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Abstract. We describe the design and implementation of cli-
mate fast input/output (CFIO), a fast input/output (I/O) li-
brary for high-resolution climate models. CFIO provides a
simple method for modelers to overlap the I/O phase with
the computing phase automatically, so as to shorten the run-
ning time of numerical simulations. To minimize the code
modifications required for porting, CFIO provides similar
interfaces and features to parallel Network Common Data
Form (PnetCDF), which is one of the most widely used I/O
libraries in climate models. We deployed CFIO in three high-
resolution climate models, including two ocean models (POP
and LICOM) and one sea ice model (CICE). The experimen-
tal results show that CFIO improves the performance of cli-
mate models significantly versus the original serial I/O ap-
proach. When running with CFIO at 0.1◦ resolution with
about 1000 CPU cores, we managed to reduce the running
time by factors of 7.9, 4.6 and 2.0 for POP, CICE, and LI-
COM, respectively. We also compared the performance of
CFIO against two existing libraries, PnetCDF and parallel
I/O (PIO), in different scenarios. For scenarios with both data
output and computations, CFIO decreases the I/O overhead
compared to PnetCDF and PIO.

1 Introduction

Scientific computing for climate modeling has undergone
radical changes over the past decade. One major trend is to
increase the resolution of the models, so as to provide finer
simulation of physical processes of the atmosphere, ocean,
land, and sea ice. This trend is motivated by the availability
of supercomputers with core counts in the range of tens to
hundreds of thousands.

With a higher resolution, the amount of data generated by
climate models will be significantly larger than before. In or-
der to provide scientific data for the Fifth Assessment Report
of the United Nations Intergovernmental Panel on Climate
Change (IPCC AR5), modelers must run coupled climate
models to simulate various types of climate change scenar-
ios. The experiments in general last for months and gener-
ate hundreds of terabytes of data. The output of such a large
amount of data results in severe performance degradation for
numerical simulation experiments.

To improve the I/O performance of climate models, pre-
vious efforts and I/O libraries include a message passing
interface-input/output (MPI-IO,Corbetty et al., 1996), the
Network Common Data Form (netCDF,Rew and Davis,
1990), parallel netCDF (PnetCDF,Li et al., 2003), paral-
lel I/O (PIO, Dennis et al., 2012), and adaptable I/O system
(ADIOS, Lofstead et al., 2009, Lofstead et al., 2008).

Most of the above libraries attempt to improve the I/O
throughput through parallelization techniques. For real ap-
plications, the overall running time mainly consists of two
phases: computing time and I/O time. While the above li-
braries are helpful for shortening the I/O time of large-scale
data, the computing phase still needs to wait for the I/O phase
in iterative simulations. In a sense, the I/O phase and the
computing phase are still serial with respect to each other.
There is opportunity to improve I/O efficiency through over-
lapping the I/O phase and the computing phase.

With these issues in mind, we designed and implemented
CFIO, a parallel I/O library that is specifically developed for
climate models. The main idea of CFIO is to apply an I/O
forwarding technique with client–sever architecture to pro-
vide automatic overlapping of I/O and computing. The strat-
egy of overlapping I/O with computing as proposed in CFIO
is complementary to existing parallel I/O libraries. Indeed,
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CFIO calls the PnetCDF functions directly to implement the
parallel write and read on the CFIO server side. To minimize
the code modifications required for porting, CFIO provides
similar interfaces and features to PnetCDF, which is widely
used by the climate community and different climate models.

We tested CFIO on three real-climate models: Parallel
Ocean Program (POP,Smith et al., 2010), Community Ice
CodE (CICE,Hunke and Lipscomb, 2010) and LASG/IAP
climate system ocean model (LICOM,Yu et al., 2012). When
running at 0.1◦ resolution with about 1000 CPU cores, we
managed to decrease the running time by factors of 7.9, 4.6
and 2.0 for POP, CICE, and LICOM, respectively. We also
compared the performance of CFIO against PnetCDF and
PIO in different scenarios. Although CFIO has slightly lower
throughput than PnetCDF and PIO for scenarios with only
data output, CFIO decreases the I/O overhead compared to
PnetCDF and PIO for scenarios with both data output and
computations, resulting in better overall performance for real
climate models.

The current release of CFIO is version 1.20. The source
code and documentation for CFIO can be downloaded from
the Github website (https://github.com/cfio/cfio).

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the motivation and the main idea of CFIO.
The design and architecture of CFIO is presented in Sect.3
in detail. Section4 introduces the interface of CFIO and
provides a simple example. Section5 evaluates and analy-
ses the performance of CFIO. Section6 introduces related
work. Conclusions and possible future work are discussed in
Sect.7.

2 Motivation

In traditional climate models, the computing phase and the
I/O phase run alternately. The computing phase performs
simulation for certain time, and then the I/O phase outputs
results following each computing phase. Namely, the com-
puting phase and the I/O phase for traditional climate models
are serial.

In fact, for most current climate models, the initial con-
ditions or data sets for processing are loaded at the starting
phase. Then the restart files, which contain all of the initial
condition information that is necessary to restart from a pre-
vious simulation, will be written to the disk at a fixed fre-
quency. Finally, the historic files, which include all of the di-
agnostic variables, will also be written to the disk at certain
frequency. In general, there are no random seeks, no read-
after-write operations, and writing operations are usually ap-
pend only for all of the appropriate parts of the initial files,
restart files and historic files.

Because of the append-only data accessing patterns, the
computing step does not need to wait for the completion
of the last I/O step. Motivated by this observation, we con-
sider the possibility of overlapping the I/O phase with the

[!t]

Fig. 1.Overlapping I/O with Computing.

computing phase. As shown in Fig.1, the computing and the
I/O phases can be performed in parallel. Compared with the
serial computing and I/O method, the I/O time will be hid-
den by the computing time in a parallel computing and I/O
method. This asynchronous computation and I/O will be use-
ful to shorten the running time of climate models.

Another advantage of overlapping the computing phase
with the I/O phase is that the efficiency of computing and
storage resources can be improved. For the serial method,
the computing resource is idle during the I/O phase. On the
other hand, the storage resource is idle during the comput-
ing phase. For the parallel method, the computing phase and
the I/O phase are both pipelined. The computing and storage
resources are always fully utilized.

3 Design of CFIO

This section describes the general design of CFIO. We first
introduce the system architecture of CFIO and discuss the
I/O forwarding technique, which is the main method to
achieve the overlapping of the computing phase and the
I/O phase. We then analyze the maximum possible speedup
we can achieve by using CFIO. We also discuss the design
options for synchronous and asynchronous communication
methods of I/O forwarding.

3.1 System architecture of CFIO

Overlapping computation with communication and I/O is an
established method for improving the performance of a par-
allel program. CFIO takes the advantage of the computing
pattern to reduce the I/O overhead, and uses I/O forwarding
to automate the overlapping of I/O and computing.
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Fig. 2.The schematic diagram of the I/O forwarding technique.

A diagram of the I/O forwarding technique is shown in
Fig. 2. The computing processes mainly handle the numer-
ical computing tasks, while the I/O processes mainly han-
dle the tasks of output data. All of the I/O requests gener-
ated in the computing processes will be forwarded to the
I/O processes. The computing processes can therefore per-
form continuously without waiting for I/O to complete. The
I/O processes output the data through calling the underlying
PnetCDF interfaces. The I/O processes form a large buffer
pool in memory and can be used to exchange data efficiently.

When the climate model uses CFIO as its I/O method, we
would have a group of computing processes and an extra
group of I/O processes to form the entire MPI communica-
tor. For example, if we execute the original parallel program
with 32 processes, and we want to use 4 CFIO processes to
execute I/O operations, we will submit a parallel job with
36 processes.

The I/O forwarding technique has the following advan-
tages: first, for each computing node, forwarding I/O re-
quests to other nodes is useful for reducing the local com-
petition for CPU and memory resources; second, the inde-
pendent I/O processes provide a large memory buffer, which
makes certain optimizations possible, such as data aggrega-
tion and rearrangement. The non-continuous writing of small
data blocks can be transformed into continuous writing of
large data blocks, which can significantly improve the per-
formance of the parallel file system.

The system architecture of CFIO is shown in Fig.3. We
use a server–client mechanism to deal with forwarding and
handling of I/O requests. The CFIO client is co-located with
the computing process and provides the climate model with
a series of interfaces for accessing the model data. When an
I/O request is generated in a computing process, the CFIO
client will pack the request into a message and then send it to
the CFIO server via MPI communication.

[!t]

Fig. 3.The system architecture of CFIO.

The CFIO server is running as a daemon program in the
I/O process to receive messages and handle I/O requests from
multiple CFIO clients. After receiving an I/O request, the
CFIO server places the request into an I/O queue. When han-
dling I/O requests, the CFIO server takes one I/O request off
the queue and unpacks the I/O request. The CFIO server then
calls the corresponding PnetCDF function to perform the ac-
tual I/O operation. For data writing operations, data aggre-
gation is performed to gather subarray data from each CFIO
client into a large array of data.

For high-resolution climate models, we observe a signif-
icantly higher number of write operations than read opera-
tions. The initial conditions are always read only once and
the results files are written many times. There is no space to
overlap the read operation and computing. Thus the current
CFIO v1.20 focuses on the write operations. All the paral-
lel read operations in CFIO v1.20 will call the corresponding
PnetCDF functions directly.

As shown in Fig.4, the data is forwarded from the comput-
ing process to the I/O process. Thus, the total running time
of the simulation consists of the computing time, the I/O for-
warding time and the I/O time. One possible scenario that we
must consider is that the I/O time is greater than the comput-
ing time, and can not be hidden by the computing phase. In
this scenario, we can increase the number of I/O processes to
solve the problem. More I/O processes provide a larger buffer
pool, which can accommodate more data. Meanwhile, more
I/O processes also lead to a faster writing speed. In this way,
we can further reduce the I/O time and completely overlap
the I/O phase with the computing phase.

3.2 Speedup analysis

In this section, we formulate an analytical model to estimate
the maximum possible speedup of a program when switching
to CFIO.
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Fig. 4.Overlapping I/O with computing through I/O forwarding.

We denote the running time of a model with its default
I/O approach and CFIO asTorigin andTcfio, respectively. As
shown in Fig.4, Tcfio andTorigin can be calculated as follows:

Torigin = Tcompute+ Tio (1)

Tcfio = max{Tcompute+ Tsend,Trecv+ Tio}, (2)

whereTcomputeandTio are the computing time and the I/O
time in one simulation step,Tsend andTrecv are the time of
sending I/O requests at the client and the time of receiving
I/O requests at the server.

If the I/O time cannot be hidden by the computing phase,
Tcfio equals the value of (Trecv+ Tio). As mentioned above,
this scenario can be avoided by increasing the number of I/O
processes. So in an ideal case,Tcfio = Tcompute+ Tsend. The
speedupS of using CFIO can be calculated as

S =
Torigin

Tcfio
=

Tcompute+ Tio

Tcompute+ Tsend
. (3)

An upper bound on speedup (when neglectingTsend) can
be derived as

S <
Tcompute+ Tio

Tcompute
= 1+

Tio

Tcompute
. (4)

The Eq. (4) means that the upper bound of speedup with
CFIO is determined by the proportion of the I/O time and
the computing time of the original program. The greater the
proportion of I/O time in the entire running time, the greater
speedup CFIO can achieve.

3.3 Communication method for I/O forwarding

In original program, the total running time of the simula-
tion consists of the computing time and the I/O time. In the
improved programs with CFIO, after the data has been for-
warded from client to server, the computing phase and the
I/O phase can be executed in parallel. So the ideal running
time only includes the computing time and the I/O forward-
ing time.

Comparing the above two cases, we believe that the benefit
of overlapping I/O with computing comes from the fact that
the I/O forwarding time with a high speed network is much
less than I/O time with a parallel file system, especially for
the high-resolution climate models with a large amount of
output data.

There are two options when designing the communication
method for I/O forwarding: synchronous and asynchronous
methods. The synchronous and asynchronous approaches we
discussed here for data communication are only used to
shorten the I/O forwarding time.

Our initial design for I/O forwarding is using the asyn-
chronous communication approach. In this approach, all the
I/O requests are packed into a client buffer; then, forwarding
is performed by a separate sending thread during the comput-
ing phases. This approach permits I/O forwarding to overlap
with computing, which implies that the major overhead of
calling an asynchronous CFIO function is memory copy.

However, after performing many experiments, we ob-
served that the asynchronous communication approach leads
to network resource competition between the computing
phase and the I/O forwarding phase. The competition over-
head is negligible when we run the climate model with a
small number of cores. However, when the number of cores
increases to several hundreds, the competition leads to sig-
nificant increase of the computing time, which completely
overrides the benefits of overlapping the I/O forwarding with
computing.

In contrast, the synchronous communication approach is a
better choice for larger scale computing. When using this ap-
proach, the communication needed by the computing phase
will not occur during the I/O forwarding phase. Therefore,
the network resource competition is avoided. The effects of
asynchronous communication and synchronous communica-
tion used in CFIO are compared in Sect.5.1.

Note that synchronous communication can lead to buffer
exhaustion in I/O processes because of the bursty I/O behav-
ior in climate models. In this case, the CFIO client has to
remain idle until the CFIO server finishes handling some of
the buffered requests and releases sufficient buffer space. Be-
cause the I/O pattern of a climate model is known, the buffer
exhaustion can be avoided by launching enough servers, the
number of which is controlled by the user. How to determine
the optimal number of CFIO servers for a particular program
and a particular machine environment is the subject of ongo-
ing work.

4 The CFIO interface

As the netCDF format is the de facto data format in the cli-
mate community, we choose to inherit the netCDF format to
minimize the required efforts in terms of code updates and
data post-processing when switching to CFIO. In netCDF,
writing a new data set contains a sequence of operations,
which creates the data set, defines the dimensions, variables,
and attributes, ends define mode, writes variable data, and
closes the data set file. CFIO supports all of the functions
that are required to perform this series of operations. These
functions can be classified into three categories:

Geosci. Model Dev., 7, 93–103, 2014 www.geosci-model-dev.net/7/93/2014/
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Table 1.Additional Functions of CFIO.

Function Description

cfio_init Initialization of CFIO
cfio_final Finalization of CFIO
cfio_proc_type Indicating whether the process is an I/O

process or a compute process
cfio_io_end Indicating the completion of an I/O

phase

1. Data set Functions:create/close a data set, set the data
set to define/data mode.

2. Define Mode Functions:define data set dimensions,
variables and attributes in define mode.

3. Data Access Functions:read/write variable data in
data mode.

There are four additional functions that involve initializa-
tion and finalization of the library and an operation that re-
lates to the I/O forwarding. All of the additional functions are
shown in Table1.

For the requirement of consistency across all computing
processes, all CFIO functions are defined as collective I/O
operations. For example, when a climate model intends to
write a new data set, all of the computing processes should
call the CFIO functions in the same sequence, and the same
arguments should be passed into the functions.

Listing 1. A simple example with CFIO
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! I n i t i a l i z e
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

i e r r = c f i o _ i n i t (LAT_PROC, LON_PROC, r a t i o )

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ! comput ing and o u t p u t i n g
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

IF ( c f i o _ p r o c _ t y p e ( ) == CFIO_TYPE_CLIENT )THEN
! ∗∗∗∗∗∗∗∗ Computing phase∗∗∗∗∗∗∗∗∗∗∗∗

. . . . . .
! ∗∗∗∗∗∗∗∗ I /O phase∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! o u t p u t da ta
i e r r = c f i o _ c r e a t e ( f i l ename , 0 , nc id )
i e r r = c f i o _ d e f _ d i m ( nc id , " l a t " , l a t , dim ( 1 ) )
i e r r = c f i o _ d e f _ d i m ( nc id , " l on " , lon , dim ( 2 ) )
i e r r = c f i o _ d e f _ v a r ( nc id , " s s t " ,NF_FLOAT, 2 , dim , 0 )
i e r r = c f i o _ e n d d e f ( nc id )
i e r r = c f i o _ p u t _ v a r a _ r e a l ( nc id , 0 , 2 , s t a r t , count , s s t )
i e r r = c f i o _ c l o s e ( nc id )
i e r r = c f i o _ e n d _ i o ( )

END IF

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! F i n a l i z e
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

i e r r = c f i o _ f i n a l i z e ( )
! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Listing 1 shows a simple example of outputting data with
CFIO. This example outputs sea surface temperature (SST)
data with latitude and longitude dimensions. Thecfio_init
function is used to describe the dimensions of the output ar-
ray and the number of CFIO servers. The function takes three
arguments:LAT_PROC, LON_PROCandratio. LAT_PROC

andLON_PROCare used to describe the latitude and lon-
gitude dimension decompositions of the horizontal domain
among computing processes;ratio stands for the proportion
of computing processes and I/O processes. If we run the ex-
ample application withN processes, there will beN/ratio

processes acting as I/O processes. Thecfio_proc_typefunc-
tion is called to indicate the type of the local process. The
computing processes should run the computing code and call
the CFIO data access functions to output data. The I/O pro-
cess will be launched automatically to run the CFIO server.
Thecfio_put_vara_realfunction is called to output the vari-
able data and thecfio_end_iofunction is called to send a sig-
nal indicating that the current I/O phase is finished. This sig-
nal is used for the management of the buffer and the commu-
nication between the sender and the receiver.

This example shows that the I/O forwarding is automat-
ically implemented and the complicated underlying mecha-
nisms are opaque to the modelers. If the original program is
already using netCDF interfaces, the users would not need
to perform any extra programming rather than adding a few
configuration function calls and switching “nf90” (the pre-
fix for the standard netCDF Fortran 90 interfaces) into “cfio”
when calling the I/O functions.

5 Experiments

We conducted our experiments on theTansuo100supercom-
puter at Tsinghua University. The supercomputer consists
of 740 nodes, each of which has two 2.93 GHz Intel Xeon
X5670 6-core processors and 32 gigabytes (GB) memory.
The nodes are connected through an Infiniband network,
which provides a maximum bandwidth of 40 Gb s−1. The file
system is Lustre, with 1 Metadata Server (MDS) and 40 Ob-
ject Storage Targets (OST). The peak writing performance
of this file system is 4 GB s−1. The node operating system is
RedHat Enterprise Linux 5.5×86_64. All of the programs in
our experiments are compiled with Intel compiler v11.1, and
the MPI environment is Intel MPI v4.0.2.

In the following sections, we first describe our evaluation
of CFIO through three climate models, and then provide a
comparison between the performance of CFIO and PnetCDF
in various scenarios. For the standalone POP, CICE and LI-
COM test cases, we downloaded the models from their offi-
cial websites. The official standalone versions only support
NetCDF.

In the following three cases, we provide the best per-
formance of each model by turning off all I/O operations
and comparing the result with CFIO. Because of the bene-
fits brought by overlapping I/O with computing, using CFIO
comes the closest to the best performance. Therefore, we be-
lieve our proposed forwarding scheme can be a useful com-
plement to the existing parallel I/O libraries.

www.geosci-model-dev.net/7/93/2014/ Geosci. Model Dev., 7, 93–103, 2014
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5.1 POP case study

POP is an ocean circulation model that has been developed at
Los Alamos National Laboratory and written in Fortran with
MPI support. We use version 2.0.1 of POP in this study. POP
partitions the data arrays equally across all of the computing
processes by using a two-dimensional data decomposition of
the horizontal domain. In its default I/O approach, data out-
puts from different processes are gathered by one process and
then written to disk by calling a serial netCDF interface. Na-
tional Center for Atmospheric Research (NCAR) officially
adopts POP as the ocean component of the Community Cli-
mate System Model (CCSM) and the Community Earth Sys-
tem Model (CESM), and has added various features to meet
the needs of the CCSM and CESM coupled models. To en-
able experiments for high-resolution (0.1◦) ocean modeling,
we used the standalone POP instead of a coupled climate
model.

The POP output files consist of restart files, history files
and movie files. The restart file is generated for each sim-
ulated day. History and movie files are generated for each
simulated hour. The variables included in the output netCDF
files are two-dimensional arrays of 3600×2400, representing
the spatial domain, and three-dimensional arrays of 3600×

2400×40, in which the third dimension represents sea depth.
The total size of the final output files is 315 GB. In this ex-
periment, the POP with 0.1◦ resolution ran for 440 iterations
to simulate 2 days.

We recorded the overall POP running time with CFIO
and compared the results with POP running with default
I/O and with NO-I/O. The overall running time with NO-
I/O describes the pure computation time, which can be used
as the upper bound of the maximum performance that can
be achieved by complete overlapping of I/O and computing.
Figure5 shows the experimental results. Our current design
requires the number of computing processes to be multiples
of the number of I/O processes. Therefore, the case of 64 I/O
processes and 160 computing processes is not yet covered in
our current experiments.

As expected, CFIO outperformed the default I/O approach
in POP, with both 32 and 64 I/O processes. When running
with 1280 computing processes and 32 I/O processes, the
overall running time of POP decreased from 3246 s to 471 s,
which means that we obtained a 6.9× speedup for POP with
CFIO, which is already close to the upper bound given in the
NO-I/O case. The performance of running with 64 I/O pro-
cesses is better than that of running with 32 I/O processes. In
the case of 1280 computing processes, we observed that the
overall running time can be further reduced by 12 % (471 s
down to 413 s) when switching from 32 to 64 I/O processes.
This translates into an increased speedup of 7.9× when com-
pared to the original performance of POP.

We also compared the POP running time for each of
the two different communication approaches discussed in
Sect.3.3. To obtain an accurate understanding of the impact
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Fig. 5. The overall running time of POP with different I/O ap-
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from I/O forwarding, we measured the computing time and
I/O time separately in POP. We also evaluated the case with
NO-I/O, to measure the pure computing running time that is
not affected by any I/O operations.

Figure6 shows the performance result for different com-
munication methods when running with 32 I/O processes.
We observed that when using the synchronous communica-
tion method, the computing time is always close to the case
of NO-I/O. However, when using the asynchronous commu-
nication method, the computing time became significantly
larger than the NO-I/O case when POP scales to a larger
number of cores. POP running with 160 computing processes
was the only case where the asynchronous communication
method achieved shorter running time than the synchronous
method. With the number of computing processes increased
to 320, the total running time with the asynchronous commu-
nication method became larger than the synchronous method,
due to the communication conflicts between the I/O forward-
ing and the computation. When running with 1280 comput-
ing processes, the computing time with the asynchronous
communication method increased to 1101 s, which is around
3 times larger than the case with NO-I/O. Based on these
results, we chose to use synchronous communication as our
default communication method.

5.2 CICE case study

CICE is a sea ice model which has also been developed at
Los Alamos National Laboratory. It is the sea ice compo-
nent model of CESM. In general, CICE uses the same hor-
izontal grid resolution as POP. CICE partitions the data ar-
rays equally across all of the computing processes by using
the same two-dimensional data decomposition as POP. CICE
uses netCDF as the output file format for history files, and
binary file format for the restart files. Similar to POP, when
outputting the history file in CICE, data outputs are gathered
by one process and then written to disk by calling a serial
netCDF interface.
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Because CFIO only supports netCDF format, we only used
CFIO to output history files in CICE, and the output of restart
files was disabled. We used the CICE version 4.1 with 0.1◦

resolution in this experiment. The CICE ran for 960 itera-
tions to simulate 40 days. History files are generated for each
simulated day. The variables included in output netCDF files
are 2-D arrays of size 3600× 2400. The output files have a
fixed size of 80 GB in total.

We recorded the overall CICE running time with CFIO
and compared the results with CICE running with default
I/O and with NO-I/O. Figure7 shows the experimental re-
sult. The number of computing processes varied from 160
to 1280. Comparing the running time of CICE with default
I/O and NO-I/O, we clearly see that the I/O brings a signifi-
cant overhead to both the running time and the scalability of
the program. CFIO outperformed the default I/O approach in
CICE, with both 32 and 64 I/O processes. When running with
1280 computing processes, the running time of CICE with
64 I/O processes was 204 s, which is less than the 226 sec-
onds running time of CFIO with 32 CFIO servers. In terms of
scalability, CICE with CFIO demonstrated a similar behavior
to CICE with NO-I/O. Compared to CICE with default I/O
(running time 928 s), we achieved 4.6× speedup by using 64
I/O processes.

The speedup in the case of CICE was slightly lower than
the case of POP. The main reason is that the I/O load of CICE
is not as heavy as POP. Since the running time of CICE with
NO-I/O (the pure computing time) was 178 s, the propor-
tion of the I/O time and the computing time is 4.2. Based on
Eq. (4), we can infer that the maximum speedup from using
CFIO in the CICE case is 5.2, compared with the maximum
speedup of 9.8 in POP.
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Fig. 7. The overall running time of CICE with different I/O ap-
proaches.

5.3 LICOM case study

LICOM is an ocean model developed by the State Key Labo-
ratory of Numerical Modeling for Atmospheric Sciences and
Geophysical Fluid Dynamics (LASG) of the Institute of At-
mospheric Physics (IAP) in China. It is the sea component
model of the LASG/IAP Earth System Model FGOALS_g2.
LICOM also partitions the data arrays equally across all of
the computing processes by using a two-dimensional data de-
composition of the horizontal domain. LICOM uses netCDF
as the output file format. The output data, including restart
files and history files, are gathered by one process and then
written to disk by calling a serial netCDF interface.

In this experiment, we used LICOM version 2 with 0.1◦

resolution to simulate 10 days. Restart files are generated
for each simulated day. Only one restart file is generated
at the end of the program. Output file variables are two-
dimensional arrays of 3602×1683, in the spatial domain, and
three-dimensional arrays of 3602× 1683× 55, in which the
third dimension represents sea depth. The output files have a
fixed size of 144 GB in total.

Figure8 shows the test result of LICOM. In this experi-
ment, the number of computing processes varied from 200
to 800. The scalability of LICOM is slightly poorer than
POP and CICE. When scaling to 800 computing processes,
the computing performance of LICOM started to degrade.
Therefore, we used a maximum of 800 instead of 1280 com-
puting processes in this experiment. LICOM running with
800 computing processes and 50 I/O processes had an run-
ning time of 4561 s. Compared to the original running time of
9101 s, LICOM obtained a 2 times speedup by using CFIO.
The running time with NO-I/O (the pure computing time)
was 4383 s, with the proportion of I/O time to computing
time being 1.07. Based on Eq. (4), we can compute that the
maximum speedup from using CFIO in the LICOM case is
2.07.
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5.4 Comparing CFIO with PnetCDF and PIO

As is well-known, PNetCDF was developed to support par-
allel I/O for NetCDF. It was based on MPI-IO to take advan-
tage of collective I/O optimizations. PIO is an application-
level parallel I/O library that was developed for the CESM.
PIO supports several back-end I/O libraries, including MPI-
IO, NetCDF, and PnetCDF.

In our experiments, we tested the newest PnetCDF v1.4.0
and PIO v1.6.0 and chose PnetCDF as the back-end method
of PIO to obtain good parallel throughput. We refer interested
readers toDennis et al.(2012) for more detail about the per-
formance of PnetCDF and PIO. The default striping count
for our Lustre file system is 1, and we changed this argument
to the maximum 40 to get the best write performance.

To compare the performance of CFIO, PnetCDF and PIO,
we designed two MPI test programs to evaluate different sce-
narios. The first MPI test program outputs a 32 GB data set
with 500 variables in one large netCDF file to evaluate the
write bandwidth of CFIO, PnetCDF and PIO. The second
MPI test program simulates the typical I/O patterns of cli-
mate models to show the advantage of I/O forwarding tech-
nology.

In the first program, every variable is a two-dimensional
array with 4096×2048 double-precision floating-point num-
bers. Data arrays are partitioned equally across all of the
computing processes, using two-dimensional data decompo-
sition. The size of the output data per client process decreases
as the number of computing processes increases.

Figure9 shows the throughput of CFIO as a function of
the number of CFIO servers. The throughput of PnetCDF
and PIO are shown for comparison. The horizontal axis
of PnetCDF and PIO stands for the number of clients
that call PnetCDF functions. We see that the throughput
of CFIO increased with the number of CFIO servers but
then stopped increasing when the number of CFIO servers
reached 128. This is mainly due to the limited number
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Fig. 9.Throughput comparison of CFIO, PnetCDF and PIO.

of storage devices in the Lustre file system. The writing
throughput of CFIO reached approximately 1 GB s−1 when
using 128 servers and 512 clients. The same pattern was
observed for PnetCDF. PnetCDF achieved a throughput of
approximately 1.24 GB s−1 when using 128 clients. The
curve of PIO is very close to that of PnetCDF, peaking at
1.2 GB s−1 for 128 clients.

The results show that the throughput of CFIO is approxi-
mately 10% less than that of PnetCDF because of the over-
head that is associated with I/O forwarding. Although CFIO
provides slightly lower throughput than PnetCDF, we will
show that the practical performance is better than PnetCDF
in real scenarios emulated by the second program.

In the second program, we emulated a computing and I/O
pattern that is typical in common climate models. There are
a total of 40 loop iterations in the program. In each loop iter-
ation, the program takes 7.5 s to perform floating-point com-
putations, and will produce 3.2 GB of data. There are no in-
tercommunication operations during the computing phases.
For comparison purposes, we evaluated four different cases:
CFIO, PnetCDF, PIO, and NO-I/O. NO-I/O means that all
I/O operations are disabled in the second program.

Figure10 shows the overall running time of the test pro-
gram. Without any I/O operations, the total running time was
300 s. When running with 128 clients, the total running time
using PnetCDF and PIO was 417 s and 431 s, respectively.
PIO takes a small period of time, about 14 seconds, to ini-
tialize the I/O decomposition. The corresponding time using
CFIO with 128 servers and 128 clients was 323 s. This re-
sult shows that CFIO decreases the I/O overhead compared
to PnetCDF and PIO.

Figure10 also shows that the performance of CFIO run-
ning with more servers is better. The I/O overhead with CFIO
is the cost of I/O in the last loop, which cannot be over-
lapped, plus the cost of I/O forwarding. When the throughput
of CFIO grows with the increase in the number of servers,
the cost of I/O in the last loop is reduced. The cost of I/O
forwarding is also naturally reduced as the number of CFIO
servers increases.
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6 Related work

Overlapping I/O has been shown as a useful technique to
dramatically improve I/O performance.Dickens and Thakur
(1999) implemented split-collective I/O in MPI-2 standard
to provide a collective I/O that overlaps with computing by
threads. The research found that simply spawning a thread
to perform the collective I/O operation in the background is
worse than the sequential approach. The best approach is to
only perform writes to disk in the background, and to per-
form the copying and intercommunication that is required by
the collective I/O in the main thread.More et al.(1997), Tsu-
jita (2004) andCaglar et al.(2003) also used multi-threaded
mechanisms to increase the performance of MPI applica-
tions.Patrick et al.(2008) presented a comparative study of
different strategies of overlapping I/O, communication and
computation. The performance results showed an obvious
benefit from overlapping I/O with other procedures.Fu et al.
(2010) quantified the overhead of overlapping I/O and com-
putation using real partitioned Computational Fluid Dynam-
ics(CFD) solver data. They proposed that it is possible to use
a small portion (3 to 6 %) of the processes in the MPI com-
municator as I/O processes to achieve an actual writing band-
width of 2.3 GB s−1 and latency hiding writing bandwidth of
more than 21 TB s−1 on the IBM Blue Gene/L supercom-
puter.

Collective buffering is an attractive and practical optimiza-
tion method in MPI-IO. It also called two-phase I/O, which
means breaking the I/O operation into two stages. For a col-
lective write operation, the first stage uses the aggregators,
which are a subset of MPI processes, to aggregate the data
into a temporary buffer on the aggregator nodes. In the sec-
ond stage, the aggregators ship the data from the aggrega-
tor nodes to the I/O servers. The advantage of two-phase
I/O is that fewer nodes are necessary to communicate with
the I/O servers, which reduces resource contention. ROMIO
(Thakur et al., 1999), which is one of the portable MPI-IO

implementations, uses two-phase optimization to improve
the I/O performance. ROMIO’s two-phase optimization des-
ignates some MPI ranks to be the I/O aggregators, though
ROMIO’s aggregators are assigned to file regions, not to
clients. The data model of ROMIO is a linear stream of bytes,
whereas the data model of CFIO is array-oriented. It is worth
noting that CFIO implements a form of the two-phase opti-
mization implemented in ROMIO above the Lustre file sys-
tem.

I/O forwarding has also been used inProst et al.(2001),
Oldfield et al.(2006), Nisar et al.(2008), Fu et al.(2010),
Docan et al.(2010) andMay (2001) to reduce the I/O impact
on computing. The IBM Blue Gene series of supercomputers
(Yu et al., 2006) uses independent I/O nodes in their sys-
tem to handle I/O requests, which are generated in computer
nodes and forwarded to I/O nodes. DataStager, designed by
Abbasi et al.(2009), is a data staging service that provide
asynchronous data extraction for ADIOS. ADIOS provides
a simple function and an external XML file to configure the
data structure and I/O methods. By switching parameters in
the XML file, users can choose an optimal I/O method for
their application according to the runtime environment. In
ADIOS, a novel BP file format is designed to decrease the
overhead of maintaining metadata consistency. DataStager
uses server-directed I/O to manage asynchronous commu-
nication for data transfer. The DataStager research found
that the asynchronous method for data transfer can signif-
icantly impact the performance of tightly coupled parallel
programs. DataStager implements two schedulers to reduce
the impact. The phase-aware scheduler prevents background
data transfer in the communication phase, which is predicted
by DataStager or marked by the application developers. The
rate limiting scheduler manages the number of concurrent re-
quests that are made to compute nodes to control the data
transfer rate.

For climate models,Dennis et al.(2012) introduced an ap-
plication level parallel I/O library named PIO. It provides the
flexibility to adapt to different I/O requirements for different
component models of CESM. PIO utilizes an I/O forwarding
in which that a portion of the compute nodes are selected to
collect the output data and rearrange data in memory into
a more I/O-friendly decomposition, called data rearrange-
ment. Through data rearrangement, PIO archives better I/O
throughput with less memory consumption because it leads
to less function calls of back-end I/O libraries. However, PIO
cannot overlap I/O with computing, that is, PIO can shorten
I/O time but not hide it.Palmer et al.(2011) also proposed
a specialized parallel data I/O method for the Global Cloud
Resolving Model. This method can avoid the creation of very
large numbers of files. The output data layout linearizes the
data in a consistent way that is independent of the number of
processors used to run the simulation and provides a conve-
nient format for subsequent analysis of the data.
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The design of CFIO was inspired by the technologies of
overlapping I/O, two-phase I/O and I/O forwarding which
have been described above. Comparatively, CFIO focuses on
the requirements of high-resolution climate models and pro-
vides automatic overlapping of I/O with computing so as to
shorten the entire simulation time of the climate models, not
just the I/O part. CFIO uses I/O forwarding to perform over-
lapping I/O on remote processors so that the overhead for
managing multiple threads is avoided. In addition, CFIO pro-
vides synchronous functions that perform I/O overlapping
automatically. Modifications to the existing climate model-
ing code for asynchronous functions are not necessary.

7 Conclusions

In this article, we presented a parallel I/O library, CFIO,
which provides automated overlapping of I/O and comput-
ing. CFIO uses similar interfaces to PnetCDF, so as to min-
imize the required code modification when porting. The ex-
perimental results show that CFIO outperforms PnetCDF and
PIO in typical climate modeling scenarios. We also com-
pared the performance of using different communication
methods, and we found that the synchronous communica-
tion method performs better when a program is running on
a larger number of cores.

For future work, we plan to conduct more experiments on
different machines with different file systems. We will also
adopt and test CFIO in more climate models. The MPI com-
munication method that we used for I/O forwarding requires
further optimization. The method of determining the opti-
mal number of CFIO servers for specific climate models still
needs to be study.
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