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Abstract. We present results of thorough benchmarking of
an arbitrary high-order derivative discontinuous Galerkin
(ADER-DG) method on unstructured meshes for advanced
earthquake dynamic rupture problems. We verify the method
by comparison to well-established numerical methods in
a series of verification exercises, including dipping and
branching fault geometries, heterogeneous initial conditions,
bimaterial interfaces and several rate-and-state friction laws.
We show that the combination of meshing flexibility and
high-order accuracy of the ADER-DG method makes it a
competitive tool to study earthquake dynamics in geomet-
rically complicated setups.

1 Introduction

The combined simulation of dynamic fault rupture and seis-
mic wave propagation is a useful tool to gain insight into
the poorly constrained processes of earthquake faulting. Dy-
namic rupture modeling aims to understand the underlying
physics governing earthquakes and may be incorporated in
physics-based seismic hazard assessment and strong mo-
tion prediction in preparation of future, possibly devastat-
ing, events (Ely et al., 2010; Harris et al., 2011; Roten et al.,
2011).

Recent advances in dynamic rupture simulations furthered
our understanding of the earthquake cycle in the Parkfield
region (Barbot et al., 2012), the influence of low veloc-
ity fault zones (Huang and Ampuero, 2011) and off-fault
plasticity (Templeton and Rice, 2008; Ma and Andrews,
2010; Gabriel et al., 2013) on the dynamics of the frac-
ture process, mechanisms to generate pulse-like and super-
shear earthquakes and their consequences (Dunham, 2007;

Daub et al., 2010; Gabriel et al., 2012) and the interaction
between fault branches (Oglesby et al., 2003; Bhat et al.,
2007; DeDontney et al., 2011). Dynamically consistent pre-
dictions of strong ground-motion excitation in earthquake
scenarios have been pushing computational performance to
the petaflop scale (Cui et al., 2010; Zhou et al., 2013).

Nevertheless, despite the current achievements, the numer-
ical simulation of the rupture process and its implementa-
tion into elastodynamics solvers poses challenges. For in-
stance, the discontinuity of displacements across the fault
has to be represented accurately and accounted for by the
computational mesh. Furthermore, the dynamic rupture im-
plementation in many numerical methods, such as finite dif-
ference, finite element and spectral element methods, suffers
from spurious high-frequency oscillations, which may affect
the nonlinear interaction between waves and dynamic rupture
and potentially contaminate the solution over all space–time
scales (Duan and Day, 2008). Thus, numerical regulariza-
tion, artificial attenuation or smoothing is usually necessary
to suppress high-frequency numerical noise with spatial scale
near the resolution limit of the mesh. Such artificial damping
mechanisms, as for example the deployment of a thin layer
of Kelvin–Voigt viscous material surrounding the fault (e.g.,
Ampuero, 2008; Day et al., 2005; Dalguer and Day, 2007)
are not completely satisfying. The physical solution is not
necessarily insensitive to the precise parametrization of the
added damping. The damping may interfere with the actual
physics of interest, for example by slowing down the rupture
propagation (Andrews, 2005) and smoothing out small-scale
features. The artificial damping may also reduce the time-
step length and thus increase the computational effort con-
siderably.
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Realistic earthquake scenario simulations would ideally
cover a frequency range relevant for engineering applica-
tions (up to 20 Hz), and include geological models spanning
hundreds of kilometers consisting of complicated fault ge-
ometries, topography, oceans and low velocity sedimentary
basins. Simultaneously, fine spatial resolution is required to
resolve the frictional weakening in the cohesive zone at the
rupture tip with a sufficient number of computational nodes
or elements, at scales down to tens of meters or less (Day
et al., 2005). The constitutive laws describing the frictional
sliding of faults originate in laboratory experiments carried
out on much smaller scales than in natural setups (Dieterich,
1978; Ohnaka and Kuwahara, 1990; Di Toro et al., 2005).
While it is still uncertain how to extrapolate fault consti-
tutive properties from laboratory to natural scales, testing
the large-scale implications of laboratory friction poses an
enormous computational challenge. Additionally, the prop-
agation of small wavelengths over large distances accumu-
lates numerical dispersion and diffusion errors and motivates
the adoption of a high-order accurate discretization. Another
challenge for dynamic rupture simulations are large uncer-
tainties in initial conditions and fault constitutive parameters.
The rupture evolution depends strongly on model parameters
such as initial background stresses, nucleation procedure and
frictional properties. Forward modeling of dynamic rupture
can support the search for proper friction models and model
parameters (Cochard and Madariaga, 1994; Day et al., 1998;
Aochi et al., 2003; Kaneko et al., 2008; Brietzke et al., 2009).

In order to avoid additional errors that interfere with the
physical problem, accurate numerical methods that produce
reliable results are desirable. Furthermore, computational ef-
ficiency, parallelization and high scalability are crucial de-
mands for numerical methods simulating realistic earthquake
scenarios.

Here, we present a thorough verification of the soft-
ware SeisSol (Käser and Dumbser, 2006; Dumbser and
Käser, 2006), a high-order derivative discontinuous Galerkin
(ADER-DG) method on unstructured meshes, for advanced
dynamic rupture problems (de la Puente et al., 2009; Pel-
ties et al., 2012). In contrast to the well verified and val-
idated simulation of seismic wave propagation, the veri-
fication process of spontaneous dynamic rupture simula-
tions suffers from the lack of analytical reference solutions.
Therefore, we verify the performance of the ADER-DG
method in the benchmark suite established by the Southern
California Earthquake Center (SCEC) (Harris et al., 2009,
2011). All simulation results presented here are available at
http://scecdata.usc.edu/cvws/. The test problems cover many
important aspects in realistic faulting setups, including dip-
ping and branching fault geometries, bimaterial interfaces,
heterogeneous initial conditions and different formulations
of rate-and-state friction laws.

Our results demonstrate the benefits of SeisSol for dy-
namic rupture and ground motion simulations in realistic
settings. Importantly, we confirm the lack of systematic

numerical artifacts in advanced faulting setups, as reported
for the basic example of a planar fault embedded in a homo-
geneous full space (SCEC test case TPV3) byPelties et al.
(2012).

2 Numerical method

De la Puente et al. (2009) andPelties et al.(2012) presented
a new, alternative numerical scheme for the simulation of
earthquake faulting. The underlying solver for wave propa-
gation is an ADER-DG method (Käser and Dumbser, 2006;
Dumbser and Käser, 2006) with high order accuracy in space
and time, based on tetrahedral element discretization. Be-
tween any two elements information is exchanged via numer-
ical fluxes. We briefly outline the algorithm to evaluate the
friction law in AppendixA and extend this approach to fault-
ing at dissimilar material contacts. For further details on the
concept, the reader is referred tode la Puente et al.(2009) and
Pelties et al.(2012). The software package SeisSol provides
pre- and postprocessing tools including interfaces to external
mesh generators and a mesh partitioning concept based on
METIS (Karypis and Kumar, 1998).

The use of a tetrahedral-element discretization leads to
rapid and automatized mesh generation that can be readily
aligned to complex geometrical features. The possibility of
mesh refinement is advantageous for dynamic rupture prob-
lems as the mesh resolution can be adapted to areas of inter-
est, such as the fault plane or complex topography. Further-
more, the mesh size can be coarsened with increasing dis-
tance to the fault to reduce the computational cost. No arti-
ficial reflections due to mesh coarsening are observed (de la
Puente et al., 2009).

In contrast to the typically applied traction at split-node
approach (Andrews, 1999; Day et al., 2005; Dalguer and
Day, 2007), ADER-DG solves the frictional sliding via the
inverse Riemann problem (Toro, 1999; LeVeque, 2002), in
which the exact solution is modified to incorporate frictional
boundary conditions. Solving the inverse Riemann problem
inherits the favorable numerical properties from the exact
Riemann solver or Godunov flux. The numerical properties
of the ADER-DG algorithm are extremely sensitive to the
choice of flux function. In particular, our implementation in-
troduces a very selective numerical dissipation by employing
an upwind flux, as discussed inPelties et al.(2012). The dis-
sipation increases with increasing frequencies and is stronger
beyond a cut-off frequency that depends on the mesh size
h and on the order of accuracyO. The cutoff frequency
is expected to be inversely proportional to the travel time
of S waves over a typical grid spacing∼ h/O/cS. Higher
frequency modes are subdued while the physically mean-
ingful lower frequencies are minimally affected. This is ad-
vantageous for dynamic rupture simulations: spurious high-
frequency oscillations are not generated in the first place and,
thus, no additional damping procedures need to be applied.
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Fig. 1. (a)Asymmetric, unstructured mesh discretizing the dipping fault setup of benchmark problems TPV10 and TPV11 for SeisSol, and
absolute slip rate|v| on the fault plane att = 7.4 s of TPV10 (subshear scenario).(b) Along-dip slip rate and(c) along-dip shear stress on a
fault location at 7.5 km along-strike and 12 km along-dip in TPV10. The ADER-DG solution is shown in black, the FEM solution in red.

We compare our results to those of the well-established
software FaultMod (Barall, 2009), a finite element (FE) code
implemented on hexahedral elements and designed specif-
ically for constructing physics-based models of fault sys-
tems that involve complex 3-D geometry and 3-D variation
of material properties. The implementation of fault friction is
based on the traction-at-split-nodes method. Faults are repre-
sented using common and differential nodes, which have a
nondiagonal mass matrix. Also, FaultMod uses an implicit
time stepping scheme, where displacement, velocities, and
acceleration are computed simultaneously. The method im-
plements Newmark damping (Hughes, 2000) and an optional
thin viscous layer surrounding the fault zone (Day et al.,
2005; Dalguer and Day, 2007) to suppress spurious high-
frequency oscillations. For specific details about damping
tuning strategies we refer toRojas et al.(2008) andBarall
(2009). In all benchmarks presented here, FaultMod applies
a grid-doubling technique to enable high resolution at the
fault and its immediate surroundings, and coarser grid spac-
ing away from the fault.

In Sect.7 we additionally show a comparison of our re-
sults with other high-order dynamic rupture codes based on
a variety of numerical methods.

3 Dip-slip fault with depth-dependent
background stress

Many studies of earthquake source physics have focused on
vertical strike-slip faulting. Nevertheless, many faults ex-
hibit dipping planes, including subduction zone faults in
which most of the seismic energy was released over the last

century (Pacheco and Sykes, 1992). The asymmetric geome-
try of dipping faults is of particular interest since it results
in asymmetric near-source ground motion (Oglesby et al.,
1998). Furthermore, if the rupture front reaches the surface
it strongly excites seismic waves (Madariaga, 2003) and in-
teracts with reflected waves from the free surface (Huang
et al., 2013). Reproducing these effects accurately in numeri-
cal simulations poses challenges in terms of mesh generation
and numerical stability.

We model spontaneous rupture on a 60◦ dipping nor-
mal fault reaching the surface of a homogeneous half-space.
Subshear (SCEC test case TPV10) and supershear (SCEC
test case TPV11) conditions are set by varying the value of
the static friction coefficient. Rupture is initiated by setting
the along-dip component of background shear stress slightly
above the static yield strength in a pre-defined nucleation
patch. In order to accurately sample the initial stress and ma-
terial parameters, we assign individual values to each Gaus-
sian integration point (GP) used in the friction solver (Pelties
et al., 2012). Slip-weakening friction on the fault and linear
elasticity in the bulk are assumed. All simulation parameters
are summarized in Table1.

We compare the ADER-DGO5 solution on elements with
edge length of 200 m to the finite element method solution
computed by the FaultMod code ofBarall (2009) with an
edge length of 100 m andO2. Our mesh was gradually coars-
ened up to maximum edge lengths of 5 km away from the
fault in order to concentrate numerical cost where needed.
Figure1a depicts our asymmetric unstructured mesh and a
snapshot of the absolute slip velocity on the dipping fault
plane from our simulation.

www.geosci-model-dev.net/7/847/2014/ Geosci. Model Dev., 7, 847–866, 2014
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Fig. 2.Supershear and free surface effects in TPV11.(a) Rupture front contours on the fault plane every 0.5 s.(b) Normal stress,(c) along-dip
slip rate and(d) along-dip shear stress at an on-fault receiver located 0 km along-strike and 1.5 km along-dip. The ADER-DG solution is
shown in black, the FEM comparison solution in red.

Table 1. Simulation parameters for SCEC test cases TPV10 and
TPV11.

cP P wave speed 5716 m s−1

cS Shear wave speed 3300 m s−1

ρ Density 2700 kg m−3

µs Static friction coefficient TPV10 0.76
µs Static friction coefficient TPV11 0.57
µd Dynamic friction coefficient 0.448
c Cohesion 0.2 MPa
Dc Slip-weakening critical distance 0.5 m
d Down-dip distance 0. . .15 km
σ0 Background normal stress d×7378 Pa m−1

τ0 Background shear stress along-dip 0.55σ0
τnuc Nucleation shear stress along-dip (µs+ 0.0057)σ0 + c

Anuc Nucleation size 3 km× 3 km
Afault Faulting area 30 km× 15 km
h Element edge length 200 m
O Spatiotemporal order of accuracy 5

The quantities computed on the fault by ADER-DG, such
as those shown in Fig.1b and c, show generally an excel-
lent agreement with the FEM (finite element method) ref-
erence solution, despite the asymmetric unstructured mesh
surrounding the fault in the ADER-DG simulation. How-
ever, despite artificial damping the finite element solution
shows high-frequency oscillations in slip rate amplitudes.
The development of a supershear rupture front in TPV11
is well-captured by both methods, as shown in Fig.2. The
rupture time contour plot in Fig.2a captures the accelera-
tion of rupture velocity after supershear transition. Figure2b

shows the normal stress variation caused by the interaction
of the nonvertical fault with Earth’s free surface, investigated
e.g., byRudnicki and Wu(1995), Dalguer et al.(2001), Ma
and Archuleta(2006), Andrews et al.(2007), Ma and Beroza
(2008). We find differences in the evolution of stresses after
10 s: the FEM solution reaches higher normal and along-dip
shear stresses leading to a slight difference in slip rate. This
might be due to fault and free surface interaction being han-
dled differently by both methods.

Strong ground shaking due to free surface effects, includ-
ing asymmetry between foot wall and hanging wall, can be
observed in Fig.3. Larger ground motions on the hanging
wall than on the footwall are observed in natural earthquakes
(e.g.,Abrahamson and Somerville, 1996). The agreement be-
tween ground motions computed by ADER-DG and FEM in
the vicinity of the fault is near-perfect.

4 Heterogeneous background stress

Tectonic loading plays a fundamental role in earthquake
source dynamics and controls the size of an earthquake.
Stress heterogeneities could potentially influence nucleation
and arrest of a rupture (Day, 1982; Boatwright and Quin,
1986; Oglesby and Day, 2002; Ampuero et al., 2006).
An open question is how small-scale fluctuations of ini-
tial stresses modulate the rupture process. As stresses in the
Earth’s interior cannot be measured directly, dynamic rupture
simulations represent a proper tool to analyze the impact of
stress heterogeneities.

Geosci. Model Dev., 7, 847–866, 2014 www.geosci-model-dev.net/7/847/2014/
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Fig. 3. (a)Asymmetric ground motion in the surrounding of the dipping fault att ≈ 8 s in TPV10. The color scale indicates the magnitude of
absolute particle velocity at the surface, arrows and surface morphology reflect its direction.(b) and(c) are horizontal ground velocity time
series at seismic stations located 3 km away from the fault trace and 12 km along-strike on the foot wall and hanging wall, respectively.(d)
and(e) are the vertical ground velocities at the same stations. The ADER-DG solution is shown in black, the FEM comparison solution in
red.

The SCEC benchmark problems TPV16 and TPV17 fo-
cus on the modeling of dynamic rupture under heterogeneous
initial stress conditions. Here, we consider only TPV17,
as TPV16 is very similar. Randomly generated heteroge-
neous initial stress conditions and frictional parameters are
provided as predefined input. The setup contains a planar
strike-slip fault embedded in a linear elastic medium with

wave speeds specified in Table2. Linear slip-weakening gov-
erns the frictional sliding. The nucleation method combines
high-stress and low-Dc values within approximately 1 and
4 km of the hypocenter, respectively, and a prescribed time-
dependent reduction of the friction coefficient that forces ini-
tially a circular rupture growth at constant speed.

www.geosci-model-dev.net/7/847/2014/ Geosci. Model Dev., 7, 847–866, 2014
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Table 2.Simulation parameters for SCEC test case TPV17.

cP P wave speed 6000 m s−1

cS Shear wave speed 3464 m s−1

ρ Density 2670 kg m−3

Afault Faulting area 48.0 km× 19.5 km
h Element edge length 200 m
O Spatiotemporal order of accuracy 4

The effect of heterogeneous initial stresses on dynamic
rupture propagation needs particular scrutiny in high-order
methods, which work more efficiently on large elements
(Käser et al., 2008). Even if the dispersion requirements are
sufficiently addressed by large elements and a high-order ap-
proach, yet another issue is the correct sampling of the ini-
tial stress and friction data on the fault.Pelties et al.(2010)
attempted to define rules to respect material properties of a
complex geological medium correctly, but we are not aware
of a study addressing this issue for the initial stress con-
ditions of a dynamic rupture simulation. As introduced in
Sect.2 and AppendixA, the fault plane is located at the
interface between two adjacent elements and the flux func-
tions on the fault are modified to satisfy the friction condi-
tions. These flux functions are integrated with a quadrature
based on(N + 2)2 GPs irregularly distributed across each
triangular element face, whereN is the polynomial degree
of the basis functions. We treat heterogeneous input data by
assigning initial stress values and friction parameters to each
of these GPs. Here we use trilinear interpolation to map the
gridded input data on the irregularly distributed GPs. In this
way, the smallest possible scale of the numerical method is
exploited without decreasing the element edge length and
thus subelement resolution is enabled. A resolution of ele-
ment edge length ofh = 200 m andO4 is applied in order to
test if our proposed subsampling scheme is sufficient to cap-
ture the initial stress values and frictional parameters. Mesh
coarsening with increasing distance to the fault is applied.

Figure4 demonstrates the complexity of the rupture prop-
agation caused by the small-scale heterogeneous background
stress. Considering the complexity of the input data we find
good agreement between the two compared methods. Good
agreement is also confirmed for shear stress and slip rate time
series at two fault locations, shown in Figs.5 and 6. Figure7
depicts a snapshot of the horizontal component of slip rate at
5.5 s across the entire fault plane and indicates the fault point
considered in Fig.5. In Fig. 5c we observe a sharp feature
at ∼ 5.5 s in the horizontal slip rate. With the aid of Fig.7,
we can identify that this signal is due to the passage of an in-
terface wave (Dunham, 2005). Reflection at the free surface
causes a healing front that passes the receiver after the rup-
ture front and is followed immediately by a secondary slip
rate peak, whose amplitude even exceeds that of the primary
rupture front. At other positions on the fault, a healing effect

Fig. 4. Rupture front every 0.5 s of problem TPV17 with hetero-
geneous initial stress conditions. The ADER-DG rupture front is
indicated in black, the FEM comparison solution in red.

caused by interface waves is not as pronounced. This feature
is also resolved by other numerical methods at high resolu-
tion (see the data provided by the SCEC code comparison
tool). The remarkable accuracy of the ADER-DG solver al-
lows us to observe such features despite a relatively large
element edge length ofh = 200 m. We conclude that our ap-
proach to sample input data at the Gaussian integration points
leads to sufficient conformity with FaultMod results.

5 Fault branching

Fault branching has been observed in natural events (e.g.,
Schwartz et al., 2012). Incorporating the possibility of earth-
quake rupture propagating across multiple faults may lead
to earthquake scenarios involving very different magnitudes
and dynamics, which is of crucial importance for seismic
hazard analysis. However, the role of fault branching in
earthquake dynamics is poorly understood. On the one hand,
realistic simulations need reliable information on fault ge-
ometries. On the other hand, the theoretical analysis of fault
branching is limited to simplified scenarios. The path se-
lected by a dynamic rupture beyond the junction of main fault
and branch depends on the specific boundary conditions as-
sumed at the junction (DeDontney et al., 2011).

To verify the performance of the ADER-DG algorithm on
a branching fault system we discuss here SCEC’s test cases
TPV14 and TPV15. The geometrical setup contains two ver-
tical, planar strike-slip faults; a main fault and a branch fault
intersecting at an angle of 30◦. The faults reach the Earth’s
surface. The initial stress conditions determine the fault sys-
tem as right-lateral in TPV14 and as left-lateral in TPV15.
Here, we focus on TPV15.

Geosci. Model Dev., 7, 847–866, 2014 www.geosci-model-dev.net/7/847/2014/
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Fig. 4. Rupture front every 0.5 s of problem TPV17 with heterogeneous initial stress conditions. The ADER-

DG rupture front is indicated in black, the FEM comparison solution in red.
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Fig. 5. Shear stresses and slip rates for TPV17 on a fault location at 9 km depth and −9 km along strike. A

sharp feature caused by an interface wave can be identified in the along-strike slip rate (c) at t∼ 5.5 s. The

ADER-DG solution is shown in black, the FEM comparison solution in red.

10

Fig. 5. Shear stresses and slip rates for TPV17 on a fault location at 9 km depth and−9 km along strike. A sharp feature caused by an
interface wave can be identified in the along-strike slip rate(c) at t ∼ 5.5 s. The ADER-DG solution is shown in black, the FEM comparison
solution in red.
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Fig. 6. Shear stresses and slip rates for TPV17 on a fault location at 9 km depth and 9 km along strike. The

ADER-DG solution is shown in black, the FEM comparison solution in red.

Fig. 7. Along-strike slip rate in m/s for TPV17 at t= 5.5 s, the time at which the interface wave which

originated at the free surface approaches the fault location indicated by an arrow and shown in Fig. 5. The

elliptical shape of the interface wave front is clearly visible, which consists of a healing phase followed by a

high slip rate front.
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Fig. 6. Shear stresses and slip rates for TPV17 on a fault location at 9 km depth and 9 km along strike. The ADER-DG solution is shown in
black, the FEM comparison solution in red.
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Fig. 7. Along-strike slip rate (in m s−1) for TPV17 att = 5.5 s; the time at which the interface wave that originated at the free surface
approaches the fault location indicated by an arrow and shown in Fig.5. The elliptical shape of the interface wave front is clearly visible,
which consists of a healing phase followed by a high slip rate front.

The intersection of main fault and branch fault is referred
to as junction and is located at an along-strike distance of
0 km. However, as specified in the benchmark description,
the branch fault should not fully reach the junction. A small
gap with the length of one grid spacing between the two
faults is prescribed. A rupture nucleated on the main fault can
propagate continuously along the main fault past the junc-
tion, but it must jump the gap to propagate onto the branch
fault. Since our method can model both geometries with and
without gap, we address both cases and discuss their dif-
ferences. In the modal ADER-DG formulation the solution
does not involve variables defined along the junction, only in
the interior of the element and its faces, excluding edges and
vertices. Branching benchmark problems TPV24/25 without
gap at the junction were more recently formulated, but are
not considered here.

We use the same mesh for the simulations with and with-
out gap. This is achieved by either locking part of the branch
(with gap) or allowing the full branch to rupture (without
gap). This way, all differences in the results are only due to
the influence of the gap. We choose the recommended spac-
ing of 100 m as gap length, although the generally applied
mesh resolution at the fault ish = 300 m. This results in a
slightly higher mesh resolution of up toh = 100 m in the di-
rect vicinity of the junction. We illustrate this in a zoomed
view of the junction in a 2-D setup in Fig.8. The different
colors represent different MPI partitions for parallel comput-
ing. Fault and MPI interfaces can coincide or intersect arbi-
trarily. Again, mesh coarsening with distance to the fault is
applied. The order of accuracy in space and time isO4 for
all simulations. We summarize the complete parameters in
Table3.

Table 3.Simulation parameters for SCEC test case TPV15.

cP P wave speed 6000 m s−1

cS Shear wave speed 3464 m s−1

ρ Density 2670 kg m−3

µs Static friction coefficient 0.677
µd Dynamic friction coefficient 0.525
Dc Slip-weakening critical distance 0.4 m
σ0 Background normal stress 120.0 MPa
τmain
0 Background shear stress on main fault −70.0 MPa

τbranch
0 Background shear stress on branch fault −78.0 MPa

τnuc
0 Nucleation shear stress along-dip −81.6 MPa

Anuc Nucleation size 3 km× 3 km
Amain

fault Faulting area 28 km× 15 km
Abranch

fault Faulting area 12 km× 15 km
h Element edge length 300 m
O Spatiotemporal order of accuracy 4

For comparison we choose the results of FaultMod with
100 and 50 m node spacing. As expected, we see that the
100 m results of FaultMod are closer to the ADER-DG solu-
tion with gap and FaultMod’s 50 m results are closer to the
ADER-DG without-gap solution. First, we discuss the rup-
ture times obtained with each method and resolution shown
on the main fault in Fig.9a and on the branch in Fig.9b.
We find very good agreement in the early rupture evolution.
Clear differences occur along the junction: whereas in both
FaultMod simulations rupture stops shortly after the junction,
except for some slip at the fault bottom and at the free sur-
face, in the ADER-DG simulation with gap, rupture contin-
ues further along the main fault. In the ADER-DG solution
without gap rupture continues only for a short distance along
the main fault, stops there a bit earlier than in the three other
solutions, but exhibits early rupture near the junction. This
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observation can be linked to earlier rupture initiation at the
branch (see Fig.9b). The branch rupture of the ADER-DG
solution with gap starts slightly later, similar to the Fault-
Mod solutions, as the gap needs to be overcome first. With
increasing distance along strike, the rupture in the ADER-
DG solution with gap propagates slower than in all other so-
lutions, however, only along the branch. The concentration
of rupture fronts at an along-strike distance> 0 km on the
main fault for the ADER-DG simulation without gap (con-
centrated blue lines in Fig.9a) results from a smooth, spon-
taneous rupture arrest in the branch (as opposed to abrupt
arrest by a barrier). Minor differences of rupture time occur
at the end of the seismogenic zone and at the free surface
along the branching fault.

In Fig. 10 we present time series of shear stresses and slip
rates in strike and dip direction on the branch at 9 km along-
strike from the junction and 7.5 km depth. In general, we
observe a good agreement between the four solutions. Only
small differences in the dip components (Fig.10b, d) are vis-
ible at∼ 7.5 s. Since the dip component is one order of mag-
nitude smaller than the strike component, these differences
are considered negligible.

Larger discrepancies can be observed closer to the junc-
tion, for example on the main fault at 2 km along-strike from
the junction and 7.5 km depth, as shown in Fig.11. Whereas
the along-dip shear stress (Fig.11b) and the normal stress
(Fig. 11c) are very similar, the along-strike shear stresses
differ clearly in all four simulations. The 100 m results of
FaultMod are closer to the ADER-DG solution with gap and
FaultMod’s 50 m results are closer to the ADER-DG solution
without gap. We argue that this is expected, as the geomet-
rical setups are more similar. In general, solutions far away
from the junction and off the fault (not shown here) match
very well. We find discrepancies only in the direct vicinity
of the junction, which can be traced back to the gap between
main and branching faults.DeDontney et al.(2011) demon-
strated that small differences in fault geometry, including the
details at fault junctions, can lead to different rupture paths,
which calls for caution in the design and interpretation of
simulations of rupture branching scenarios.

6 Bimaterial faults

Natural faults often separate rocks with different material
properties (e.g.,Thurber et al., 2006), which leads to nor-
mal stress variations during faulting that influence dynamic
rupture propagation (Harris and Day, 1997; Ampuero and
Ben-Zion, 2008; Brietzke et al., 2009). Such stress perturba-
tions can generate specific rupture patterns, for example self-
sustaining pulses with a preferred rupture direction, and are
therefore of particular interest. The instantaneous response of
shear strength to normal stress changes (Coulomb friction) at
bimaterial interfaces leads to an ill-posed problem for a wide
range of elastic material contrasts, causing an instability at

Fig. 8.Zoom view of the junction of TPV15 (2-D example) to illus-
trate the parallelization concept and discretization strategy.

all wavelengths (Adams, 1995). Convergence through grid-
size reduction cannot be achieved in ill-posed problems and
regularization needs to be applied. We address regularization
concerns in AppendixB.

Here, we concentrate on the well-posed bimaterial bench-
mark case TPV6, which is specified to be conducted without
any form of regularization. We define a near side and a far
side of the fault plane. The far side has a wave speed reduc-
tion of 60 % and a density reduction of 20 %. The fault is a
planar strike-slip fault that reaches the free surface. Frictional
sliding is governed by linear slip-weakening. Model parame-
ters can be found in Table4. The ADER-DG results are com-
puted withh = 200 m andO4 for space and time and without
viscous damping. FaultMod uses a 50 m grid spacing, and ap-
plies Newmark damping and a viscous layer surrounding the
fault to suppress artificial oscillations.

Figure 12 shows the evolution of the rupture front. We
find very good agreement of rupture speeds between the two
methods. Only small differences in the arrival time occur in
the along-dip direction. These differences can be noted as
well in the time series of velocity and stress at a location
at the surface on the near side of the fault, above the nu-
cleation zone, shown in Fig.13. Whereas the initial waves
arrive simultaneously for both methods, the FEM solution
evolves slower to the peak values, inducing a delay in rup-
ture times relative to the ADER-DG solution. This effect
might be caused by the damping algorithm or the viscosity
layer surrounding the fault implemented in FaultMod. The
general temporal evolutions of stress and particle velocity
are, however, very similar. Only the relatively small, verti-
cal components of shear stress and velocity show larger de-
viations as observable in Fig.13b and e. The match of the
normal components is again very good, although FaultMod
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Fig. 9.Rupture time contours of benchmark TPV15 on(a) the main fault and(b) the branch fault. The junction is located at the along-strike
distance of 0 km. ADER-DG solutions are shown in black (with gap) and blue (without gap), the FEM comparison solutions in red (50 m
discretization) and green (100 m discretization).

Fig. 9. Rupture time contours of benchmark TPV15 on (a) the main fault and (b) the branch fault. The junction

is located at along-strike distance 0 km. ADER-DG solutions are shown in black (with gap) and blue (without

gap), the FEM comparison solutions in red (50 m discretization) and green (100 m discretization).
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Fig. 10. Shear stresses and slip rates for TPV15 on the branch fault at 9 km along-strike and 7.5 km depth.

ADER-DG solutions are shown in black (with gap) and blue (without gap), the FEM comparison solutions in

red (50 m discretization) and green (100 m discretization).

15

Fig. 10.Shear stresses and slip rates for TPV15 on the branch fault at 9 km along-strike and 7.5 km depth. ADER-DG solutions are shown
in black (with gap) and blue (without gap), the FEM comparison solutions in red (50 m discretization) and green (100 m discretization).

yields slightly smaller peak values (Fig.13c, f). Note that
the ADER-DG solution exhibits only small oscillations in all
time series. Time series recorded at the far side of the fault,
at larger distance to the nucleation zone, and at 7.5 km depth
are presented in Fig.14. At this location, rupture arrival time
and slip rate peak match better than for the near-side station
above the nucleation zone. We conclude that for the well-
posed bimaterial problem a very good agreement between
ADER-DG and FaultMod is reached.

7 Rate- and state-dependent friction

The appropriate form of the constitutive law that describes
the relationship between fault stress and slip along a fault
plane is a topic of intense research. Widely applied empirical
friction laws are derived from small-scale laboratory exper-
iments (Brace and Byerlee, 1966; Ruina, 1983; Ohnaka and
Kuwahara, 1990; Di Toro et al., 2005; Niemeijer et al., 2010),
although the question of a proper scaling of the parameters
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Fig. 11. Shear and normal stresses of TPV15 recorded on the main fault at 2 km along-strike from the junction

and 7.5 km depth. Differences are due to differences in fault geometry at the junction as discussed in the main

text. ADER-DG solutions are shown in black (with gap) and blue (without gap), the FEM comparison solutions

in red (50 m discretization) and green (100 m discretization).

needs to be applied. We address regularization concerns in appendix B.

Here, we concentrate on the well-posed bimaterial benchmark case TPV6, which is specified to

be conducted without any form of regularization. We define a near side and a far side of the fault285

plane. The far side has a wave speed reduction of 60 % and a density reduction of 20 %. The fault

is a planar strike-slip fault that reaches the free surface. Frictional sliding is governed by linear

slip-weakening. Model parameters can be found in Table 4. The ADER-DG results are computed

with h= 200 m and O4 for space and time and without viscous damping. FaultMod uses a 50 m

grid spacing, and applies Newmark damping and a viscous layer surrounding the fault to suppress290

artificial oscillations.

Fig. 12 shows the evolution of the rupture front. We find very good agreement of rupture speeds

between the two methods. Only small differences in the arrival time occur in the along-dip direction.
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Fig. 11.Shear and normal stresses of TPV15 recorded on the main
fault at 2 km along-strike from the junction and 7.5 km depth. Dif-
ferences are due to differences in fault geometry at the junction as
discussed in the main text. ADER-DG solutions are shown in black
(with gap) and blue (without gap), the FEM comparison solutions
in red (50 m discretization) and green (100 m discretization).

to seismic faulting is often evoked. Friction laws differ in
the choice of primary variables that control fault weakening:
cumulated slip (slip-weakening friction), slip velocity (rate-
dependent friction) and/or average age of the microstructural
contacts or other state variables (state-dependent friction).
At high slip rates, physical weakening processes involving
thermal coupling, as for example thermal pressurization of
pore fluids, flash heating or melting, are thought to cause a

Table 4.Simulation parameters for SCEC test case TPV6.

ρnear Density 2670 kg m−3

cP,near P wave speed 6000 m s−1

cS,near Shear wave speed 3464 m s−1

ρfar Density 2225 kg m−3

cP,far P wave speed 3750 m s−1

cS,far Shear wave speed 2165 m s−1

µs Static friction coefficient 0.677
µd Dynamic friction coefficient 0.525
Dc Slip-weakening critical distance 0.4 m
σ0 Background normal stress 120.0 MPa
τ0 Background shear stress on main fault 70.0 MPa
τnuc
0 Nucleation shear stress along-dip 81.6 MPa

Anuc Nucleation size 3 km× 3 km
Afault Faulting area 30 km× 15 km
h Element edge length 200 m
O Spatiotemporal order of accuracy 4

Fig. 12. Rupture front every 0.5 s in problem TPV6 with bimate-
rial interface. The ADER-DG solution is shown in black, the FEM
comparison solution in red.

dramatic decrease of effective friction as function of slip ve-
locity, referred to as fast velocity-weakening.

The implementation of slip-weakening friction in the
ADER-DG algorithm has been presented inde la Puente
et al.(2009); Pelties et al.(2012). Here we present and verify
the implementations of rate- and state-dependent friction.

7.1 Slow velocity friction

Let the frictional strength of the fault evolve as follows:

τS = σ

(
µ0 + a ln

V

V0
+ b ln

V02

L

)
, (1)

whereσ is the (constant) effective normal stress,L is a char-
acteristic slip scale andµ0 is the reference value of the fric-
tion coefficient at steady-state sliding at reference velocity
V0. The rate-dependent term is thought to reflect a thermally
activated Arrhenius process involving the failure of atomic
bonds at microcontacts of the sliding surfaces (Rice et al.,
2001). The state-dependent term is thought to reflect the
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Fig. 12. Rupture front every 0.5 s in problem TPV6 with bimaterial interface. The ADER-DG solution is shown

in black, the FEM comparison solution in red.
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Fig. 13. Stresses and velocities of TPV6 at a surface location on the near side of the fault at 0 km along-strike

and above the hypocenter. The ADER-DG solution is shown in black, the FEM comparison solution in red.
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Fig. 13.Stresses and velocities of TPV6 at a surface location on the near side of the fault at 0 km along-strike and above the hypocenter. The
ADER-DG solution is shown in black, the FEM comparison solution in red.
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Fig. 14. Stresses and velocities of TPV6 at a location on the far side of the fault at −12 km along-strike and

7.5 km depth, which corresponds to the hypocenter depth. The ADER-DG solution is shown in black, the FEM

comparison solution in red.

and Kuwahara, 1990; Di Toro et al., 2005; Niemeijer et al., 2010), although the question of a proper

scaling of the parameters to seismic faulting is often evoked. Friction laws differ in the choice of pri-

mary variables that control fault weakening: cumulated slip (slip-weakening friction), slip velocity

(rate-dependent friction) and/or average age of the microstructural contacts or other state variables315

(state-dependent friction). At high slip rates, physical weakening processes involving thermal cou-

pling, as for example thermal pressurization of pore fluids, flash heating or melting, are thought to

cause a dramatic decrease of effective friction as function of slip velocity, referred to as fast velocity-

weakening.

The implementation of slip-weakening friction in the ADER-DG algorithm has been presented in320

de la Puente et al. (2009); Pelties et al. (2012). Here we present and verify the implementations of

rate- and state-dependent friction.

7.1 Slow velocity friction

Let the frictional strength of the fault evolve as follows:

τS = σ

(
µ0 + a ln

V

V0
+ b ln

V0Θ

L

)
, (1)325

where σ is the (constant) effective normal stress,L is a characteristic slip scale and µ0 is the reference

value of the friction coefficient at steady-state sliding at reference velocity V0. The rate-dependent

term is thought to reflect a thermally-activated Arrhenius process involving the failure of atomic

bonds at micro-contacts of the sliding surfaces (Rice et al., 2001). The state-dependent term is
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Fig. 14.Stresses and velocities of TPV6 at a location on the far side of the fault at−12 km along-strike and 7.5 km depth, which corresponds
to the hypocenter depth. The ADER-DG solution is shown in black, the FEM comparison solution in red.

product of the true contact area and the intrinsic strength of
those contacts. In the ageing law formulation the state vari-
able evolves as

2̇ = 1− V
2

L
, (2)

whereas in the slip law formulation it is

2̇ = −V
2

L
lnV

2

L
. (3)

The implementation of rate- and state-dependent friction
follows in principleKaneko et al.(2008). The fault stresses
in the Godunov state in ADER-DG play the same role as

the “stick tractions” in the spectral element method (see Ap-
pendixA). First, we update the state variable using the evo-
lution laws, Eqs. (2) or (3) based on slip rate and state vari-
able values obtained in the previous time step as initial guess.
Next, a five-stage Newton–Raphson algorithm is employed
to determine the slip rate. Starting from the average slip rate
between the initial guess and the one newly evaluated we re-
peat the entire update scheme a second time. This procedure
is executed in every sub-time step of the ADER integration
scheme (de la Puente et al., 2009; Pelties et al., 2012).

We benchmark the ADER-DG scheme performance for
the ageing law in the SCEC test case TPV101. We model
a planar fault in an isotropic, linear elastic half-space.
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Table 5.Simulation parameters for SCEC test case TPV101.

cP P wave speed 6000 m s−1

cS Shear wave speed 3464 m s−1

ρ Density 2670 kg m−3

µ0 Reference friction coefficient TPV10 0.6
V0 Reference slip velocity 10−6 m s−1

a(x,y) Frictional evolution coefficient 0.008+ 1a(x,y)

b Frictional state coefficient 0.012
L characteristic slip scale 0.02 m
Vini Initial sliding velocity 10−12m s−1

2ini Initial state variable 1.60624×109 s +12(x,y)

τ0 Background shear stress along-strike 75 MPa
σ0 Background normal stress 120 MPa
1τ0 Nucleating background shear stress perturbation 25 MPa
rnuc Nucleation radius 3 km
tnuc Nucleation time 1 s
(x0,y0) Hypocenter (0,7.5 km)
Afault Velocity-weakening faulting area 30 km× 15 km
h Element edge length 250 m
O Spatiotemporal order of accuracy 4

Fig. 15. (a) Nucleation and initial frictional parameters of SCEC test case TPV101. A velocity-weakening fault smoothly transitions to
a surrounding velocity-strengthening material, by adapting the frictional parametera. Nucleation is achieved by prescribing a space- and
time-dependent circular stress perturbation. Along-strike(b) shear stress and(c) slip rate during nucleation at the hypocenter, located at 0 km
along-strike and 7.5 km along-dip. The ADER-DG solution is shown in black, the FEM comparison solution in red.

The model parametrization is given in Table5. A transi-
tion layer of 3 km width in which the frictional properties
continuously change from velocity-weakening to velocity-
strengthening surrounds the central velocity-weakening re-
gion of the fault. Outside of the transition region, the fault
is velocity-strengthening. The friction-law parametera (and
thus, for self-consistency, the initial state variable) is space
dependent, but the initial velocity and normal and horizontal
shear stresses are uniform along the fault plane. The medium
on the two sides of the fault is initially moving with equal
and opposite horizontal velocities ofV0/2. Rupture is nucle-
ated by imposing a horizontal shear traction perturbation that
grows smoothly in time and space to its maximum amplitude
1τ0 over a finite time intervalT in a region of the fault of
radiusR. Figure15a shows the initial shear stress and the
lateral mesh coarsening around the fault plane. Figure15b
and c illustrate the near-perfect agreement of ADER-DG and

FEM in along-strike shear stress and slip rate at the hypocen-
ter throughout the nucleation period.

7.2 Fast velocity-weakening

In the same manner, we implement a rate- and state-
dependent friction law with fast velocity-weakening at slip
rates higher than a characteristic velocity, as adopted by
Ampuero and Ben-Zion(2008), Dunham et al.(2011) and
Gabriel et al.(2012, 2013). Strong velocity-weakening has
been proposed to fit results of laboratory experiments at fast
slip velocities (see e.g.,Di Toro et al., 2011and references
therein) and is predicted by a flash heating model (Rice,
2006). The frictional strength is determined by the slip ve-
locity (V ) and a state variable (2) as

τS = σ

(
aarcsinh

[
V

2V0
exp

2

a

])
, (4)
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Fig. 16. Fast velocity-weakening benchmark TPV103 results. Comparison of ADER-DG (black) with the high-order dynamic rupture
software packages MDSBI, SPECFEM3D and a SBIE implementation. Along-strike(a) shear stress and(c) slip rate on the fault at 12 km
along-strike and 3 km along-dip. Along-strike(b) shear stress and(d) slip rate during nucleation at the hypocenter at strike 0 km, dip 7.5 km.
The ADER-DG solution is shown in black, the comparison solutions of MDSBI in green, SPECFEM3D in blue and SBIE in purple.

Table 6.Simulation parameters for SCEC test case TPV103, which differ from test case TPV101.

a(x,y) Frictional evolution coefficient 0.01+1a(x,y)

b Frictional state coefficient 0.014
L Characteristic slip scale 0.4 m
Vw Weakening sliding velocity 0.1+ 1Vw(x,y) m s−1

µw Weakening friction coefficient 0.2
Vini Initial sliding velocity 10−16m s−1

2ini Initial state variable 0.5636 s +12(x,y)

τ0 Background shear stress along-strike 40 MPa
1τ0 Nucleating background shear stress perturbation 45 MPa
Afault Velocity-weakening faulting area 30 km× 15 km
h Element edge length 250 m
O Spatiotemporal order of accuracy 4

wherea is a positive coefficient quantifying a direct effect
andV0 is a reference slip rate. The state variable has units of
slip and obeys the following evolution equation:

2̇ = −
V

L

(
2 − a ln

[
2V0

V
sinh

{µss

a

}])
. (5)

Following Noda et al.(2009), we regularize the steady-
state friction coefficientµss (obtained if 2̇ = 0) in the
framework of rate-and-state friction in the slip law form

µss(V ) = µs+

µ0 − (b − a) ln
(

V
V0

)
− µw(

1+

[
V
Vw

]8
)1/8

, (6)

with µs being the static friction coefficient,µ0 a reference
friction coefficient,Vw a weakening velocity scale,µw the
fully weakened friction coefficient andb a positive coef-
ficient quantifying an evolution effect. In this formulation,
the transition between low velocity friction and strongly
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velocity-weakening friction is relatively smooth, which is fa-
vorable for numerical accuracy (Dunham et al., 2011).

We perform SCEC test case TPV103, which differs from
the slow velocity friction test case TPV101 as summa-
rized in Table6. In Fig. 16 we show near-perfect agree-
ment of ADER-DG with other high-order dynamic rupture
software packages based on a variety of numerical meth-
ods: the multi-dimensional spectral boundary integral code
MDSBI (Dunham, 2008), the three-dimensional spectral el-
ements code SPECFEM3D (Kaneko et al., 2008) and the
three-dimensional spectral boundary integral element (SBIE)
method implementation byLapusta and Liu(2009). The
agreement of the modeled dynamic rupture processes is illus-
trated by the along-strike shear stress and slip rate on the fault
outside the nucleation zone (Fig.16a, c) and at the hypocen-
ter (Fig.16b, d).

8 Conclusions

We show the successful application of an ADER-DG scheme
to advanced dynamic rupture test scenarios. Its performance
is verified by comparison to the established finite element
method FaultMod in various faulting setups, including com-
plex geometries and heterogeneity of physical model param-
eters across the fault. The implementation of rate- and state-
dependent constitutive relationships is additionally bench-
marked against other high-order dynamic rupture codes.

All time series computed with the ADER-DG method pre-
sented here are raw and unfiltered. Due to the properties of
the exact Riemann solver, the solutions on the fault remain
free of spurious oscillations even under complex geometric
and physical conditions.

We discuss some specific properties and outcomes of
studying dynamic rupture with the ADER-DG method: the
resolution of small-scale interface waves on a heteroge-
neously prestressed fault, the smoothness of results at a bi-
material fault without experimentally motivated regulariza-
tion, and the possible impact of a gap at the junction of a
fault branching system.

The method is specifically suited for dynamic rupture
problems on complex fault geometries by facilitating mesh
refinement and coarsening. Mesh resolution can be adapted
to ensure fine sampling of the cohesive zone on the fault,
while satisfying the dispersion requirements of pure wave
propagation away from the fault. Accurate propagation over
distances of many wavelengths is enabled by a high-order
accurate discretization of the wave equation. Furthermore, a
smooth resolution of frictional sliding with minimized nu-
merical artifacts is obtained, ensuring physical reliability of
the results.

We conclude that the advanced geometric flexibility of
SeisSol combined with its enhanced accuracy positions it as
a competitive tool to study earthquake dynamics in compli-
cated setups.
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Appendix A

Integration of fault dynamics across dissimilar material
interfaces into the ADER-DG algorithm

De la Puente et al. (2009) andPelties et al.(2012) elaborated
the incorporation of fault dynamics in homogeneous materi-
als into the ADER-DG framework. Here, we describe a gen-
eral algorithm for implementing fault dynamics in methods
using flux functions, which is also applicable for faults that
separate rocks with different material properties. Our presen-
tation disregards the specifics of the ADER-DG method. In
particular, the algorithm is independent of the chosen time-
integration scheme. To this end, the algorithm might be read-
ily applied to a wide range of related numerical methods.
However, the impact of the implementation on numerical
properties such as dispersion, diffusion and accuracy is ex-
pected to differ.

The approach is based on solving the inverse Riemann
problem and differs substantially from the typically used
traction-at-split-node (TSN) technique (Andrews, 1999; Day
et al., 2005; Dalguer and Day, 2007). A Riemann problem
is defined as an initial-value problem for a conservation law
(here the hyperbolic partial differential equation) in which
initial conditions contain a spatial discontinuity. Naturally,
this problem occurs in finite volume (FV) and DG methods
across each element face. We solve it using the exact Rie-
mann solver, also known as Godunov flux, which is a well-
known concept in numerical analysis. This provides a smooth
solution along the element face, the Godunov state, despite
the element-wise discontinuous approximation of the physi-
cal unknowns. The most important benefit of this flux-based
method compared to existing methods is the absence of spu-
rious modes in the slip rate.

We consider a fault in thex = 0 plane. An arbitrary fault
side is defined as the+ side, the opposing one as the− side.
σij denotes the relative stress tensor (stress changes relative
to the initial stresses),u, v andw the particle velocities in
the x, y and z directions, respectively,1v = v+

− v− and
1w = w+

− w− the two components of slip rate,ρ density,
cP P wave velocity andcS S wave velocity. Variables denoted
with superscript 0 are the corresponding initial values and
those denoted with a superscript G correspond to the Go-
dunov state.

We enforce the Coulomb failure criterion at each integra-
tion point of the DG method located on the fault surface:

|τ | ≤ τS, (A1)

where |τ | =

√
(σxy + σ 0

xy)
2 + (σxz + σ 0

xz)
2 is the absolute

shear traction andτS = µf(σxx + σ 0
xx) is the fault strength.

The friction coefficientµf may be a function of slip, slip rate,
state evolution variables and other frictional parameters.

We compute the Godunov state accounting for a mate-
rial contrast across the fault, based onToro (1999), LeVeque

(2002), de la Puente et al.(2009), Pelties et al.(2012), as
follows:

σG
xx = σ+

xx +
[(σ−

xx − σ+
xx) + c−

p ρ−(u−
− u+)]c+

p ρ+

c+
p ρ+ + c−

p ρ−
,

σG
xy = σ+

xy +
[(σ−

xy − σ+
xy) + c−

s ρ−(v−
− v+)]c+

s ρ+

c+
s ρ+ + c−

s ρ−
,

σG
xz = σ+

xz +
[(σ−

xz − σ+
xz) + c−

s ρ−(w−
− w+)]c+

s ρ+

c+
s ρ+ + c−

s ρ−
,

uG
= u+

+
σG

xx − σ+
xx

c+
p ρ+

,

vG
= v+

+
σG

xy − σ+
xy

c+
s ρ+

,

wG
= w+

+
σG

xz − σ+
xz

c+
s ρ+

. (A2)

Quantities associated to zero wave speeds, namelyσyy,σzz

and σyz, do not contribute to the solution of the Riemann
problem and are ignored.

The Godunov state is the solution of the elastic wave equa-
tion in the absence of a fault. When a fault is present, it can
be viewed as the state predicted in the absence of (further)
slip, and the Godunov fault tractions play the same role as
the “stick tractions” in the split-node method (Kaneko et al.,
2008). If the absolute shear traction in the Godunov state sat-
isfies|τG

| ≤ τS, the fault point is locked and the stresses and
velocities are assigned to the values given by the Godunov
state. If|τG

| > τS, the fault point fails, slip is declared, and
we impose the relative shear stresses to be

σ̃xy =
σG

xy + σ 0
xy

|τG|
τS− σ 0

xy,

σ̃xz =
σG

xz + σ 0
xz

|τG|
τS− σ 0

xz. (A3)

and− sides as

ṽ+
= v+

+
σ̃xy − σ+

xy

c+
s ρ+

,

ṽ−
= v−

−
σ̃xy − σ−

xy

c−
s ρ−

,

w̃+
= w+

+
σ̃xz − σ+

xz

c+
s ρ+

,

w̃−
= w−

−
σ̃xz − σ−

xz

c−
s ρ−

. (A4)

Godunov variablesvG, wG, σG
xy andσG

xz given in Eq. (A2)
and subtracting the corresponding equations in Eq. (A4):

1ṽ = (
1

c+
s ρ+

+
1

c−
s ρ−

)(σ̃xy − σG
xy,

1w̃ = (
1

c+
s ρ+

+
1

c−
s ρ−

)(σ̃xz − σG
xz). (A5)
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Fig. 17. Influence of Prakash-Clifton regularization on ADER-DG solution of the ill-posed bimaterial problem

TPV7. Time series of stress and velocity at a surface location on the far side off the fault above the nucleation

zone for different values of the characteristic regularization length scale L indicated in the legend (in meters).
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apply a resolution of h= 200 m and O4 in space and time.

We set V ∗ = 1 m/s and vary the characteristic distance L. Fig. 17 compares results with L=
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large discrepancies in peak slip rate and rupture time. However, even a small characteristic distance480

of L= 0.01 m produces visible differences in shear stress and slip rate.

As we reduce L we find convergence towards the solution without Prakash-Clifton regularization,

instead of the noisy solution expected for the ill-posed problem solved with a high resolution (small

element size h and high order of accuracyO) (Cochard and Rice, 2000). We conclude that there is an
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DG with Godunov fluxes (see section 2). This is not necessarily trivial: other forms of numerical

dissipation may not be strong enough to counteract the growth of the unstable short-wavelength

modes, as needed to regularize the problem. Our simulations then contain two efficient regularization

mechanisms: (1) Prakash-Clifton regularization and (2) ADER-DG’s numerical dissipation. The
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0.01 m. We note that, because ADER-DG’s intrinsic numerical dissipation depends on resolution

(h and O), the frequencies that are well regularized for a given resolution can be more unstable at a
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and resolution parameters in ADER-DG simulations of bimaterial rupture in the ill-posed regime.
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Fig. B1. Influence of Prakash–Clifton regularization on the ADER-DG solution of the ill-posed bimaterial problem TPV7. Time series of
stress and velocity at a surface location on the far side of the fault above the nucleation zone for different values of the characteristic
regularization length-scaleL indicated in the legend (in meters).

In summary, this implementation allows modeling fault
dynamics in bimaterial faults and features the same numer-
ical properties as in the homogeneous case. For identical
material properties at the+ and − sides of the fault the
above equations yield the equations presented inPelties et al.
(2012).

Appendix B

Influence of Prakash–Clifton regularization

As noted in the introduction of Sect.6, ill-posed bimaterial
problems need to be regularized to ensure convergence. Reg-
ularization can be achieved by Prakash–Clifton regulariza-
tion as introduced inPrakash and Clifton(1993) andCochard
and Rice(2000), which is a laboratory-based law relating the
shear strength evolution continuously to abrupt changes of
normal stress. We implement optional Prakash–Clifton regu-
larization (not used for the benchmark presented in Sect.6)
in the simplified form

τ̇S
= −

|V | +V ∗

L

(
τS

− µmax(0,−σn)
)
, (B1)

whereτS is the frictional strength,V is the slip velocity,V ∗

the characteristic slip velocity,L a characteristic distance,µ

the friction coefficient, andσn the normal stress. Note that
the characteristic distance introduced here is not related toL

in Sect.7.
Evidently, the amount of added damping or regularization

could have a significant influence on the result as elaborated
by Cochard and Rice(2000). Therefore, we present here the
influence of the regularization on the ADER-DG algorithm
to provide guidance for users on the impact of regularization.
To this end, we summarize in the following our findings from
the ill-posed SCEC test case scenario TPV7. The setup is
identical to TPV6 except for the far side featuring a wave

speed reduction of 20 % in combination with equal material
densities at both sides of the fault. We apply a resolution of
h = 200 m andO4 in space and time.

We setV ∗ to 1 m s−1 and vary the characteristic distance
L. Figure B1 compares results withL of 0.2, 0.05, and
0.01 m and without regularization. As expected, theL val-
ues of 0.2 and 0.05 m lead to large discrepancies in peak slip
rate and rupture time. However, even a small characteristic
distanceL of 0.01 m produces visible differences in shear
stress and slip rate.

As we reduceL we find convergence towards the solu-
tion without Prakash–Clifton regularization, instead of the
noisy solution expected for the ill-posed problem solved with
a high resolution (small element edge lengthh and high or-
der of accuracyO) (Cochard and Rice, 2000). We conclude
that there is an additional source of regularization in our
simulations: the intrinsic numerical dissipation of ADER-
DG with Godunov fluxes (see Sect.2). This is not necessar-
ily trivial: other forms of numerical dissipation may not be
strong enough to counteract the growth of the unstable short-
wavelength modes, as needed to regularize the problem. Our
simulations then contain two efficient regularization mech-
anisms: (1) Prakash–Clifton regularization and (2) ADER-
DG’s numerical dissipation. The characteristic timescale of
the Prakash–Clifton regularization isL/V ∗. The cutoff pe-
riod of ADER-DG’s dissipation is∼ h/O/cS. Only in the
simulation withL of 0.01 m is the former shorter than the
latter. This explains why the effect of the Prakash–Clifton
regularization is much less apparent ifL is 0.01 m. We note
that, because ADER-DG’s intrinsic numerical dissipation de-
pends on resolution (h andO), the frequencies that are well
regularized for a given resolution can be more unstable at
a finer resolution. Our analysis of regularization timescales
provides a criterion to set regularization and resolution pa-
rameters in ADER-DG simulations of bimaterial rupture in
the ill-posed regime.
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