

ization parameter.

5.2 Solution method

Consider the following, simplified, form of the PDE con-

strained optimization problem:

I ′ =
∫
�e

1

2

(
Um−Uo

)2
dx+

∫
�

λ
(
∇ ·UNH −F

)
d�. (18)

In practice we add a logarithm squared of the mismatch

and regularization on each of the variables. However, this

discussion neglects the terms to clarify the procedure that fol-

lows. Because each of the fields appearing in the continuity

equation is measured in some way, we express the uncertain-

ties in the measurements as follows:

H ∈ [Ho−1Ho,Ho+1Ho] (19)

F ∈ [F −1F,F +1F ] (20)

N ∈ [N −1N ,N +1N ] . (21)

Thus, we state that the admissible spaces for the explana-

tory variables are defined by their assumed errors. Note that

any choice within this range is assumed equally valid.

The mass conservation constraint, or forward model, is

solved in two stages. First the directions of flow, N , are esti-

mated from smoothed driving stress directions using the so-

lution to Eq. (8). In regions where the direction of flow has

been observed, N is replaced with the observed direction.

The entire field is then smoothed to avoid large discontinu-

ities on the boundaries between observed and estimated di-

rections. The smoothing used takes the same form as Eq. ( 8).

Equation (12) is used to express the stabilized form of the

forward model. The original problem, Eq. (18), can now be

restated in terms of the stabilized PDE constraint as

I ′ =
∫
�e

1

2

(
Um−Uo

)2
d�

+

∫
�

(λ+ τ∇ ·NHλ)︸ ︷︷ ︸
λ′

(
∇ ·NHUm−F

)
d�, (22)

where the Lagrange multiplier plays the role of a test func-

tion. To simplify the mathematics to follow, identify λ′ =

λ+τ∇·NHλ and recover the original form stated in Eq. (18),

the λ′ replacing λ.

We then take the first variation (formally a Gâteaux deriva-

tive) of I[U,H,F,N;λ′] with respect to each of its parame-

ters. For instance, the variation with respect to the thickness

H is

δI ′[Um,δH,F,N ,λ]

=
∂

∂ε

∣∣∣∣
ε=0

I ′[Um,H + εδH,F,N ,λ]. (23)

We note that a complete variation would have considered

the error structure in observed speed, Uo, as well, but given

the large areas of missing data, we did not include this in the

analysis.

After varying the functional with respect to all terms, the

result is

δI ′ =
∫
�e

(
Um−Uo

)
δUm︸ ︷︷ ︸

Adjoint RHS

d�

+

∫
�

λ′[∇ ·
(
δUmNH

)︸ ︷︷ ︸
Adjoint LHS

+∇ ·
(
UmNδH

)︸ ︷︷ ︸
gH

+ ∇ ·
(
UmHδN

)︸ ︷︷ ︸
gN

− δF︸︷︷︸
gF

]d�

+

∫
�

δλ′
(
∇ ·UmNH −F

)︸ ︷︷ ︸
Forward model

d�,

where we have ignored the dependence of λ on N and H .

We also ignore variation with respect to U . Note that we can

immediately identify individual terms specifying search di-

rections (gi) for each of the variables i ∈ {H,NF }, as well

as the forward and adjoint models.

A few practical concerns arise, and are addressed as fol-

lows.

1. δN is ambiguous, because it is a vector. However, only

one component of a normalized vector is independent;

i.e., n2
x + n

2
y = 1 can be solved for an unknown. In this

example, the variation is always done on δny .

2. Regularization is applied to each of the variables as

shown in Eq. (17). L-curve analysis suggests that val-

ues of ξi between 107 and 108 are reasonable. In this

example, all values were set to 107.

3. In order to explain our approach, we present a simplified

differentiation process. In practice, the complexity of

the stabilization terms, the inclusion of the logarithmic

mismatch function, and the introduction of regulariza-

tion on the variables lead us to opt for automatic differ-

entiation available through the FEniCS library that we

use for finite element discretization (Logg et al., 2012).
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Figure 3. Surface speed of ice from observations reported in

Joughin et al. (2010).

4. To make direct comparison of speeds, we need to es-

timate vertically averaged velocities from surface ve-

locity (Joughin et al., 2010). To do so, we construct a

function that approximates the role of deformation in

the observed surface velocity. The function makes ve-

locities above 120 ma−1 almost entirely due to sliding

(surface velocity is the vertical average), and velocities

below 25 ma−1 nearly entirely due to deformation (sur-

face velocity is 80% of the vertical average). A smooth

transition between the two end members is given by the

logistic function

Uo = f (Uo)

= Uo

(
1.0−

.2

1+ exp .1(Uo− 75)

)
. (24)

5. The weighting between logarithmic and linear terms in

the misfit functional of Eq. (15) is set to be α = β = 0.5.

Figure 4. Final surface speeds, computed through the optimization

of the speed constrained by the continuity equation described in this

paper.

Under this weighting choice, in fast flowing regions, the

linear misfit is dominant, while in slow flowing regions,

the logarithmic misfit is more important.

5.3 Errors and numerical details

For the ice thickness field, data are drawn from Bamber et al.

(2013). These data represent the reduction and interpolation

of hundreds of individual radar tracks into a map having

complete coverage. Bamber et al. (2013) report errors along

tracks of zero. Here, we use ±35 m along tracks, to reflect

that there may be some error in the measurements. Off the

tracks, we use the same values reported in Bamber et al.

(2013).

Ettema et al. (2009) provide surface mass balance, the only

term used in our apparent mass balance, F . Because this is

only part of the apparent mass balance, and because these

Geosci. Model Dev., 8, 1275–1283, 2015 www.geosci-model-dev.net/8/1275/2015/
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Figure 5. Differences between the ice thicknesses reported in Bam-

ber et al. (2013) and the thicknesses found at the end of the opti-

mization procedure.

data are characterized by larger errors than other inputs, we

shall assume very large errors in the apparent mass balance,

±1 ma−1.

The errors in the direction of the velocity reflect both dif-

ferences from smoothed steepest descent where there are no

velocity observations, as well as errors in the velocity obser-

vations. We assumed these to be in the range ±5◦.

All results were computed on an unstructured finite el-

ement mesh with an average spacing between nodes of

2 km. The optimization was done by using the gradients,

gH ,gF ,gN , to drive the quasi-Newton bounded optimiza-

tion technique, BFGSB (Nocedal and Wright, 2006). The

Figure 6. Apparent surface mass balance determined at the end of

the optimization procedure.

optimization was terminated when the value of the objec-

tive function ceased to change appreciably, less than 0.5 %

through searches along each of the gradients.

5.4 Results and discussion

We focus on results from the south of Greenland, where the

velocity coverage is poor. Differences between observed and

modeled speeds are shown in Figs. 3 and 4, respectively.

The general structure of the observations is preserved, and

the transitions between areas of no data and data are seam-

less. Much of the noisy signal that is apparent near the ice

divide in the observed velocity is smoothed over in the in-

terpolated data set. In the interpolated data there are numer-

ous linear features that track the flow. These are not present

in the original data and reflect the nature of the algorithm,

www.geosci-model-dev.net/8/1275/2015/ Geosci. Model Dev., 8, 1275–1283, 2015
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which accumulates ice flux along flow lines. The interpo-

lation scheme also diffuses the channelized nature of flow

in the lower Jakobshavn area, and perhaps in other outlet

glaciers as well.

Our approach also provides thickness and effective mass

balance (F ) values that satisfy the continuity equation

(Figs. 5 and 6). The changes made in order to uphold con-

tinuity are quite significant but still within the assumed er-

ror structure of the fields. In order to reproduce the observed

speed in the outlet glaciers, thinner ice is required. This is

due to the modeled velocity being too low; dividing the flux

by a smaller thickness would increase the velocity. The bias

toward slower ice could result from accumulation being too

low, or velocity directions not being convergent enough. Ap-

parent mass balance demonstrates that the search algorithm

is utilizing this field to delimit streaming behavior by creat-

ing gradient in mass balance across the margins.

Changes in the direction of flow, N , were less significant

due to the low errors assumed in this field. There was little

systematic change in values and it is difficult to interpret how

the optimization process impacts the values.

Moreover, the results demonstrate that it is difficult to up-

hold continuity and match the observed velocities. It is likely

that the optimization is finding its way into a local minimum

that is difficult to get out of. Once in this minimum, system-

atic changes in the surface mass balance and thickness fields

are made in a manner that is not likely to be physically plau-

sible, but is reasonable in terms of the stated error bounds.

The technique presented here should improve in its utility

as the coverage of fundamental data sets increases, and un-

certainties decrease. Eventually, the minimum reached from

the initial point will better correspond to a global rather than

local one. One application of this approach will be to pro-

vide self-consistent initialization data for prognostic ice sheet

modeling. Because the continuity is upheld by the data with

a Lagrange multiplier, we are guaranteed that the combina-

tion of thickness, mass balance, and velocity produced by

this method will not produce the strong gradients in model

output produced by data in which flux divergence does not

equal apparent mass balance (Perego et al., 2014).

6 Conclusions

We presented a novel numerical method for calculating the

balance velocity of an ice sheet using the finite element

method. This approach is an advance over classical routing

techniques because it is not dependent on a heuristic routing

algorithm and relies solely on a continuum conservation law

and a theoretically motivated parameterization of flow direc-

tions. An unstructured grid easily allows for variable spatial

resolutions. This method is made possible by two specific

insights. First, flow directions that include horizontal plane

stresses can be calculated by applying a spatially variable dif-

fusion operator to the driving stress. Second, the balance ve-

locity equations can be viewed as an advection equation with

a pseudo-velocity field specified by thickness and flow di-

rection, with velocity as the advected quantity. This problem

is unstable. We use the streamline upwind Petrov–Galerkin

method to make it tractable.

We applied this method to the Greenland Ice Sheet. Bal-

ance velocities were calculated over a number of different

mesh resolutions, and we found that for given sufficient hor-

izontal plane stress coupling distances, the solution shows

grid independence. We also showed the balance velocity field

calculated for theoretically justifiable smoothing lengths on

detailed meshes. The resulting balance velocity compares fa-

vorably with a satellite-measured velocity field.

Additionally, we presented a numerical method that uses

adjoint-based optimization to both fill data gaps and smooth

spurious gradients present in an InSAR-derived velocity data

set. This method is conceptually similar to Morlighem et al.

(2011), but minimizes the misfit between balance velocities

and observation, as opposed to thickness. We showed that

we can find a balance velocity that matches InSAR data

well, but does not possess gaps or strong gradients, while re-

maining within specified error bounds for input data fields.

Despite this, we also find that upholding mass conserva-

tion requires surface mass balance and thickness fields that

are distinctly less smooth than those reported. Regardless,

this PDE-constrained interpolation technique promises to be

a useful tool for providing smooth and continuous velocity

data that conform well to observations.
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