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Abstract. An innovative extended response surface model-

ing technique (ERSM v1.0) is developed to characterize the

nonlinear response of fine particles (PM2.5) to large and si-

multaneous changes of multiple precursor emissions from

multiple regions and sectors. The ERSM technique is devel-

oped based on the conventional response surface modeling

(RSM) technique; it first quantifies the relationship between

PM2.5 concentrations and the emissions of gaseous precur-

sors from each single region using the conventional RSM

technique, and then assesses the effects of inter-regional

transport of PM2.5 and its gaseous precursors on PM2.5 con-

centrations in the target region. We apply this novel tech-

nique with a widely used regional chemical transport model

(CTM) over the Yangtze River delta (YRD) region of China,

and evaluate the response of PM2.5 and its inorganic compo-

nents to the emissions of 36 pollutant–region–sector combi-

nations. The predicted PM2.5 concentrations agree well with

independent CTM simulations; the correlation coefficients

are larger than 0.98 and 0.99, and the mean normalized er-

rors (MNEs) are less than 1 and 2 % for January and August,

respectively. It is also demonstrated that the ERSM technique

could reproduce fairly well the response of PM2.5 to contin-

uous changes of precursor emission levels between zero and

150 %. Employing this new technique, we identify the ma-

jor sources contributing to PM2.5 and its inorganic compo-

nents in the YRD region. The nonlinearity in the response of

PM2.5 to emission changes is characterized and the underly-

ing chemical processes are illustrated.

1 Introduction

Fine particles, i.e., particulate matter less than or equal to

2.5 µm (PM2.5), worsen visibility (Zhang et al., 2012), pose

serious health risks (Nel, 2005; Walsh, 2014) and affect the

Earth’s climate significantly (Stocker et al., 2013). For de-

veloping countries like China and India, the attainment of

stringent ambient PM2.5 standards requires large reductions

of both primary particles and gaseous precursors (Wang and

Hao, 2012). Cost-effective control policies need to consider

the impact of emission reductions of multiple pollutants from

multiple regions and sectors, and over a wide range of strin-

gency levels. Therefore, it is strategically important to assess

the response of PM2.5 to its precursor emissions from mul-

tiple sources, which is typically nonlinear owing to complex

chemical mechanisms.
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Chemical transport models (CTMs) are the only viable

tools for evaluating the response of atmospheric concentra-

tions to different control measures (Hakami et al., 2003).

The most widely used technique to evaluate these responses

is sensitivity analysis, i.e., the computation of derivatives of

modeled concentrations with respect to emission rates. The

brute force method (Russell et al., 1995; Y. Zhang et al.,

2009; Zhao et al., 2011, 2013c; Dong et al., 2014), the most

frequently used method for sensitivity analysis, involves one-

at-a-time variable perturbation and repeated solution of the

model. It is straightforward but becomes inefficient for deci-

sion making when cost-effective emission controls need to

optimize over various pollutants from multiple sources. A

number of mathematic techniques embedded in CTMs have

been developed to simultaneously calculate the sensitivities

of the modeled concentrations to multiple variables, includ-

ing the Green’s function method (GFM) and its variations

(Hwang et al., 1978), automatic differentiation in Fortran

(ADIFOR; Carmichael et al., 1997), direct method (Dicker-

son et al., 1982), decoupled direct method (DDM; Yang et

al., 1997), and adjoint sensitivity analysis (Sandu et al., 2005;

Hakami et al., 2006). These methods are used for the calcula-

tion of first-order sensitivities, and are therefore not applica-

ble for large emission changes since the nonlinearity in atmo-

spheric responses is not captured by first-order sensitivities.

Improved techniques incorporating second-order or higher

sensitivity analysis, e.g., high-order decoupled direct method

(HDDM; Hakami et al., 2003), and discrete second-order ad-

joints (Sandu and Zhang, 2008), are capable of capturing the

nonlinearity for a perturbation of the emissions of the base

case. But as methods for local sensitivity analysis, they are

theoretically not reliable for predicting the response of at-

mospheric concentrations to considerably large (e.g., > 50–

60 %) emission reductions (Yarwood et al., 2013), which

are nevertheless very common in air quality policy-making

of developing countries such as China (Zhao et al., 2013b;

Wang et al., 2014). Recent studies (Yarwood et al., 2013; Si-

mon et al., 2013) tried to run HDDM at several emission lev-

els and used a piecewise function to predict the atmospheric

concentrations over a large emission range, but this modi-

fied method is only suitable for two to three variables. More

importantly, this group of methods could hardly predict the

response of atmospheric concentrations when multiple (> 3)

variables of precursor emissions change simultaneously.

Another group of methods involves building the relation-

ship between the modeled concentrations and emission rates

using statistical techniques. This type of method is appli-

cable for various CTMs regardless of the chemical mech-

anisms, user friendly for decision makers, and particularly

suitable for assessing the atmospheric response to large emis-

sion changes. Milford et al. (1989) and Fu et al. (2006)

simulated the ozone concentrations for a number of non-

methane volatile organic compound (NMVOC) and NOx

reduction combinations, and derived a set of EKMA-like

(Empirical Kinetics Modeling Approach) control isopleths,

but this method is only suitable for two to three variables.

Some other studies (Heyes et al., 1996; Wang and Milford,

2001; Amann et al., 2007) empirically established analytic

equations for the relationship between atmospheric concen-

trations and emission rates, and determined the parameters

based on relatively small numbers of model simulations.

However, Xing (2011) indicated that the nonlinearity in at-

mospheric responses could not be captured in metropolitan

regions unless fourth-order equations or higher were used,

which restricted the feasibility and accuracy of analytic equa-

tions (see details in the Supplement). The response surface

modeling (RSM) technique (denoted by the conventional

RSM technique in the following text to distinguish from

the extended response surface modeling (ERSM) technique

developed in this study), has been developed by using ad-

vanced statistical techniques to characterize the relationship

between model outputs and inputs. The number of scenar-

ios required to build RSM depends on the family of models

chosen. Recently, the conventional RSM technique has been

applied to O3- and PM2.5-related studies or policy making

in the United States (US Environmental Protection Agency,

2006a, b) and China (Xing et al., 2011; Wang et al., 2011).

In those applications, the relationships between air pollutant

concentrations and precursor emissions were established us-

ing the maximum likelihood estimation - empirical best lin-

ear unbiased predictors (MLE-EBLUPs) developed by Sant-

ner et al. (2003). Using this group of model, the number

of model scenarios required to build the RSM depends on

the variable number via a fourth-order equation or higher,

even if the preferable sampling method and model configu-

rations proposed by previous studies (Santner et al., 2003)

are used (see details in the Supplement). Therefore, the re-

quired scenario number would be tens of thousands for over

15 variables and even hundreds of thousands for over 25 vari-

ables, which is computationally impossible for most three-

dimensional CTMs. This proves a major limitation for the

conventional RSM technique. When considering the emis-

sions of multiple pollutants from multiple sectors in multiple

regions, assessing the nonlinear response of PM2.5 to emis-

sion changes presents a big challenge.

In response to this challenge, we developed a novel ex-

tended response surface modeling technique (ERSM v1.0) in

this study. Compared with the previous methods reviewed

above, this technique could characterize the nonlinear re-

sponse of PM2.5 and its chemical components to large and

simultaneous changes of multiple precursor emissions from

multiple regions and sectors with a reasonable number of

model scenarios. In particular, compared with the conven-

tional RSM technique, ERSM is applicable with an increased

number of variables and geographical regions. This tech-

nique is applied with the community multi-scale air quality

(CMAQ) model to evaluate the response of PM2.5 and its in-

organic components to precursor emissions over the Yangtze

River delta (YRD) region, one of the largest city clusters in

China. The major sources contributing to PM2.5 and its inor-
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ganic components in the YRD are identified and the nonlin-

earity in the response of PM2.5 to emission changes is char-

acterized.

2 Methodology

2.1 Development of the ERSM Technique

The ERSM technique is developed starting from the conven-

tional RSM technique; the latter characterizes the relation-

ships between a response variable (e.g., PM2.5 concentration)

and a set of control variables (i.e., emissions of particular

precursors from particular sources) following the procedures

described in our previous paper (Xing et al., 2011). First, a

number of emission control scenarios are generated with the

Latin hypercube sample (LHS) method (Iman et al., 1980),

a widely used sampling method which ensures that the en-

semble of random samples is representative of actual vari-

ability. Then the PM2.5 concentration for each emission sce-

nario is calculated with a regional CTM, and finally the RSM

prediction system is developed using a MPerK (MATLAB®

Parametric Empirical Kriging) program (Santner et al., 2003)

based on MLE-EBLUPs. The robustness of the conventional

RSM technique has been validated through leave-one-out

cross validation, out-of-sample validation, and 2-D isopleths

validation, as documented in our previous papers (Xing et al.,

2011; Wang et al., 2011).

The ERSM technique first quantifies the relationship be-

tween PM2.5 concentrations and the emissions of gaseous

precursors from each single region with the conventional

RSM technique following the procedures described in the

last paragraph, and then assesses the effects of inter-regional

transport of PM2.5 and its gaseous precursors on PM2.5 con-

centration in the target region. In order to quantify the in-

teraction among regions, we make a key assumption that the

emissions of gaseous precursors in the source region affect

PM2.5 concentrations in the target region through two major

processes: (1) the inter-regional transport of gaseous precur-

sors enhancing the chemical formation of secondary PM2.5

in the target region; (2) the formation of secondary PM2.5 in

the source region followed by transport to the target region.

We quantify the contribution of these two processes to the

interactions between any two regions, and assess the inter-

regional influences among multiple regions by integrating the

contributions of each process. Then, a particular approach

was implemented to improve the accuracy of the response

surface when the gaseous emissions from multiple regions

experience quite large reductions simultaneously.

Finally, PM2.5 concentrations are linearly dependent on

primary PM2.5 emissions; therefore, we predict the changes

of PM2.5 concentrations owing to the changes of primary

PM2.5 emissions by simply interpolating between the base

case and a sensitivity scenario, where one control variable of

primary PM2.5 is disturbed and the other variables stay con-

stant.

Since the method to develop the relationship between

PM2.5 concentrations and primary PM2.5 emissions is

straightforward, we will focus on the response of PM2.5 and

its chemical species to the emissions of gaseous precursors in

the following texts. To facilitate the explanation, we assume

a simplified but general case which involves three regions,

defined as A, B, and C, and three control variables in each

region, i.e., NOx emissions of sector 1, NOx emissions of

sector 2, and total NH3 emissions. The response variable is

PM2.5 concentration in the urban area of Region A. Although

the technique is illustrated for this simplified case, it is also

applicable for different response variable (e.g., NO−3 , SO2−
4 ,

and NH+4 ), and different numbers of regions, pollutants, or

sectors. A detailed description of the ERSM technique using

the simplified case is given below, and a flowchart illustrating

this technique is shown in Fig. 1.

The emission control scenarios required to construct

ERSM include (1) the base case, (2) N scenarios generated

by applying the LHS method for the control variables in each

single region, and (3) M scenarios generated by applying

the LHS method for the total emissions of gaseous precur-

sors (NOx and NH3 for this case) in all regions. The sce-

nario numbers N and M are determined to ensure that they

are sufficient to accurately construct the relationship between

the response variable and randomly changing control vari-

ables using conventional RSM technique. Specifically, we

gradually increase the scenario number and build the con-

ventional RSM repeatedly until the prediction performance

is good enough based on the results of out-of-sample vali-

dation (Xing et al., 2011; Wang et al., 2011). The mean nor-

malized error (MNE) and correlation coefficients are selected

as indices of prediction performance. In our previous paper

(Xing et al., 2011), we showed that the normalized mean er-

ror first decreases and then gradually remains stable, with

the increase of scenario number. In contrast, the correlation

coefficient first increases and then gradually becomes sta-

ble. We used a criterion that MNE < 1 % and correlation

coefficient > 0.99, and determined that 30 and 50 scenar-

ios were required to construct the conventional RSM for two

and three variables, respectively. Therefore, for the simplified

case, N = 50 and M = 30. The required scenario number for

the simplified case is therefore 1 (the base case)+ 50 (scenar-

ios for each single region) · 3 (number of regions)+ 30 (sce-

narios for the total precursor emissions in all regions)= 181.

Employing conventional RSM technique, we build the re-

sponse surface of PM2.5 concentration in Region A to the

concentrations of precursors in Region A using the base case

and the 50 scenarios where the variables in Region A change

randomly but those in other regions remain constant:

[PM2.5]A = [PM2.5]A0+RSM
PM2.5

A→A ([NOx]A, [NH3]A) , (1)
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Figure 1. A flowchart illustrating the ERSM technique using the simplified case described in Sect. 2.1. Different background colors represent

the procedures conducted using different groups of emission scenarios, as indicated on the top/bottom of the colored areas.

where [PM2.5]A, [NOx]A, and [NH3]A are the concentra-

tions of PM2.5, NOx, and NH3 in Region A, respectively.

[PM2.5]A0 is the PM2.5 concentration in Region A in the

base case. RSM represents the response surface we build

with conventional RSM technique; the superscript (PM2.5 in

this case) represents the response variable; the letters before

and after the arrow in the subscript (both are A in this case)

represent the source and receptor regions, respectively. Fur-

ther, we develop the relationship between precursor concen-

trations and the changes of precursor emissions in Region A

with the same 51 scenarios (we use NOx concentration as

example, and it is equivalent for NH3):

[NOx]A→A = (2)

RSM
NOx

A→A (Emis_NOx_1A,Emis_NOx_2A,Emis_NH3A) ,

where Emis_NOx_1A, Emis_NOx2A, and Emis_NH3A are

NOx emissions of sector 1, NOx emissions of sector 2, and

total NH3 emissions in Region A, respectively. [NOx]A→A,

representing the changes of NOx concentration in Region

A compared with the base case in response to the emission

changes in the same region, is defined as

[NOx]A→A = [NOx]A− [NOx]A0, (3)

where [NOx]A0 is the NOx concentration in Region A in the

base case.

Following similar procedures, the response of the concen-

trations of PM2.5 and its gaseous precursors in Region A to

the changes of precursor emissions in Region B (the same

method applies for Region C) can be developed using the

base case and the 50 scenarios where the variables in Re-

gion B change randomly but those in other regions remain

constant:

[PM2.5]B→A = (4)

RSM
PM2.5

B→A (Emis_NOx_1B,Emis_NOx_2B,Emis_NH3B) ,

[NOx]B→A = (5)

RSM
NOx

B→A (Emis_NOx_1B,Emis_NOx_2B,Emis_NH3B) ,

[NH3]B→A = (6)

RSM
NH3

B→A (Emis_NOx_1B,Emis_NOx_2B,Emis_NH3B) ,

where [PM2.5]B→A, [NOx]B→A, and [NH3]B→A are the

changes of PM2.5, NOx, and NH3 concentrations in Region A

compared with the base case in response to the emission

changes in Region B. Emis_NOx_1B, Emis_NOx_2B, and

Emis_NH3B are NOx emissions of sector 1, NOx emissions

of sector 2, and total NH3 emissions in Region B, respec-

tively.

As described above, the influence of gaseous precursor

emissions in Region B on PM2.5 concentration in Region A,

as expressed by Eq. (4), can be broken down into two ma-

jor processes: (1) the transport of gaseous precursors from

Region B to Region A that enhances the chemical formation

of secondary PM2.5 in Region A; (2) the formation of sec-

ondary PM2.5 in Region B followed by transport to Region A.

In order to quantify the contribution of the first process, we

Geosci. Model Dev., 8, 115–128, 2015 www.geosci-model-dev.net/8/115/2015/



B. Zhao et al.: Development and application of an ERSM technique v1.0 119

firstly use Eqs. (5) and (6) to quantify the effect of the trans-

port of gaseous precursors from Region B to Region A on

the precursor concentrations in Region A. How much does

the change of precursor concentrations in Region A enhance

the chemical formation of secondary PM2.5 in Region A?

To answer this question, we introduce a straightforward as-

sumption that the changes of PM2.5 concentration owing to

changes of precursor concentrations in the same region (de-

scribed by Eq. 1) are solely attributable to changes of local

chemical formation. Strictly speaking, the changes of pre-

cursor concentration in Region A might affect the precursor

concentrations/PM2.5 concentrations in other regions, which

might in turn affect the PM2.5 concentrations in Region A;

nevertheless, this indirect pathway is neglected in this study.

For the case study over the YRD region (see details of the

case study in Sect. 2.2), we estimate that, when the concen-

trations of NOx, SO2, and NH3 in a specific region (Shang-

hai, Jiangsu, or Zhejiang) are all reduced 50 %, the indirect

pathway could only account for less than 2 % of the total

PM2.5 reduction (see details in the Supplement). This con-

firms our assumption that the indirect pathway is negligible.

Based on this assumption, the contribution of the first pro-

cess to PM2.5 concentrations in Region A is expressed as

[PM2.5_Chem]B→A = (7)

RSM
PM2.5

A→A ([NOx]A0+ [NOx]B→A, [NH3]A0+ [NH3]B→A) ,

where [PM2.5_Chem]B→A is the change of PM2.5 concen-

tration in Region A affected by the changes of precursor

emissions in Region B through the inter-regional transport of

gaseous precursors (the first process). The contribution of the

second process to PM2.5 concentration in Region A (denoted

by [PM2.5_Trans]B→A defined below) is then calculated by

extracting the contribution of the first process from the total,

as expressed by Eq. (8):

[PM2.5_Trans]B→A = [PM2.5]B→A− [PM2.5_Chem]B→A,

(8)

where [PM2.5_Trans]B→A is the change of PM2.5 concentra-

tion in Region A affected by the changes of precursor emis-

sions in Region B through the transport of secondary PM2.5

(the second process).

We also need to know the relationship between

[PM2.5_Trans]B→A and the precursor emissions in Region B.

Therefore, we quantify this relationship using conventional

RSM technique, as described by Eq. (9).

[PM2.5_Trans]B→A = RSM
PM2.5_Trans
B→A (9)

(Emis_NOx_1B,Emis_NOx_2B,Emis_NH3B)

For the emission scenario whose PM2.5 concentration is to

be predicted, we presume that its emissions of gaseous pre-

cursors in all the three regions are arbitrary. In this case,

the change of PM2.5 is expressed as an integrated effect of

the changes of local precursor emissions, the inter-regional

transport of precursors enhancing local chemical reactions,

and the inter-regional transport of secondary PM2.5:

[PM2.5]A = [PM2.5]A0+RSM
PM2.5

A→A ([NOx]A0 (10)

+[NOx]A→A+ [NOx]B→A+ [NOx]C→A,

[NH3]A0+ [NH3]A→A+ [NH3]B→A+ [NH3]C→A)

+ [PM2.5_Trans]B→A+ [PM2.5_Trans]C→A,

where [PM2.5_Trans]B→A is calculated using Eq. (9),

and [PM2.5_Trans]C→A is calculated using an equiva-

lent equation for which the independent variables are the

gaseous emissions in Region C. It should be noted that

[PM2.5_Trans]B→A cannot be calculated using Eq. (8) be-

cause Eq. (8) holds only if the emissions in the regions other

than Region B remain at the base-case levels.

Strictly speaking, [PM2.5_Trans]B→A and

[PM2.5_Trans]C→A could interact with each other. In

other words, the changes of precursor emissions in Re-

gion C might affect the formation of secondary PM2.5

in Region B, which further affects the transport of sec-

ondary PM2.5 from Region B to Region A. Equations (9)

and (10) imply an assumption that [PM2.5_Trans]B→A

depends only on the precursor emissions in Region B, and

is independent of precursor emissions in other regions.

That is, the interaction between [PM2.5_Trans]B→A and

[PM2.5_Trans]C→A is neglected. For the case study over the

YRD region, we estimate that the reduction of precursor

emissions in Jiangsu and Others by 50 % could only change

[PM2.5_Trans]Zhejiang→Shanghai (i.e., the change of PM2.5

concentration in Shanghai affected by the changes of precur-

sor emissions in Zhejiang through the transport of secondary

PM2.5) by less than 1 % (see details in the Supplement). This

confirms the above-mentioned assumption.

It should be noted that Eq. (1), which relates the changes of

PM2.5 concentration in Region A (equivalent to the changes

of local chemical formation of PM2.5 as discussed above) to

local precursor concentrations, is established using the base

case and the 50 scenarios where the variables in Region A

change randomly but those in other regions remain constant.

This means Eq. (1) is only applicable for the concentration

range below (we use NOx as example, it is equivalent for

NH3):

[NOx]A ≥ [NOx]A,min = [NOx]A0+ [NOx]A→A,min (11)

= [NOx]A0+RSM
NOx

A→A (0,0,0) ,

where [NOx]A,min is defined as the minimum NOx concen-

tration in Region A when the emissions from Region A

change arbitrarily and those in other regions remain the base-

case levels.

Equation (10) relies on Eq. (1) but might exceed its

available range, i.e., [NOx]A < [NOx]A,min, or [NH3]A <

[NH3]A,min, when the precursor emissions in multiple re-

gions are reduced considerably at the same time. In this case,
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we quantify the changes of PM2.5 concentrations owing to

local chemical formation through a different approach. First,

the local chemical formation of PM2.5 can be tracked eas-

ily in widely used three-dimensional CTMs. For example,

a module named process analysis has already been imple-

mented in CMAQ, which outputs the contribution of major

physical and chemical processes to air pollutant concentra-

tions. The chemical formation of PM2.5 in Region A is esti-

mated as

Prod_PMA = AERO_PMA+CLDS_PMA, (12)

where AERO_PMA and CLDS_PMA are the contribution of

aerosol process and in-cloud process to PM2.5 concentration

in Region A, extracted from CMAQ using the module pro-

cess analysis. When the ERSM technique is applied with

other CTMs, the chemical formation of PM2.5 can be readily

extracted in a similar way. In addition, the chemical forma-

tion of PM2.5 in Region A and the resulting PM2.5 concentra-

tions present a linear relationship, which can be established

using the base case and the 50 scenarios where the variables

in Region A change randomly but those in other regions re-

main constant:

[PM2.5]A = k ·Prod_PMA+ b, (13)

where k and b are parameters determined through regression,

and the correlation coefficient is approximately 0.99. Then

we develop the relationship between the local chemical for-

mation of PM2.5 in Region A and local precursor concentra-

tions using the base case and the 30 scenarios, where con-

trol variables in all regions change together and the variables

for the same pollutant (e.g., Emis_NH3A, Emis_NH3B, and

Emis_NH3C) equal each other:

Prod_PMA = RSM
Prod_PM
A→A ([NOx]A, [NH3]A) . (14)

Combining Eqs. (13) and (14), and considering the effect of

inter-regional transport of PM2.5 (calculated using Eq. 9), we

derive

[PM2.5]A = k · RSM
Prod_PM
A→A ([NOx]A0 (15)

+[NOx]A→A+ [NOx]B→A+ [NOx]C→A,

[NH3]A0+ [NH3]A→A+ [NH3]B→A+ [NH3]C→A)+ b

+ [PM2.5_Trans]B→A+ [PM2.5_Trans]C→A(
applicable for[NOx]A < [NOx]A,min, or

[NH3]A < [NH3]A,min

)
.

It should be noted that the process analysis module could

also be used within the first approach (Eq. 10) to distinguish

the contributions of chemical formation and physical trans-

port. However, in the first approach, we could distinguish the

chemical and transport contributions even without this diag-

nostic module (see Eqs. 7 and 8). If this module was used, we

would need to develop the relationship between the chemi-

cally formed PM2.5 and the PM2.5 concentration, which was

an extra step compared with the first approach and added to

the complexity.

To assure the consistency between Eqs. (10) and (15), we

introduce transition intervals of ([NOx]A,min, [NOx]A,min+

δNOx) and ([NH3]A,min, [NH3]A,min+ δNH3
), where δNOx =

0.1 · [NOx]A0 and δNH3
= 0.1 · [NH3]A0. Equation (10) is

applied for [NOx]A ≥ [NOx]A,min+ δNOx and [NH3]A ≥

[NH3]A,min+ δNH3
, and we linearly interpolate between

Eqs. (10) and (15) for the transitional range. Based on the

case study in the YRD region (see Sect. 2.2), the discrepancy

between the two approaches is 1–8 % in the transition inter-

val.

2.2 Case study of the YRD region

The ERSM technique was applied with CMAQ version 4.7.1

over the YRD region of China. One-way, triple nesting sim-

ulation domains are used, as shown in Fig. 2. Domain 1 cov-

ers most of China and part of East Asia with a grid resolu-

tion of 36 km× 36 km; domain 2 covers the eastern China

with a grid resolution of 12 km× 12 km; domain 3 cov-

ers the YRD region with a grid resolution of 4 km× 4 km.

The Weather Research and Forecasting Model (WRF, ver-

sion 3.3) was used to generate the meteorological fields. The

physical and chemical options of CMAQ and WRF, the ge-

ographical projection, the vertical resolution, and the initial

and boundary conditions are consistent with our previous pa-

pers (Zhao et al., 2013a, c). A high-resolution anthropogenic

emission inventory for the YRD region developed by Fu et

al. (2013) was used. The anthropogenic emissions for other

regions in East Asia were from Zhao et al. (2013a, c) and

Wang et al. (2014), and emissions for other Asian countries

were taken from the INDEX-B inventory (Q. Zhang et al.,

2009). The biogenic emissions were calculated by the Model

of Emissions of Gases and Aerosols from Nature (MEGAN;

Guenther et al., 2006). The ERSM technique is applicable

for various timescales, ranging from a single day to several

years. The simulation period for this case study is January

and August in 2010, representing winter and summer, respec-

tively. One may want to extend the analysis to a full year. The

most rigorous way is to finish the CMAQ simulations for a

full year and build the response surfaces following the same

procedure. Alternatively, the relationship for a full year can

be roughly estimated using the average values of January and

August. Another approach is to finish the simulations for an

additional month in Spring and Autumn, and represent the

situation of a full year with the average values of the four typ-

ical months. The simulated meteorological parameters, and

concentrations of PM10, PM2.5, and their chemical compo-

nents agree fairly well with observation data, as described in

detail in the Supplement (Tables S3–S4; Figs. S3–S5).

Domain 3 was divided into 4 regions (see Fig. 2), i.e.,

Shanghai, southern Jiangsu province (Jiangsu), northern

Zhejiang province (Zhejiang), and other regions (Others). We

developed two RSM/ERSM prediction systems (Table 1); the
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Domain 1

Domain 2

Domain 3
Shanghai

Southern
Jiangsu

Northern
Zhejiang

Others

Figure 2. Triple nesting domains used in CMAQ simulation (left)

and the definition of four regions in the innermost domain, denoted

by different colors (right). The black lines in the left figure represent

provincial boundaries; the thick black lines and the thin grey lines in

the right figure represent the provincial boundaries and city bound-

aries, respectively. The dark blue grids in the right figure represent

the urban areas of major cities.

response variables for both of them are the concentrations of

PM2.5, SO2−
4 , and NO−3 over the urban areas of major cities

(see Fig. 2) in these four regions. The first prediction sys-

tem used the conventional RSM technique and 101 emission

control scenarios generated by the LHS method to map atmo-

spheric concentrations versus total emissions of NOx, SO2,

NH3, NMVOC, and PM2.5 in domain 3. For the second pre-

diction system, the emissions of gaseous PM2.5 precursors

and primary PM2.5 in each of the four regions are catego-

rized into six and three control variables, respectively (see

Table 1), resulting in 36 control variables in total. Note that

we did not consider NMVOC emissions in the second predic-

tion system, because the contribution of NMVOC to PM2.5

concentrations is small in the current CMAQ model, mainly

due to the significant underestimation of secondary organic

aerosol (SOA) formation (Carlton et al., 2010). We gener-

ated 663 scenarios (see Table 1) to build the response sur-

face, following the method to create emission scenarios for

the ERSM technique (see Sect. 2.1). In detail, the scenarios

include (1) 1 CMAQ base case; (2) N = 150 scenarios gen-

erated by applying LHS method for the control variables of

gaseous precursors in Shanghai, 150 scenarios generated in

the same way for Jiangsu, 150 scenarios for Zhejiang, and

150 scenarios for Others; (3) M = 50 scenarios generated by

applying LHS method for the total emissions of NOx, SO2,

and NH3 in all regions; and (4) 12 scenarios where one of

the control variables of primary PM2.5 emissions is set to

0.25 for each scenario. Here the values N = 150 and M = 50

are determined according to the numerical experiments con-

ducted in our previous studies (Xing et al., 2011; Wang et

al., 2011), which showed that the response surface for six

and three variables could be built with good prediction per-

formance (MNE < 1 %; correlation coefficient > 0.99) us-

ing 150 and 50 scenarios, respectively. Finally, we generated

40 independent scenarios for out-of-sample validation, as de-

scribed in detail in Sect. 3.1.
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Figure 3. Comparison of PM2.5 concentrations predicted by the

ERSM technique with out-of-sample CMAQ simulations. The

dashed line is the one-to-one line indicating perfect agreement.

3 Results and discussion

3.1 Validation of ERSM performance

The performance of the conventional RSM technique has

been well evaluated in our previous studies (Xing et al., 2011;

Wang et al., 2011). In this study we focus on the validation

of the ERSM technique. Using the prediction system built

with the ERSM technique, we predicted the PM2.5 concen-

trations for 40 out-of-sample control scenarios, i.e., scenarios

independent from those used to build the ERSM prediction

system, and compared with the corresponding CMAQ sim-

ulations. These 40 out-of-sample scenarios include 32 cases

(case 1–32) where the control variables of gaseous precur-

sors change but those of primary PM2.5 stay the same as the

base case, four cases (case 33–36) the other way around, and

four cases (case 37–40) where control variables of gaseous

precursors and primary PM2.5 change simultaneously. Most

cases are generated randomly with the LHS method (case 4–

6, 10–12, 16–18, 22–24, 28–40), and some cases are de-

signed where all control variables are subject to large emis-

sion changes (case 1–3, 7–9, 13–15, 19–21, 25–27). A more

detailed description of the out-of-sample control scenarios is

given in Table S5. Two statistical indices, the normalized er-

ror (NE) and MNE are defined as follows:

NE= |Pi − Si |/Si, (16)

MNE=
1

Ns

Ns∑
i=1

[
|Pi − Si |/Si

]
, (17)

where Pi and Si are the ERSM-predicted and CMAQ-

simulated value of the ith out-of-sample scenario; Ns is

the number of out-of-sample scenarios. Figure 3 compares

the ERSM-predicted and CMAQ-simulated PM2.5 concen-

trations for the out-of-sample scenarios using scatterplots

(the raw data for the scatterplots are given in Table S6–S7).

Table 2 shows the statistical results for the comparison. It
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Table 1. Description of the RSM /ERSM prediction systems developed in this study.

Variable Scenario

Method number Control variables number Scenario details

Conventional

RSM

technique

5 total emissions of NOx, SO2, NH3,

NMVOC, and PM2.5

101 one CMAQ base case;

100∗ scenarios generated by applying

LHS method for the five variables.

ERSM

technique

36 nine variables in each of the four regions,

including six gaseous variables, i.e.,

(1) NOx/power plants

(2) NOx/industrial and residential

(3) NOx/transportation

(4) SO2/power plants

(5) SO2/industrial and residential

(6) NH3/all sectors,

and three primary PM2.5 variables, i.e.,

(7) PM2.5/power plants

(8) PM2.5/industrial and residential

(9) PM2.5/transportation.

663 one CMAQ base case;

600 scenarios, including 150∗ scenarios

generated by applying LHS method for

the gaseous control variables in Shanghai,

150 scenarios generated in the same way

for Jiangsu, 150 scenarios for Zhejiang,

150 scenarios for Others;

50∗ scenarios generated by applying LHS

method for the total NOx, SO2 and NH3

emissions;

12 scenarios where one primary PM2.5

control variable is set to 0.25 for each sce-

nario.

∗ 100, 150 and 50 scenarios are needed for the response surfaces for 5, 6 and 3 variables, respectively (Xing et al., 2011; Wang et al., 2011).

can be seen that the ERSM predictions and CMAQ simula-

tions agree well with each other. The correlation coefficients

are larger than 0.98 and 0.99, and the MNEs are less than 1

and 2 % for January and August, respectively. The maximum

NEs could be as large as 6 and 10 % in January and August,

respectively, but the NEs for 95 % of all out-of-sample sce-

narios fall below 3.5 %. NEs exceeding 3.5 % happen only

for the scenario where all control variables are reduced by

90 % (case 25). In addition, the maximum NEs for case 33–

36 are all within 0.2 %, indicating a perfect linear relation-

ship between PM2.5 concentrations and primary PM2.5 emis-

sions.

We further evaluated the performance of the ERSM

technique by comparing the 2-D isopleths of PM2.5 con-

centrations in response to the simultaneous changes of

NOx /SO2 /NH3 emissions in all regions derived from both

the conventional RSM and the ERSM technique. Figures 4,

S6, and S7 show the isopleths of PM2.5 concentrations in

Shanghai, Jiangsu, and Zhejiang, respectively. The x and

y axes of the figures show the emission ratio, defined as

the ratios of the changed emissions to the emissions in the

base case. For example, an emission ratio of 1.5 means the

emissions of a particular control variable increase by 50 %

from the base case. The different colors represent different

PM2.5 concentrations. The comparison shows that the shapes

of isopleths derived from both prediction systems agree fairly

well with each other, although the isopleths predicted by the

ERSM technique are not as smooth as those predicted by the

conventional RSM technique owing to a much larger variable

number. The consistency between the conventional RSM and

ERSM prediction systems indicates that the ERSM technique

could reproduce fairly well the response of PM2.5 to contin-

uous changes of precursor emission levels between zero and

150 %. Although model simulations definitely have numeri-

cal errors, the success in capturing the atmospheric responses

to continuous emission changes over a full range of control

levels ensures that these errors could not challenge the major

conclusions about the effectiveness of air pollution control

measures.

3.2 Response of PM2.5 to precursor emissions

The ERSM prediction system could instantly evaluate the re-

sponse of PM2.5 and its chemical components to the inde-

pendent or simultaneous changes of the precursor emissions

from multiple sectors and regions, over a full range of con-

trol levels. Therefore, it improves the identification of major

precursors, regions, and sectors contributing to PM2.5 pollu-

tion. This unique capability distinguishes the ERSM from the

previous sensitivity analysis methods.

Following previous sensitivity studies, we define PM2.5

sensitivity as the change ratio of PM2.5 concentration divided

by the reduction ratio of emissions:

SXa =
[(
C∗−Ca

)
/C∗

]
/(1− a), (18)

where SXa is the PM2.5 sensitivity to emission source X at

its emission ratio a, Ca is the concentration of PM2.5 when

the emission ratio of X is a, and C∗ is the concentration of

PM2.5 in the base case (when emission ratio of X is 1). Fig-

ure 5 shows the PM2.5 sensitivity to the stepped control of in-

dividual air pollutants, and Fig. 6 shows the PM2.5 sensitivity

to the stepped control of individual air pollutants from indi-
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January August 
Conventional RSM ERSM Conventional RSM ERSM 

NOX 
vs 
NH3 

   

NOX 
vs 
SO2 

   

SO2 
vs 
NH3 

Figure 4. Comparison of the 2-D isopleths of PM2.5 concentrations in Shanghai in response to the simultaneous changes of precursor

emissions in all regions derived from the conventional RSM technique and the ERSM technique. The x and y axes shows the emission ratio,

defined as the ratios of the changed emissions to the emissions in the base case. The different colors represent different PM2.5 concentrations

(unit: µg m−3).

Figure 5. Sensitivity of PM2.5 concentrations to the stepped con-

trol of individual air pollutants. The x axis shows the reduction ratio

(i.e., 1− emission ratio). The x axis shows PM2.5 sensitivity, which

is defined as the change ratio of concentration divided by the re-

duction ratio of emissions. The colored bars denote the PM2.5 sen-

sitivities when a particular pollutant is controlled, while the others

stay the same as the base case; the red dotted line denotes the PM2.5

sensitivity when all emission sources are controlled simultaneously.

vidual sectors. Figure 5 can be derived from the prediction

systems built with both the conventional RSM and ERSM

technique, except that the latter did not evaluate the effects

of the changes of NMVOC emissions. The results derived

from both systems are consistent, and we present those de-

rived from the conventional technique to include the effects

of NMVOC. Figure 6 is derived from the ERSM technique.

In January, PM2.5 concentrations are sensitive to the pri-

mary PM2.5 emissions, followed by NH3, and relatively in-

sensitive to NOx and SO2. The contribution of primary PM2.5

is dominated by the emissions from industrial and residential

sources. During August, gaseous precursors make larger con-

tributions to PM2.5 concentrations than primary PM2.5, with

similar contributions from NH3, SO2, and NOx. The NOx

emissions from power plants, the industrial and residential

sector, and the transportation sector play similar roles; the

SO2 emissions from the industrial and residential sector have

larger effects on PM2.5 than those from power plants due to

larger emissions and lower stack heights. NMVOC emissions

have minor effect on PM2.5 concentrations, mainly due to the

significant underestimation of SOA in the current version of

CMAQ, which is also a common issue for most widely used

CTMs (Robinson et al., 2007).

The PM2.5 sensitivities to primary PM2.5 emissions are

approximately the same at various control levels. However,

the PM2.5 sensitivity to gaseous precursors increases no-

tably when more control efforts are taken, mainly attributable

to transition between NH3-rich and NH3-poor conditions.

Specifically, a particular pollutant (SO2, NOx, or NH3), when

subject to larger reductions compared with others, will be-

come the limiting factor for inorganic aerosol chemistry. In

January, the response of PM2.5 to NOx emissions is nega-

tive for relatively small reductions (< 40–70 %), but becomes

positive for large reductions (> 40–70 %). This strong non-

linearity has also been confirmed by the previous studies

(Zhao et al., 2013c; Dong et al., 2014). Relatively small re-

ductions of NOx emissions lead to the increase of O3 and

HOx radicals due to a NMVOC-limited regime for photo-

chemistry, enhancing the formation of sulfate (see Fig. 7). In
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January August

Figure 6. Sensitivity of PM2.5 concentrations to the stepped con-

trol of individual air pollutants from individual sectors. The x axis

shows the reduction ratio (i.e., 1− emission ratio). The y axis shows

PM2.5 sensitivity, which is defined as the change ratio of concen-

tration divided by the reduction ratio of emissions. The colored bars

denote the PM2.5 sensitivities when a particular emission source is

controlled, while the others stay the same as the base case; the red

dotted line denotes the PM2.5 sensitivity when all emission sources

are controlled simultaneously.

addition, the increase of O3 and HOx radicals also acceler-

ates the nighttime formation of N2O5 and HNO3 through the

NO2+O3 reaction, thereby enhancing the formation of ni-

trate aerosols (see Fig. 7). As an integrated effect, the PM2.5

concentrations increase with relatively small reductions of

NOX emissions. Under large reductions of NOX, PM2.5 con-

centrations decrease, resulting from the simultaneous decline

of NO2, O3 and HOX radical concentrations (NOx-limited

regime for photochemistry). These chemical processes also

explain why the reduction of NOx emissions of a single emis-

sion sector has negative effects on PM2.5 even at a large re-

duction ratio (see Fig. 6). Simultaneous reductions of NOx

emissions from multiple sectors are essential for reducing

PM2.5 concentrations. If all pollutants are controlled simulta-

neously, the sensitivity of PM2.5 concentrations to emission

reductions also generally becomes larger when more control

effort is taken, especially in January (see red dotted line in

Figs. 5 and 6). Note that the effects of reducing individual

pollutants (from individual sectors) and reducing all of them

together are different. In most cases the combined effect is

lower than the sum of individual effects, which can be ex-

plained by the overlap effects of reductions in both species

involved in the formation of ammonium sulfate and ammo-

nium nitrate. However, it is sometimes the other way around

in January, as shown in Fig. 6. As mentioned above, in Jan-

uary, the response of PM2.5 to the reduction of NOx emis-

sions from a single emission sector is negative since the emis-

sion reduction is small compared with the total NOx emis-

sions. Therefore, when the NOx emissions from each sector

are reduced individually (the bars), we sum up the negative

effects. In contrast, when all pollutants from all sectors are

reduced simultaneously (the red dotted line), the NOx emis-

sion reduction at a large ratio could have a positive effect on

Figure 7. Sensitivity of NO−
3

and SO2−
4

concentrations to the

stepped control of individual air pollutants in individual regions.

The x axis shows the reduction ratio (i.e., 1− emission ratio).

The y axis shows NO−
3
/SO2−

4
sensitivity, which is defined as the

change ratio of NO−
3
/SO2−

4
concentration divided by the reduction

ratio of emissions. The colored bars denote the NO−
3
/SO2−

4
sen-

sitivities when a particular emission source is controlled, while the

others stay the same as the base case; the red dotted line denotes the

NO−
3
/SO2−

4
sensitivity when all emission sources are controlled

simultaneously.

PM2.5 reduction. This is why the combined effect sometimes

exceeds the sum of individual effects in January.

Then, we evaluate the contribution of primary PM2.5 and

gaseous precursor (SO2, NOx, and NH3) emissions from dif-

ferent regions to PM2.5 concentrations based on the ERSM

technique (Table 3). The contributions of total primary PM2.5

emissions (39–46 % in January, and 43–46 % in August) are

dominated by local sources (32–36 % in January, and 37–

43 % in August). Total gaseous precursor emissions in the

domain contribute 25–36 and 48–50 % of PM2.5 concentra-

tions in January and August, respectively. The relative im-

portance of gaseous precursor emissions from the other re-

gions compared with local precursor emissions is generally

higher than that of primary PM2.5; this trend is especially

evident in August. In Shanghai, the gaseous precursor emis-

sions from Jiangsu and Zhejiang even contribute more to the

PM2.5 concentration than local precursor emissions during

August. In January, long-range transport has a significant ef-

fect on PM2.5 concentrations (25–34 % contribution) due to

the northerly monsoon, contrasted by the minor effect in Au-

gust (7–8 % contribution).

3.3 Response of SO2−
4

and NO−
3

to precursor emissions

We pay special attention to secondary inorganic aerosols

(SIAs) because SIAs contribute 28–55 % of total PM2.5 con-

centrations based on our simulation. Figure 7 shows the sen-

sitivity of NO−3 /SO2−
4 concentrations to the emissions of

individual air pollutants in individual regions; Fig. S8 shows
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Table 2. Comparison of PM2.5 concentrations predicted by the ERSM technique with out-of-sample CMAQ simulations.

January August

Shanghai Jiangsu Zhejiang Shanghai Jiangsu Zhejiang

Correlation coefficient 0.989 0.980 0.987 0.995 0.997 0.994

Mean normalized error (MNE) 1.0 % 0.7 % 0.9 % 0.8 % 0.5 % 1.7 %

Maximum normalized error (NE) 4.5 % 3.0 % 5.2 % 10.2 % 7.7 % 9.6 %

95 % percentile of NEs 2.8 % 2.7 % 3.5 % 3.0 % 1.6 % 3.1 %

MNE (case 33–36) 0.0 % 0.0 % 0.0 % 0.1 % 0.1 % 0.1 %

Maximum NE (case 33–36) 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.2 %

Table 3. Contribution of primary PM2.5 and gaseous precursor (NOx, SO2, NH3) emissions from individual regions to PM2.5 concentrations.

January August

Shanghai Jiangsu Zhejiang Shanghai Jiangsu Zhejiang

Emissions of primary PM2.5 in Shanghai 35.5 % 1.1 % 1.3 % 36.9 % 1.0 % 0.4 %

Emissions of primary PM2.5 in Jiangsu 5.6 % 35.0 % 4.1 % 2.2 % 37.5 % 0.9 %

Emissions of primary PM2.5 in Zhejiang 1.9 % 2.3 % 32.2 % 4.3 % 2.5 % 42.8 %

Emissions of primary PM2.5 in Others 2.9 % 2.9 % 1.7 % 2.0 % 1.9 % 1.5 %

Emissions of primary PM2.5 in four regions 46.0 % 41.2 % 39.4 % 45.4 % 42.9 % 45.7 %

Emissions of NOx, SO2, and NH3 in Shanghai 11.3 % 0.2 % 1.0 % 18.9 % 1.8 % 2.5 %

Emissions of NOx, SO2, and NH3 in Jiangsu 3.3 % 11.7 % 3.9 % 5.2 % 30.1 % 4.3 %

Emissions of NOx, SO2, and NH3 in Zhejiang 2.7 % 4.3 % 20.9 % 18.3 % 12.6 % 36.3 %

Emissions of NOx, SO2, and NH3 in Others 1.7 % 2.4 % 2.8 % 5.7 % 4.6 % 7.2 %

Emissions of NOx, SO2, and NH3 in four regions 25.2 % 24.9 % 35.7 % 48.3 % 50.4 % 47.7 %

Emissions of primary PM2.5 in the outer domain 7.4 % 9.1 % 6.3 % 0.7 % 0.8 % 1.6 %

Emissions of NOx, SO2, and NH3 in outer domain 20.6 % 24.5 % 19.1 % 6.6 % 7.1 % 6.1 %

the sensitivity of NO−3 /SO2−
4 concentrations to the emis-

sions of individual air pollutants from individual sectors.

Both figures are derived from the prediction system built with

the ERSM technique. In January, NO−3 concentration is most

sensitive to NH3 emissions, especially local NH3 emissions.

The effect of local NOx emissions on NO−3 concentrations

changes from negative to positive when the controls of NOx

emissions become more and more stringent. This pattern is

similar to that of PM2.5 described above. The NOx emissions

from the industrial and residential sector and the transporta-

tion sector, when controlled individually, both make nega-

tive contribution to the reduction of NO−3 concentrations. In

contrast, the control of NOx emissions from power plants

often favors the reduction of NO−3 , because power plants

tend to affect the fine particles over a larger spatial scale

due to their higher release heights, and because the photo-

chemistry typically changes from a NMVOC-limited regime

in surface metropolis areas to a NOx-limited regime in vast

rural areas or the upper air (Xing et al., 2011). In August,

NO−3 concentrations are mainly affected by local emissions

of NH3 and NOx, as well as NOx emissions in upwind re-

gions, and NOx emissions make a much larger positive con-

tribution to NO−3 concentrations compared with January. Fac-

tors accounting for this difference include a stronger NH3-

rich condition for inorganic aerosol chemistry (Wang et al.,

2011), and a weaker NMVOC-limited (in metropolis areas)

or a stronger NOx-limited (in rural areas) photochemical con-

dition in August. The contributions of NOx emissions from

power plants, the industrial and residential sector, and the

transportation sector are similar to each other.

In January, SO2−
4 concentrations are dominated by the

changes of local SO2 emissions, followed by local NH3 emis-

sions. NOx emissions have a negative effect on SO2−
4 due to

both thermodynamic (competition with SO2 for NH3) and

photochemical effect (negatively correlated with O3 and HOx

radicals). In August, SO2−
4 is most sensitive to local SO2 and

NH3 emissions. In Shanghai, where local emissions are rela-

tively small compared with emissions in other regions, the

SO2 and NH3 emissions from upwind regions might con-

tribute more to SO2−
4 concentration than local emissions. In

both January and August, the SO2 emissions of the indus-

trial and residential sector have larger effects on SO2−
4 con-

centrations than those of power plants, partly due to larger

emissions and lower stack heights.
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4 Conclusions, implications, and limitations

In this study, we developed a novel extended response sur-

face modeling technique (ERSM v1.0). As an advantage over

previous models or techniques, this technique could char-

acterize the nonlinear response of PM2.5 and its chemical

components to large and simultaneous changes of multiple

precursor emissions from multiple regions and sectors with

a reasonable number of model scenarios. The ERSM tech-

nique was developed starting from the conventional RSM

technique; it first quantifies the relationship between PM2.5

concentrations and the emissions of gaseous precursors from

each single region with the conventional RSM technique, and

then assesses the effects of inter-regional transport of PM2.5

and its gaseous precursors on PM2.5 concentrations in the

target region. A particular approach was implemented to im-

prove the accuracy of the response surface when the emis-

sions from multiple regions experience quite large reductions

simultaneously.

We applied the ERSM technique with CMAQ version

4.7.1 over the YRD region of China, and mapped the con-

centrations of PM2.5 and its inorganic components versus 36

control variables. Using the ERSM technique, we predicted

the PM2.5 concentrations for 40 independent control scenar-

ios, and compared these with the corresponding CMAQ sim-

ulations. The comparison results show that the ERSM pre-

dictions and CMAQ simulations agree well with each other.

The correlation coefficients are larger than 0.98 and 0.99,

and the MNEs are less than 1 and 2 %, respectively, for

January and August, We also compared the 2-D isopleths

of PM2.5 concentrations in response to the changes of pre-

cursor emissions derived from both the conventional RSM

and the ERSM technique, and demonstrated that the ERSM

technique could reproduce fairly well the response of PM2.5

to continuous changes of precursor emission levels between

zero and 150 %.

Employing the ERSM technique, we identified the major

sources contributing to PM2.5 and its inorganic components

in the YRD region. For example, in January, PM2.5 concen-

trations are sensitive to the primary PM2.5 emissions, fol-

lowed by NH3, and relatively insensitive to NOx and SO2.

During August, gaseous precursors make larger contributions

to PM2.5 concentrations than primary PM2.5, with similar

contributions from NH3, SO2, and NOx. We also character-

ized the nonlinearity in the response of PM2.5 to emission

changes and illustrated the underlying chemical processes.

For example, the sensitivity of PM2.5 to gaseous precursors

increases notably when more control efforts are taken, due to

the transition between NH3-rich and NH3-poor conditions.

In January, the response of PM2.5 to NOx emissions is nega-

tive for relatively small reductions, but becomes positive for

large reductions.

The assessment of the response of PM2.5 and its inorganic

components to precursor emissions over the YRD region has

important policy implications. First, the control of primary

PM2.5 emissions, especially those of the industrial and resi-

dential sources, should be enhanced considering their large

contribution to PM2.5 concentrations. Second, NOx emis-

sions need be reduced substantially in order to mitigate the

adverse effect on PM2.5 concentrations at relatively small re-

duction ratio. Third, the control of NH3 should be imple-

mented in heavy-pollution areas in winter due to its signif-

icant effect on PM2.5. Fourth, it is essential to implement

region-dependent emission reduction targets based on the

above-quantified interactions among regions.

Except for identification of major emission sources, the

ERSM technique has several other practical applications.

First, it allows us to calculate the required emission reduc-

tions to attain a certain environmental target. Specifically,

we alter the emission ratios of various control variables

and calculate the real-time response of PM2.5 concentrations

with ERSM repeatedly until the standard is attained. Sec-

ond, ERSM can be applied to design optimal control op-

tions, which could be determined through cost-effective op-

timization once ERSM is coupled with control cost mod-

els/functions that link the emission reductions with private

costs.

The ERSM technique still has several limitations. First, the

technique currently does not consider the variability of mete-

orological conditions. Second, although the ERSM technique

represents an essential improvement compared with the con-

ventional RSM technique, it usually needs over 500 emis-

sion scenarios for a medium-sized problem. Future studies

should be done to further reduce the number of scenarios re-

quired while assuring the accuracy of the response surfaces.

Third, the emission scenarios required to build the response

surface depends strictly on the experimental design (e.g., se-

lection of geographical regions and control variables). It is

not necessary to recompute lots of CTM simulations if we

make minor revision on the experimental design. For exam-

ple, if one more geographical area is added, we just need to

(1) add a parallel group of emission scenarios where the con-

trol variables of the added geographical area change, while

those of the other regions remain at base-case levels, and

(2) recompute the emission scenarios where the control vari-

ables of all regions change simultaneously. Another exam-

ple, if the selected emission sectors in a specific geograph-

ical area are changed, we just need to recompute the group

of emission scenarios where the control variables of this ge-

ographical area change, while those of the other regions re-

main at base-case levels. However, if the experimental design

is significantly changed (e.g., change of selected pollutants,

or change of selected emission sectors in all regions), most

of the CTM simulations need to be recomputed. The users

need to carefully design the experiment before performing

the CTM simulations.
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Code availability

All codes needed to run ERSM v1.0 in MATLAB® are avail-

able upon request. Any potential user interested in the model

should contact S. X. Wang, and any feedback with regard

to the model are welcome. Procedures to run the model and

sources of external data files are properly documented in a

Manual.doc file.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-115-2015-supplement.
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