
Geosci. Model Dev., 7, 2281–2302, 2014
www.geosci-model-dev.net/7/2281/2014/
doi:10.5194/gmd-7-2281-2014
© Author(s) 2014. CC Attribution 3.0 License.

C-Coupler1: a Chinese community coupler for
Earth system modeling

L. Liu 1, G. Yang1,2, B. Wang1,3, C. Zhang2, R. Li2, Z. Zhang2, Y. Ji2, and L. Wang4

1Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science (CESS),
Tsinghua University, Beijing, China
2Department of Computer Science and Technology, Tsinghua University, Beijing, China
3State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
4College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Correspondence to:L. Liu (liuli-cess@tsinghua.edu.cn), G. Yang (ygw@tsinghua.edu.cn),
and B. Wang (wab@tsinghua.edu.cn)

Received: 9 May 2014 – Published in Geosci. Model Dev. Discuss.: 11 June 2014
Revised: 23 August 2014 – Accepted: 3 September 2014 – Published: 9 October 2014

Abstract. A coupler is a fundamental software tool for Earth
system modeling. Targeting the requirements of 3-D cou-
pling, high-level sharing, common model software platform
and better parallel performance, we started to design and
develop a community coupler (C-Coupler) from 2010 in
China, and finished the first version (C-Coupler1) recently.
C-Coupler1 is a parallel 3-D coupler that achieves the same
(bitwise-identical) results with any number of processes.
Guided by the general design of C-Coupler, C-Coupler1 en-
ables various component models and various coupled mod-
els to be integrated on the same common model software
platform to achieve a higher-level sharing, where the compo-
nent models and the coupler can keep the same code version
in various model configurations for simulation. Moreover, it
provides the C-Coupler platform, a uniform runtime environ-
ment for operating various kinds of model simulations in the
same manner. C-Coupler1 is ready for Earth system mod-
eling, and it is publicly available. In China, there are more
and more modeling groups using C-Coupler1 for the devel-
opment and application of models.

1 Introduction

Climate system models (CSMs) and Earth system models
(ESMs) are fundamental tools for the study of global cli-
mate change. They play an important role in simulating and

understanding the past, present, and future climate. They are
always coupled models consisting of several separate inter-
operable component models to simultaneously simulate the
variations of and interactions among the atmosphere, land
surface, oceans, sea ice, and other components of the climate
system. Following the fast development of science and tech-
nology, more and more CSMs, ESMs, and related component
models have appeared around the world. For example, more
than 50 coupled models participated in the Coupled Model
Intercomparison Project Phase 5 (CMIP5), compared to less
than 30 coupled models in the previous CMIP3.

A coupler is an important software tool for model devel-
opment. It links component models together to construct a
coupled model, achieves parallel computation among multi-
ple component models, controls the integration of the whole
coupled model, and even provides a software platform to
allow scientists and engineers to work cooperatively. Most
state-of-the-art CSMs and ESMs are constructed with a cou-
pler. With more and more component models (e.g., land ice
models, chemistry models, and biogeochemical models) to
be added into ESMs, couplers become more and more impor-
tant for model development. Currently, there are a number of
couplers available in the world that have been widely used
for model development, e.g., the Ocean Atmosphere Sea Ice
Soil coupling software (OASIS) coupler (Redler et al., 2010;
Valcke, 2013a), the Model Coupling Toolkit (Larson et al.,
2005; Jacob et al., 2005) (MCT), the Earth System Modeling
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Framework (Hill et al., 2004) (ESMF), the Flexible Modeling
System (FMS) coupler (Balaji et al., 2006), the CPL6 cou-
pler (Craig et al., 2005) designed for the Community Climate
System Model version 3 (Collins et al., 2006) (CCSM3), the
CPL7 coupler (Craig et al., 2012) designed for the Com-
munity Climate System Model version 4 (Gent et al., 2011)
(CCSM4) and the Community Earth System Model (Hurrell
et al., 2013) (CESM), and the Bespoke Framework Genera-
tor (Ford et al., 2006; Armstrong et al., 2009) (BFG). Most of
these couplers provide typical coupling functions (Valcke et
al., 2012a), such as transferring coupling fields between com-
ponent models, interpolating coupling fields between differ-
ent grids of component models, and coordinating the execu-
tion of component models in a coupled model.

Regarding the future development of CSMs and ESMs, we
would like to highlight the following ongoing requirements
for coupler development:

1. 3-D coupling. Generally, coupling occurs on the com-
mon boundaries or domains between component mod-
els. In CSMs, most common interfaces between any two
component models are on 2-D horizontal surfaces. For
example, the common surface between an atmosphere
model and an ocean model is on the skin of the ocean,
which is also the bottom of the atmosphere. A CSM also
needs 3-D coupling – for example, between physics and
dynamics in an atmosphere model. In ESMs, compo-
nent models can share the same 3-D domain. For ex-
ample, both atmospheric chemistry models and atmo-
sphere models simulate in the 3-D atmosphere space.
When coupling them together, especially when their 3-
D grids are different, 3-D coupling, including transfer-
ring and interpolating 3-D coupling fields, needs to be
achieved. Some existing couplers, such as the OASIS
coupler, MCT, the CPL6 coupler, the CPL7 coupler and
ESMF, already provide 3-D coupling functions.

2. High-level sharing. A component model can be shared
by different coupled model configurations for various
scientific research purposes. In different coupled model
configurations, the same component model may have
different coupling fields and different common inter-
faces with other component models. For example, given
an atmosphere model, when it is used as a stand-alone
component model, there are no coupling fields. When it
is used as a component of a CSM, it will provide/obtain
2-D coupling fields for/from other component mod-
els. When it is coupled with an atmospheric chemistry
model, some 3-D variables with vertical levels become
coupling fields. In each coupled model configuration,
the atmosphere model can have a branch code version
with a specific procedure for providing/obtaining the
corresponding coupling fields. When more and more
coupled model configurations share the atmosphere
model, there will be an increasing number of branch
code versions, which will introduce more complexity

into the code version control. To facilitate the code ver-
sion control for sharing a component model, the coupler
should enable multiple configurations of coupled mod-
els without requiring source code changes to the indi-
vidual component models and the coupler itself.

3. To develop a model or to achieve a scientific research
target, scientists always need to run various kinds of
models. For example, to develop an atmosphere model,
scientists may want to use various combinations of a
single-column model of physical processes, a stand-
alone atmosphere model, an air–sea coupled model, a
nested model, a CSM, or an ESM. Moreover, scien-
tists may want to cooperatively use the models from dif-
ferent groups or institutions for a scientific purpose. If
the software platforms for these models are not identi-
cal, scientists have to invest a lot of effort into learn-
ing how to handle model simulations on each platform.
To facilitate model development and scientific research,
a coupler should be able to integrate various compo-
nent models and various coupled models on a common
model software platform which handles various kinds
of model simulations in the same manner, i.e., the same
way for creating, configuring, compiling, and running
model simulations.

4. Better parallel performance. In the future, the coupler’s
functions will become more computationally expensive
for Earth system modeling in several aspects. First, the
coupler will be required to manage the coupling be-
tween more and more component models in a coupled
model configuration. Second, 3-D coupling will intro-
duce much higher communication and calculation over-
head than 2-D coupling. Third, the resolution of compo-
nent models coupled together will continually increase.
Therefore, it will be increasingly important to improve
the parallel performance of a coupler.

Motivated by these requirements, in 2010, we started to de-
sign and develop a new coupler named “Community Cou-
pler (C-Coupler)”, and finished its first version (C-Coupler1)
at the end of 2013. C-Coupler1 contains a library with func-
tions for coupling a number of component models together
and a uniform runtime environment (we call it the C-Coupler
platform) with scripts and configuration files for creating,
configuring, compiling, and running model simulations. Be-
sides the typical coupling functions mentioned above, the C-
Coupler1 libraries achieve parallel 3-D coupling with flexi-
ble 3-D interpolation, provide the functionality of integrating
external algorithms to enable the same code of C-Coupler
and component models shared by various coupled model
configurations, and support direct coupling without a spe-
cific coupler component to improve the parallel performance.
The C-Coupler platform can operate various kinds of model
simulations in the same manner. Recently, we successfully
used C-Coupler1 to build several model configurations with
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different coupling architectures, and made these model con-
figurations share the same code of the component models and
C-Coupler1, as well as the same C-Coupler platform for sim-
ulation.

In this paper, we will introduce the general design of C-
Coupler and show details of C-Coupler1. The remainder of
this paper is organized as follows: Sect. 2 briefly introduces
existing couplers, Sect. 3 presents the general design of C-
Coupler, Sect. 4 presents C-Coupler1 in detail, Sect. 5 empir-
ically evaluates C-Coupler1, and Sect. 6 discusses the future
works for the development of C-Coupler. We conclude this
paper in Sect. 7.

2 Brief introduction to existing couplers

In this section, we will briefly introduce the OASIS coupler;
MCT; ESMF; the FMS, CPL6, and CPL7 couplers; and BFG.
More details of these couplers can be found in Valcke et
al. (2012a), Redler et al. (2010), Valcke (2013a), Larson et
al. (2005), Jacob et al. (2005), Hill et al. (2004), Balaji et
al. (2006), Craig et al. (2005, 2012), Ford et al. (2006), and
Armstrong et al. (2009).

2.1 The OASIS coupler

The European Centre for Research and Advanced Train-
ing in Scientific Computing (CERFACS, Toulouse, France)
started to develop the OASIS coupler in 1991. OASIS3 (Val-
cke, 2013a) is a 2-D version of the OASIS coupler. It has
been widely used for developing the European CSMs and
ESMs. For example, it has been used in different versions
of five European CSMs and ESMs that have participated
in CMIP5, e.g., CNRM-CM5 (Voldoire et al., 2011), IPSL-
CM5 (Dufresne et al., 2013), CMCC-ESM (Vichi et al.,
2011), EC-Earth V2.3 (Hazelger et al., 2011), and MPI-
ESM (Giorgetta et al., 2013; Jungclaus et al., 2013). OA-
SIS3 uses multiple executables for a coupled model, where
OASIS3 itself forms a separate executable for data interpola-
tion tasks and each component model remains a separate ex-
ecutable. It provides an ASCII-formatted “namcouple” con-
figuration file, which is an external configuration file written
by users, to specify some characteristics of each coupling ex-
change, e.g. source component, target component, coupling
frequency, and data-remapping algorithm. For data interpo-
lation, OASIS3 can use the remapping weights generated
by the 2-D remapping algorithms in the Spherical Coordi-
nate Remapping and Interpolation Package (SCRIP) library
(Jones, 1999). The degree of parallelism of OASIS3 is lim-
ited to the number of coupling fields, because each process
for OASIS3 is responsible for a subset of the coupling fields.

OASIS4 is a 3-D version of the OASIS coupler, which
supports both 2-D and 3-D coupling. Similar to OASIS3,
OASIS4 also uses multiple executables for a coupled model
and can use SCRIP for 2-D interpolation. It also provides a

“namcouple” configuration file, and the configuration is de-
scribed in an XML format. As a 3-D coupler, OASIS4 sup-
ports transfer and interpolation for 3-D fields. For 3-D inter-
polation, OASIS4 itself provides pure 3-D remapping algo-
rithms, e.g., 3-Dn neighbor distance-weighted average and
trilinear remapping algorithms, and supports 2-D interpola-
tion in the horizontal direction followed by a linear inter-
polation in the vertical direction. In July 2011, CERFACS
stopped the development of OASIS4 and started to develop
a new coupler version, OASIS3-MCT (Valcke et al., 2012b;
Valcke, 2013b), which further improves the parallelism of
OASIS3.

In the following context, we use “namcouple” and “code-
couple” to respectively denote the way of specifying charac-
teristics of coupling in configuration files and in source code.

2.2 The Model Coupling Toolkit

The Model Coupling Toolkit (MCT) provides the fundamen-
tal coupling functions: data transfer and data interpolation,
in parallel. MCT represents a coupling field into a 1-D ar-
ray and uses sparse matrix multiplication to achieve data in-
terpolation. Therefore, it can be used for both 2-D and 3-
D coupling. For 2-D interpolation, MCT can use remapping
weights generated by SCRIP. However, it rarely achieves 3-D
interpolation due to the lack of 3-D remapping weights gen-
erated by existing remapping software. As a result, MCT is
not user-friendly enough in 3-D coupling and users always
have to implement 3-D interpolation in the code of compo-
nent models.

MCT can be viewed as a library for model coupling. It
can be directly used to couple fields between two component
models where no separate executable is generated for cou-
pling tasks, and can also be used to develop other couplers,
e.g., OASIS3-MCT, the CPL6 coupler and the CPL7 coupler.

2.3 The Earth System Modeling Framework

The Earth System Modeling Framework (ESMF,www.
earthsystemmodeling.org) is a framework for developing
models, which consists of a superstructure for creating com-
ponents and an infrastructure with common coupling func-
tions. A registry of functions in a coupled system was first
advanced by the ESMF. A component model can be regis-
tered to the ESMF after its routines are organized as standard
ESMF methods (initialize, run, and finalize). The ESMF can
use both a single executable and multiple executables for a
coupled model. It uses “codecouple” configuration for model
coupling. For 2-D interpolation, in addition to the typical
remapping algorithms such as bilinear and first-order con-
servative, the ESMF provides a higher-order finite-element-
based patch recovery algorithm to improve the accuracy
of interpolation. For 3-D interpolation, similar to the OA-
SIS coupler, the ESMF provides several 3-D remapping al-
gorithms, e.g., trilinear, 3-Dn neighbor distance-weighted
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average, and 3-D first-order conservative. For parallelism,
the ESMF can remap data fields in parallel and keep bitwise-
identical results when changing the number of processes for
interpolation.

In CMIP5, the coupled model NASA GEOS-5 uses ESMF
throughout, and the coupled models CCSM4 and CESM1 use
the higher-order patch recovery remapping algorithm pro-
vided by the ESMF.

2.4 The FMS coupler

The Flexible Modeling System (FMS) is a software frame-
work that is mainly developed by and used in the Geophysi-
cal Fluid Dynamics Laboratory (GFDL) for the development,
simulation and scientific interpretation of atmosphere mod-
els, ocean models, CSMs, and ESMs. The coupling between
component models in the FMS is achieved by the FMS cou-
pler in parallel. Similar to MCT and ESMF, the FMS cou-
pler uses “codecouple” configuration for model coupling,
and can keep bitwise-identical result across different paral-
lel decompositions. One key feature of the FMS coupler is
the “exchange grid” (Balaji et al., 2006). Given two compo-
nent models, the corresponding exchange grid is determined
by all vertices in the two grids of these two component mod-
els, and the coupling between these two component models
is processed on the exchange grid. For example, the coupling
fields from the source component model are first interpolated
onto the exchange grid and then averaged onto the grid of the
target component model. In CMIP5, the CSMs and ESMs
(Donner et al., 2011; Dunne et al., 2012) from the GFDL use
the FMS as well as its coupler.

2.5 The CPL6 coupler

The CPL6 coupler is the sixth version in the coupler family
developed at the National Center for Atmospheric Research
(NCAR). It is a centralized coupler designed for CCSM3,
where the atmosphere model, land surface model, ocean
model, and sea ice model are connected to the unique coupler
component and the coupling between any two component
models is performed by the coupler component. Through in-
tegrating MCT, the CPL6 coupler achieves the data trans-
fer and data interpolation in parallel. Moreover, it provides
a number of numerical algorithms for calculating and merg-
ing some fluxes and state variables for component models.
It uses multiple executables for a coupled model, where the
coupler component forms a separate executable. Similar to
MCT, the CPL6 coupler uses “codecouple” configuration for
model coupling. For data interpolation, it always uses the
remapping weights generated by SCRIP.

In CMIP5, the CPL6 coupler, as well as the model plat-
form of CCSM3, has been widely used in Chinese cou-
pled model versions, e.g., FGOALS-g2 (Li et al., 2013a),
FGOALS-s2 (Bao et al., 2013), BNU-ESM (Ji et al., 2014),
BCC-CSM, and FIO-ESM.

2.6 The CPL7 coupler

The CPL7 coupler is the latest coupler version from NCAR.
It has been used for the CMIP5 models CCSM4 and CESM1.
It keeps most of the characteristics from the CPL6 cou-
pler, such as a centralized coupler component, integration
of MCT, and flux computation. The most notable advance-
ments from the CPL6 coupler to the CPL7 coupler include
the following: (1) the CPL7 coupler does not use multiple
executables but single executable for a coupled model and
provides a top-level driver to achieve various processor lay-
out and time sequencing of the components in order to im-
prove the overall parallel performance of the coupled model,
and (2) a parallel input/output (I/O) library is implemented
in the CPL7 coupler to improve the I/O performance.

2.7 The Bespoke Framework Generator

The Bespoke Framework Generator (BFG) aims to make
the coupling framework more flexible in model composi-
tion and deployment. BFG2 is the latest version of BFG. It
provides a metadata-driven code generation system where
a set of XML-formatted metadata is designed for gener-
ating the wrapper code of a coupled model configuration.
BFG metadata are classified into three phases: model defi-
nition, composition, and deployment. The model definition
metadata describe the implementation rules of each com-
ponent model, including<name>, <type>, <language>,
<timestep>, and<entryPoints>. The<entryPoints> con-
sist of a set of entry points each of which corresponds to
a user-specified subprogram unit that can be called by the
main program in a coupled model. An entry point can con-
tain a number of<data> elements, each of which corre-
sponds to an argument of the entry point. When a<data> el-
ement represents an array, the number of dimensions and the
bounds for each dimension need to be specified. The com-
position metadata specify how component models are cou-
pled together with a number of<set> elements. Each<set>
element identifies references to a coupling field, where the
references are arguments of the corresponding entry points.
The deployment metadata specify how the coupled model is
mapped onto the available hardware and software resources.

BFG2 designs a “namcouple” approach to separate the
code of models from the coupling infrastructure. Although
it does not provide coupling functions such as data inter-
polation, it enables users to choose the underlying coupling
functions from other couplers, such as the OASIS coupler.
As models are not main programs in a coupled model with
BFG2, a single executable or multiple executables can be se-
lected for deploying a coupled model.

2.8 Summary

Some existing couplers already support 3-D coupling, such
as the OASIS coupler, MCT, ESMF, and the CPL6 and CPL7
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couplers. However, these 3-D coupling functions should be
further improved. The 3-Dn neighbor distance-weighted av-
erage, trilinear, and linear remapping algorithms used in the
OASIS coupler and ESMF can result in low accuracy in the
interpolation on the vertical direction. MCT, the CPL6 cou-
pler, and the CPL7 coupler generally cannot interpolate in 3-
D due to a lack of remapping weights. Moreover, most exist-
ing couplers use sparse matrix multiplication to achieve data
interpolation. Limited by this implementation, some higher-
order remapping algorithms for the 1-D vertical direction,
such as spline, cannot be used in 3-D interpolation, because
these algorithms cannot be achieved purely by sparse matrix
multiplication.

Existing couplers that use “codecouple” configuration,
e.g., MCT, ESMF, and the FMS, CPL6, and CPL7 couplers,
are not convenient for sharing the same code version of cou-
pler and component models among various coupled model
configurations. For example, when increasing coupling fields
or component models based on a coupled model configu-
ration, the code of coupler or component models has to be
modified. Although some model code could have compiler
directives (such as “#ifdef”) for different coupled model con-
figurations, heavy use of compiler directives will make the
model code hard to be read and maintain for further devel-
opment, and the change in coupled model configuration re-
quires a recompiling of model code. Regarding the OASIS
coupler, its “namcouple” configuration, which specifies how
to transfer and interpolate each coupling field, can decrease
code modification requirements when changing the corres-
ponding characteristics of coupling. However, the configura-
tion files in the OASIS coupler do not specify external al-
gorithms for calculating coupling fields, such as flux calcu-
lation algorithms. When changing the procedures for calcu-
lating coupling fields, the code of component models always
has to be modified. Regarding BFG, its metadata can further
describe and manage user-specified subprogram units. How-
ever, the wrapper code needs to be regenerated and recom-
piled whenever the metadata changes. Moreover, the descrip-
tion of an array, which specifies the number of dimensions
and the bounds for each dimension, is not flexible enough
for changing parallel decompositions of models.

There are several model software platforms correspond-
ing to existing couplers which have been successfully used
for model development, such as the CCSM3 platform cor-
responding to the CPL6 coupler, the CCSM4/CESM plat-
form corresponding to the CPL7 coupler, and the FMS.
These platforms can configure, compile, and run differ-
ent kinds of model configurations for simulation. The
CCSM4/CESM platform can run stand-alone component
models, CSMs, ESMs, etc. However, to make a new stand-
alone component model run on the CCSM4/CESM plat-
form, users have to dramatically modify the code of the
component model. For example, when integrating an ocean
model version, i.e., MOM4p1 (Griffies et al., 2010), onto
the CCSM4/CESM platform for a stand-alone ocean model

configuration without coupling with other component mod-
els, the code of MOM4p1 needs to be dramatically modified
to use the CPL7 coupler as the driver.

Improving parallel performance is always a focus in cou-
pler development. It concerns the parallel performance of
both the coupler and the whole coupled model. Similarly,
we are concerned with the parallel performance of both the
coupler and coupled models in the long-term development of
C-Coupler.

3 General design of C-Coupler

In this section, we will briefly introduce the general design
of C-Coupler. C-Coupler can be viewed as a family of the
community coupler developed in China, and C-Coupler1 is
the first version following the general design. The future ver-
sions of C-Coupler will also follow the general design. In the
following context, we first define a general term,experiment
model, and then introduce the architecture of the experiment
models with C-Coupler and the general software architecture
of C-Coupler.

3.1 A general term for C-Coupler:
experiment model

An experiment model is a model configuration which can run
on the C-Coupler platform for simulations. It consists of a
certain set of configuration files and a certain set of model
code, with a certain set of rules for precompiling. Generally,
an experiment model can be any kind of model configur-
ation, such as a single-column model, a stand-alone compo-
nent model, a regional coupled model, an air–sea coupled
model, a nested model, a CSM, an ESM, etc.

3.2 Architecture of the experiment models with
C-Coupler

To achieve the target of integrating various models on the
same common model software platform for a high-level shar-
ing of the component models and for facilitating the con-
struction of a new experiment model, we have designed an
architecture for the experiment models with C-Coupler. Fig-
ure 1 shows an example of this architecture with a typical
CSM, where “ATM”, “ICE”, “LND”, and “OCN” stand for
the component models. The key ideas of this design include
the following:

1. All experiment models share the same code of C-
Coupler. Given an experiment model, there could be
a separate coupler component which manages the cou-
pling between the component models, while direct cou-
pling without a coupler component is also supported.
For example, the red lines in Fig. 1 stand for the direct
coupling, where no separate executable is generated for
the coupling tasks, and all coupling tasks, such as data
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Fig. 1. The architecture of the models with the C-Coupler. 2 Figure 1. The architecture of the models with C-Coupler.

transfer, data interpolation, and flux computation, are
performed through the uniform C-Coupler application
programming interfaces (APIs) called by the component
models. Compared to the approach with a separate cou-
pler component, direct coupling can reduce the number
of data transfers for better parallel performance, but it
can lower code modularity. Users can select a separate
coupler component, direct coupling, or hybrid for con-
structing a coupled model configuration. For example,
users can use a separate coupler component for a CSM
or ESM for better code modularity and use direct cou-
pling for an air–sea coupled model for better parallel
performance.

2. When a component model is shared by multiple experi-
ment models, it keeps the same code version in all these
experiment models. The code of coupling interfaces in
the component model only specifies the input fields that
the component model wants and the output fields that
the component model can provide, but does not specify
how to get the input fields and how to provide the out-
put fields. For example, the source component models,
the target component models, and the flux calculation
of the coupling fields are not specified in the code of the
coupling interfaces.

3.3 General software architecture of C-Coupler

Under the guidance of the key ideas, we designed the gen-
eral software architecture of C-Coupler, which consists of a
configuration system, a runtime software system, and a cou-
pling generator, as shown in Fig. 2. In the following context
of this subsection, we will further introduce the configuration
system and runtime software system. The coupling generator
that has not been developed in C-Coupler1 will be further
discussed in Sect. 6.

3.3.1 Configuration system

In different experiment models, a component model always
has different procedures for the input and output fields. For
example, given an atmosphere model, in its stand-alone com-
ponent model configuration, the ocean surface state fields
(such as sea surface temperature) are obtained from the
I/O data files, while in an air–sea coupled model config-
uration, the ocean surface state fields are obtained from
the ocean model through coupling. Moreover, in these two
model configurations, the algorithms for computing the air–
sea flux (such as evaporation, heat flux, and wind stress) can
be different. To make the same code version of a compo-
nent model shared by various experiment models, C-Coupler
should make a procedure adaptively achieve different func-
tions for different model configurations without code mod-
ification. We therefore designed a configuration system in
C-Coupler. Besides the functionality achieved by the “nam-
couple” configuration file in the OASIS coupler and BFG,
the configuration system of C-Coupler can further specify
procedures for coupling. In the following context of this pa-
per, we call such proceduresruntime procedures. A runtime
procedure consists of a list of algorithms calledruntime al-
gorithms. The runtime algorithms can be classified into two
categories: internal algorithms and external algorithms. The
internal algorithms are implemented within C-Coupler, in-
cluding the data transfer algorithms, data-remapping algo-
rithms, data I/O algorithms, etc. The external algorithms are
always provided by the component models, coupled models,
and users. They could be the private algorithms of a compo-
nent model or common algorithms such as flux calculation
algorithms which can be shared by various experiment mod-
els.

The configuration system manages the configuration files
of software modules and the runtime configuration files of
model simulations. The software modules include compo-
nent models, experiment models, and external algorithms. In
detail, the configuration files of a component model specify
some characteristics of the component model, e.g., the input
and output fields, how to generate the input namelists, and
how to compile the code of the model. The configuration files
of an experiment model specify how to organize the compo-
nents, e.g., the components in the experiment model and how
each component gets the input fields and provides the output
fields. The configuration files of an external algorithm spec-
ify the input and output fields of the algorithm. The runtime
configuration files specify how to run an experiment model
for a simulation, e.g., how to organize the internal algorithms
and external algorithms into the runtime procedures for the
input and output fields of the components, the coupling fre-
quencies, and the start time and stop time of the simulation.

In detail, the keyword (algorithm name) of each runtime
algorithm in a runtime procedure is listed in a simple config-
uration file. This implementation does not reduce the read-
ability of model code but can make the coupling process
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Fig. 2. The general software architecture of the C-Coupler. 2 Figure 2. The general software architecture of C-Coupler.

more easily understood. When a runtime procedure is called
by model code, the function pointer (some programming lan-
guages such as C++ support function pointers) corresponding
to each runtime algorithm will be found according to the key-
word and then the runtime algorithms can be executed one
by one. As the function pointer of a runtime algorithm needs
to be searched only one time during the whole simulation,
the extra overhead introduced by the approach of the runtime
procedure is trivial. The same runtime procedure can achieve
different functions in different model configurations through
modifying the list of runtime algorithms that is recorded in a
configuration file, without modification of model code.

3.3.2 Runtime software system

The runtime software system can be viewed as a common,
flexible, and extendible library for constructing experiment
models and for running model simulations. It enables various
kinds of experiment models to share the same code of C-
Coupler.

First, it provides a set of uniform APIs for integrating
component models. With these APIs, a component model
can register the model grids, parallel decompositions and I/O
fields, and get/put the I/O fields from/into I/O data files or
other components, etc.

Second, similar to the ESMF, the runtime software sys-
tem supports the registry of functions in a coupled system.
It provides uniform APIs for integrating external algorithms.
A component model can register its private subroutines as
external algorithms of C-Coupler. Common algorithms like
flux calculation algorithms can also be registered as external
algorithms. Therefore, the runtime software system is an ex-
tendible library which can integrate more and more common

external algorithms, and thus users can have more choices for
model simulations. For example, given an air–sea coupled
model, if there are several different algorithms for calculat-
ing air–sea flux, users can select one of them in a simulation,
or two or more of them for sensitivity experiments.

Third, the runtime software system consists of a num-
ber of managers (shortened as MGR in Fig. 2), including a
communication manager, grid manager, parallel decomposi-
tion manager (shortened as decomposition MGR in Fig. 2),
remapping manager, timer manager, data manager, restart
manager, runtime process manager (shortened as process
MGR in Fig. 2), etc. In detail, the communication manager is
responsible for allocating and managing the communicators
of each component and the whole experiment model. The
grid manager manages the grids registered by the component
models. The grid can be 1-D, 2-D, 3-D, or even 4-D. The par-
allel decomposition manager manages the parallel decompo-
sitions registered by the component models. The remapping
manager manages the remapping algorithms used for cou-
pling. Users can select different remapping algorithms in dif-
ferent simulations of the same experiment model. The timer
manager provides timers for triggering the execution of inter-
nal and external algorithms. Each algorithm has a timer, and
it is executed only when its timer is on. The timer manager
can also provide time information for the whole experiment
model through the corresponding APIs. The data manager
provides uniform APIs for getting the attributes and mem-
ory space of fields. A component model can register model
fields (including the memory space) as external fields to the
data manager. For the internal fields, the data manager will
allocate their memory space automatically. The restart man-
ager is responsible for reading fields from the restart I/O data
files in a restart run of a model simulation, and writing fields
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into the restart I/O data files when the timer for the restart
writing is on. The runtime process manager manages the in-
ternal algorithms and the registered external algorithms, or-
ganizes these runtime algorithms into a number of runtime
procedures, and executes the runtime procedures in a model
simulation.

Modularity is an important characteristic of software qual-
ity. A coupler is a software tool for improving modularity
of coupled models. The software architecture with a set of
managers targets better modularity of the runtime software
system. It can enhance the independence of each manager,
so as to facilitate the advancement of C-Coupler. For exam-
ple, when one manager is upgraded, the whole C-Coupler is
upgraded. Moreover, it can enhance the testing and reliabil-
ity for each manager. For example, diagnoses can be inserted
into the source code of C-Coupler for detecting potential er-
rors in the input and output of a manager.

4 C-Coupler1: first released version of C-Coupler

C-Coupler1 is the first version of C-Coupler for public use.
Many ideas and concepts from existing couplers have been
considered for its design and implementation. As the ini-
tial version of C-Coupler, it does not include the coupling
generator. However, we carefully developed the configura-
tion system and the runtime software system, which makes
C-Coupler1 achieve most of the characteristics in the general
design of C-Coupler and reach the target of sharing the same
code version of C-Coupler and component models among
different experiment models. Moreover, we designed and de-
veloped the C-Coupler platform, which enables users to op-
erate various model simulations in the same manner.

C-Coupler1 is a 3-D coupler, where the coupling fields can
be 0-D, 1-D, 2-D, or 3-D. It uses multiple executables for
the coupled models, each component of which has a sepa-
rate executable. It can be used to construct a simple coupler
component with a few lines of code, and can also be used for
direct coupling between component models without separate
executables specifically for the coupling tasks. It does not
use the “codecouple” configuration but develops a powerful
configuration system. As it is a 3-D coupler, it can interpo-
late both 2-D and 3-D fields. The runtime software system of
C-Coupler1 has been parallelized using the Message Passing
Interfaces (MPI) library, while the bitwise-identical result is
kept when changing the number of processes for C-Coupler1.

In the following context of this section, we will present
the runtime software system, configuration system, and C-
Coupler platform in C-Coupler1, and then introduce how to
couple a component model and the enhancement for reliabil-
ity of software.

4.1 The runtime software system

The runtime software system is a parallel software library
programmed mainly in C++ for better code modularity. It
provides APIs mainly in Fortran, because most component
models for Earth system modeling are programmed in For-
tran. In the following context, we will introduce the technical
features of the runtime software system, including the APIs,
each manager, and parallelization.

4.1.1 The APIs

Table 1 lists out the APIs provided by C-Coupler1, which
can be classified into four categories: the main driver, reg-
istration, restart function, and time information. Besides the
brief description of each API in Table 1, we would like to fur-
ther introduce two APIs:c_coupler_execute_procedureand
c_coupler_register_model_algorithm.

The APIc_coupler_execute_proceduretakes the name of
a runtime procedure as an input parameter, while the algo-
rithm list for the runtime procedure is specified in the cor-
responding runtime configuration files. Thus, a runtime pro-
cedure can keep the same name in various experiment mod-
els, and users can make the same runtime procedure perform
different tasks through modifying the runtime configuration
files that can be viewed as a part of input of a model simula-
tion. As a result, a component model can keep the same code
version in various experiment models sharing it.

Almost all APIs are in Fortran except
the c_coupler_register_model_algorithm. The
c_coupler_register_model_algorithmis in C++ be-
cause most Fortran versions do not support function pointer.
A private external algorithm (or subroutine) registered
by a component model through this API does not have
explicit input and output fields. The input and output of
such a algorithm are specified implicitly in the code (always
Fortran code) through use of public variables of component
models. In the future version of C-Coupler, we may enable
the private external algorithms to have explicit input and
output fields.

4.1.2 The implementation of managers

The communication manager

The communication manager adaptively allocates and man-
ages the MPI communicators for the MPI communications
within and between the components of an experiment model.
It also provides some utilities for other managers, such as
getting the ID of a process in the communicator of a compo-
nent or in the global communicator.

The grid manager

The grid manager utilizes a multidimensional remapping
software CoR (Common Remapping) (Liu et al., 2013a,
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Table 1.The APIs provided by C-Coupler1.

Classification API Brief description

Main driver c_coupler_initialize This API initializes the runtime software system. A component model
can obtain its MPI communicator with this interface.

c_coupler_finalize This API finalizes the runtime software system.

c_coupler_execute_procedure This API invokes the runtime software system to run the correspond-
ing runtime procedure which consists of a list of runtime algorithms
specified by the corresponding runtime configuration files. The cor-
responding runtime procedure could be empty without any runtime
algorithms. A component model can have multiple different runtime
procedures.

Registration c_coupler_register_model_data This API registers a field of component model to enable the runtime
software system to access the memory space of this field.

c_coupler_withdraw_model_data This API withdraws a field of component model from the runtime
software system which has been registered before.

c_coupler_register_decomposition This API registers a parallel decomposition to the runtime software
system. A component model can register multiple different parallel
decompositions, even on the same horizontal grid.

c_coupler_register_model_algorithm This API registers an algorithm (also known as a subroutine) of a com-
ponent model as an external algorithm of the runtime software system.

Restart function c_coupler_do_restart_read This API reads in the data value of fields in a restart run of a model
simulation.

c_coupler_do_restart_write This API writes out the data value of fields for restart run.

Time information c_coupler_get_current_calendar_time This API gets the calendar time of the current step.

c_coupler_get_nstep This API gets the number of the current step from the start of the
model simulation.

c_coupler_get_num_total_step This API gets the number of total steps of the model simulation.

c_coupler_get_step_size This API gets the number of seconds of the time step.

c_coupler_is_first_restart_step This API checks whether the current step is the first step of a restart
run.

c_coupler_is_first_step This API checks whether the current step is the first step of an initial
run, which also means whether the number of the current step is 0.

c_coupler_advance_timer This API advances the time of simulation.

c_coupler_check_coupled_run_finished This API checks whether the model simulation ends.

c_coupler_check_coupled_run_restart_time This API checks whether the current step is time for writing fields into
I/O data files for restart run.

c_coupler_get_current_num_days_in_year This API gets the number of days elapsed since the first day of the
current year.

c_coupler_get_current_year This API gets the year of the current step.

c_coupler_get_current_date This API gets the date of the current step.

c_coupler_get_current_second This API gets the second of the current step.

c_coupler_get_start_time This API gets the start time of the model simulation

c_coupler_get_stop_time This API gets the end time of the model simulation.

c_coupler_get_previous_time This API gets the time of the previous step.

c_coupler_get_current_time This API gets the time of the current step.

c_coupler_get_num_elapsed_days_from_start This API gets the number of days elapsed since the start time of the
model simulation.

c_coupler_is_end_current_day This API checks whether the current step is the last step of the current
day.

c_coupler_is_end_current_month This API checks whether the current step is the last step of the current
month.
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b; it can be downloaded through “svn–username=guest–
password=guest co http://thucpl1.3322.org/svn/coupler/
CoR1.0”) to manage the grids with dimensions from 1-D to
4-D. In a model simulation, the grids of component models
are registered to the grid manager with a script of CoR,
where the grid data (such the latitude, longitude and mask
corresponding to each grid cell) are always read from I/O
data files. Besides the support of multiple dimensions of
grids, another advantage of using CoR for grid management
is that it can detect the relationship between to two grids; for
example, a 2-D grid is the horizontal grid of a 3-D grid with
vertical levels. Moreover, for horizontal 2-D grid, CoR can
support logically rectangular and unstructured grids, such as
a cubic spherical grid.

The parallel decomposition manager

Most of component models for Earth system modeling have
been parallelized using the MPI library, where the whole do-
main of each component model, which always is a 3-D grid
with vertical levels, is decomposed into a number of subdo-
mains for parallelization and each process of the component
model is responsible for a subdomain. We refer to the decom-
position from the whole domain into subdomains as parallel
decomposition. In C-Coupler1, each parallel decomposition
managed by the parallel decomposition manager is based on
a 2-D horizontal grid that has been registered to the grid man-
ager; the parallel decomposition on the vertical subgrid of the
3-D grid is not yet supported. To register a parallel decom-
position, C-Coupler1 uses an implementation derived from
MCT: each process of a component model enumerates the
global index (the unique index in the whole domain) of each
local cell (each cell in the subdomain of this process) in the
corresponding horizontal grid. A component model can reg-
ister multiple parallel decompositions on the same horizontal
grid, while each parallel decomposition has a unique name
which is treated as the keyword of it.

The remapping manager

The remapping manager utilizes CoR to achieve the data
interpolation function. There are several remarkable advan-
tages of using CoR for interpolation. First, it can help the
Coupler1 to remap the field data on 1-D, 2-D, and 3-D grids.
Second, it can generate remapping weights using its inter-
nal remapping algorithms and can also use the remapping
weights generated by other software, such as SCRIP. Third,
it is designed to be able to interpolate field data between two
grids with any structures, which makes C-Coupler1 able to be
used more extensively. Similar to other couplers such as the
OASIS coupler, MCT, ESMF, and the CPL6/CPL7 coupler,
C-Coupler1 can utilize the remapping weights generated of-
fline by remapping software such as CoR and SCRIP. The
I/O data files for the offline remapping weights are specified
in a script of CoR, the same script for registering the grids.

In different simulations of the same experiment model, users
can select different remapping algorithms through modifying
the script.

Considering that the vertical grids (such as a sigma-p grid)
of component models may be changed during the model ex-
ecution, the 1-D remapping weights for the “2-D+ 1-D” in-
terpolation can be generated online in parallel by C-Coupler1
in the execution of a model simulation. This online weight
generation can scale well because the vertical grid is not de-
composed for parallelization and each process can generate
the 1-D remapping weights independently.

CoR makes C-Coupler1 more flexible in 3-D interpolation
when compared with existing couplers. First, CoR supports
the “2-D + 1-D” approach to interpolate data between two
3-D grids, where a 2-D remapping algorithm is used for the
interpolation between the 2-D horizontal subgrids and a 1-
D remapping algorithm is used for the interpolation between
the 1-D vertical subgrids. Given that there areM 2-D remap-
ping algorithms andN 1-D remapping algorithms, there are
M × N selections for 3-D interpolation. Second, CoR sup-
ports both sparse matrix multiplication and equation group
solving for interpolation calculation. Thus, it can provide
some higher-order remapping algorithms, such as spline, that
require a tri-diagonal equation group to be solved. Moreover,
it makes C-Coupler1 able to handle some unstructured grids.
For example, when the source grid is a cubic spherical grid,
the bilinear remapping algorithm in SCRIP cannot be used,
while CoR can handle this case.

At the present time, there are several remapping algo-
rithms available in CoR. For the 2-D horizontal interpola-
tion, CoR provides three remapping algorithms: first-order
conservative, bilinear, and 2-Dn neighbor distance-weighted
average. For the 1-D vertical interpolation, CoR provides two
remapping algorithms: linear and spline. Currently, there are
no pure 3-D remapping algorithms implemented, and 3-D
interpolation is achieved by the “2-D+ 1-D” approach. In
the detailed implementation for this approach, the 2-D and
1-D remapping weights are managed separately, and there
could be a number of matrixes for 2-D remapping weights
and for 1-D remapping weights. For some cases, the matrixes
for the 2-D and 1-D remapping weights can be merged into
one large matrix of 3-D remapping weights. We do not select
this implementation, because it can dramatically increase the
calculation for 3-D interpolation. Moreover, this implemen-
tation cannot handle the vertical spline interpolation, which
requires equation group solving. For each spline interpola-
tion on the vertical direction, the coefficient matrix of the
equations can be pre-calculated by CoR when generating the
offline remapping weights. During the model execution, C-
Coupler1 will call the CoR functions to solve the equation
group. The vertical interpolation scales well because the ver-
tical grid is not decomposed for parallelization and each pro-
cess can handle the vertical interpolation independently.
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The timer manager

The timer manager coordinates the component models in a
coupled model to advance the simulation time in an orderly.
In the runtime software system, each coupling field can have
a set of timers for periodically triggering the operations on
it. For example, a coupling field always has a timer for data
transfer and a timer for data interpolation. Moreover, each
external algorithm has a timer to periodically trigger its ex-
ecution. There are three elements in a timer: the unit of fre-
quency, the count of frequency, and the count of delay. The
unit and the count of frequency specify the period of the
timer. The count of delay specifies a lag of the time during
which the corresponding operation or algorithm will not be
executed. The unit of frequency can be “years”, “months”,
“days”, “seconds”, and “steps”, where “steps” means the
time step of calling the API c_coupler_advance_timer. For
example, the timer< 10, steps, 15> means that the corre-
sponding operation or algorithm will be executed at the steps
with number 10×N +15, whereN is a nonnegative integer.
Sequential and concurrent runs between component models
can be achieved through cooperatively setting the delay of
the timers.

Besides managing all the timers, the timer manager pro-
vides interfaces for getting the information of model time
(e.g., calendars) during a simulation.

The data manager

The fields managed by the data manager include the external
fields which are registered by the components with APIs and
the internal fields which are automatically allocated by the
data manager. A coupling field, such as sea surface temper-
ature (SST), can have different instances in a coupled model
configuration due to different parallel decompositions and
different grids. There is a keyword for each field instance,
which consists of the name of the field, the name of the cor-
responding component model, the name of the correspond-
ing parallel decomposition, and the name of the correspond-
ing grid. To define a field instance, the corresponding four
names must have been defined or registered to the runtime
software system. For an external field instance, these four
names are specified when a component model registers this
field instance through calling the corresponding API, while
for an internal field instance, these four names are specified
in configuration files. For the scalar field which is not on a
grid, the corresponding parallel decomposition and grid are
marked as “NULL”.

All instances of a coupling field share the same field name.
The field values in one instance can be transformed into an-
other instance through data transferring between two com-
ponent models and data interpolation within a component
model. All component models in a coupled model share the
names of the coupling fields. All legal field names are listed
in the configuration files, with other attributes such as the

long name (also known as the description of the field) and
the unit.

The data manager achieves several advantages beyond ex-
isting solutions. First, a 2-D field and a 3-D field can share
the same 2-D parallel decomposition, while their correspond-
ing grids are different, where the 2-D grid corresponding to
the 2-D field is a subgrid of the 3-D grid corresponding to
the 3-D field. Second, the data manager unifies the manage-
ment of different kinds of field instances, such as with dif-
ferent grids, different parallel decompositions, and different
data types (i.e., integer and floating point). As a result, the
data transfer algorithm can transfer different kinds of field
instances at the same time for better communication perfor-
mance. Third, the data manager helps improve the reliability
for model coupling. For example, the remapping manager
can examine whether the grids of source fields and target
fields match the grids of the remapping weights.

The restart manager

For reading/writing fields from/into the restart I/O data files,
the restart manager iterates on each field managed by the data
manager. For the internal fields, the restart manager can auto-
matically detect the fields which are necessary for restarting
the model simulation. For an external field, the correspond-
ing component can specify whether this field is necessary for
restarting when registering it with the C-Coupler API. As a
result, a component model has more selections for achiev-
ing the restart function. It can still use its own restart system
or register all fields for restart as external fields to the data
manager.

The runtime process manager

The runtime process manager is responsible for running the
list of runtime algorithms in each runtime procedure during a
model simulation. Besides the external algorithms, including
the private algorithms registered by the component models
and the common flux calculation algorithms, there are several
algorithms internally implemented in the runtime software
system, e.g., the data transfer algorithm, data-remapping al-
gorithm, and data I/O algorithm. The data transfer algorithm
is responsible for transferring a number of fields from one
component to another. The fields transferred by the same data
transfer algorithm can have different number of dimensions,
different data types, different parallel decompositions, differ-
ent grids, different frequency of transfer, etc. The data trans-
fer algorithm packs all fields that are to be transferred at the
current time step into one package to improve the communi-
cation performance.

The data-remapping algorithm uses the corresponding al-
gorithm in CoR as a kernel for implementation. It can remap
several fields at the same time for better parallel perfor-
mance. Multiple fields in a data-remapping algorithm share
the same parallel decomposition, the same grid, and the same
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timer, while the data types (i.e., single-precision and double-
precision floating point) can be different.

The data I/O algorithm currently utilizes the serial I/O to
read/write multiple fields which are managed by the data
manager from/into the data I/O files. The multiple fields in
a data I/O algorithm share the same timer, but they can have
different parallel decompositions, different grids, and differ-
ent data types. The fields of a data I/O algorithm are speci-
fied in the corresponding runtime configuration file. For the
future version of C-Coupler, we will further improve the I/O
performance with parallel I/O for higher-resolution models.

4.1.3 Parallelization

As previously mentioned, the runtime software system has
been parallelized using the MPI library and achieves bitwise-
identical results when changing the number of processes.
Here we would like to further introduce some details, includ-
ing the parallelization of the data transfer algorithm, the par-
allelization of the data-remapping algorithm, and the default
parallel decomposition.

Parallelization of the data transfer algorithm

This parallelization is derived from existing couplers such
as MCT. For a coupling field instance transferred by the
data transfer algorithm, it has a parallel decomposition in
the source component and another parallel decomposition in
the target component, and these two parallel decompositions
share the same horizontal grid. A process in the source com-
ponent will transfer the data of this field to a process in the
target component only when the corresponding subdomains
on these two processes have common cells. As this imple-
mentation does not involve collective communications and
there are always multiple processes to execute the source
component and the target component, the data transfer al-
gorithm can transfer the coupling fields in parallel.

Parallelization of the data-remapping algorithm

The data-remapping algorithm interpolates a number of
fields from the source grid to the target grid. To cause the
fields to be interpolated in parallel, C-Coupler1 uses an ap-
proach from MCT, which generates an internal parallel de-
composition for rearranging coupling fields before interpo-
lating. The internal parallel decomposition is on the source
grid and determined by the remapping weights and the par-
allel decomposition corresponding to the target grid. For ex-
ample, given that global celly of the target grid is assigned to
processp, and given a remapping weight< x,y,w >, where
x specifies a global cell in the source grid andw is a weight
value, the internal parallel decomposition for processp will
include the global cellx of the source grid. After rearrang-
ing the fields according to the internal parallel decomposition
using the data transfer algorithm, processp can interpolate
the fields locally. This implementation avoids the reduction

for sum between multiple processes of a component model
so as to make the data-remapping algorithm achieve bitwise-
identical results when using different numbers of processes.
Although it can increase the overhead when rearranging cou-
pling fields, the collective communication for the reduction
for sum between multiple processes can be avoided.

Default parallel decomposition

In an experiment model, not all parallel decompositions are
specified by the component models through registration. For
example, the parallel decompositions in a coupler component
are not determined by any component model. Therefore, the
runtime software system provides a default parallel decom-
position. Given the number of processesN , the default paral-
lel decomposition partitions a horizontal grid intoN distinct
subdomains without common cells, and the number of cells
in each subdomain is around the average number.

4.2 Configuration system

As we did not develop the coupling generator in C-Coupler1,
we did not develop the configuration files of experiment
models accordingly. In the following context of this subsec-
tion, we will introduce the configuration files of the com-
ponent models, the configuration files of the external algo-
rithms, and the runtime configuration files of the model sim-
ulations.

4.2.1 The configuration files of the component models

Each component model has a set of configuration files which
specify the following information:

1. How to generate input namelist files. The generation of
input namelist files is specified in a script namedcon-
fig.sh. When users configure a model simulation,con-
fig.shwill be invoked to generate the namelist files.

2. Where the source code is. The locations of source code
are specified in a script namedform_src.sh. A loca-
tion can be a specific code file or a directory, which
means that all code files under it need to be compiled.
When users compile the model code for a simulation,
form_src.shwill be invoked.

3. How to compile the model code. The compilation of
a model code is specified in a script namedbuild.sh.
It enhances flexibility for compilation: a component
model can use the compilation utility provided by the
C-Coupler platform or use its own compilation system.
When users compile the model code for a simulation,
build.shwill be invoked.

4. Compiling options for the component model, which are
specified in a configuration file namedcompiler.cfg.
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Fig. 3. A configuration file for an atmospherical model to register field instances to the C-10 

Coupler 11 

itime   NULL        NULL 

tbot   atm_2D_decomp1       atm_2D_grid1 

tbot   atm_2D_decomp2       atm_2D_grid1 

tbot   atm_2D_decomp3       atm_2D_grid2 

tbot   atm_2D_decomp4       atm_2D_grid2 

qpert   atm_2D_decomp1       atm_3D_grid1 

qpert   atm_2D_decomp3       atm_3D_grid2 

56

Figure 3.A configuration file for an atmospherical model to register
field instances to C-Coupler.

5. The information of the field instances that will be reg-
istered to C-Coupler1. Figure 3 shows an example for
the corresponding configuration file, where each line
corresponds to a field instance. The first column spec-
ifies the field names, the second column specifies the
parallel decompositions, and the last column specifies
the grids. A component model can register multiple in-
stances for the same field, on different grids or different
parallel decomposition. From Fig. 3, we can find that
atm_2D_grid1is a subgrid ofatm_3D_grid1because
they can both share the same parallel decomposition,
atm_2D_decomp1. Similarly, atm_2D_grid2is a sub-
grid of atm_3D_grid2. This configuration file will be
queried when the atmosphere model registers a field in-
stance.

4.2.2 The configuration files of the external algorithms

As shown in Fig. 4, an external algorithm has a configura-
tion file for the main information. In the main information
(Fig. 4a), the first line is the algorithm name for searching the
corresponding function pointer, and the second line specifies
a timer for triggering the execution of the external algorithm.
The last two lines specify the name of two configuration files
for the input and output field instances, respectively. For the
private external algorithm that does not have input and output
fields, these two lines are set to “NULL”. For a field instance
that is both an input and output of the external algorithm,
it should be referenced in the two configurations files. Fig-
ure 4b shows an example for how to describe the input (or
output) field instances, where each line corresponds to a field
instance. Columns 1–4 specify the keyword for each field in-
stance, while the last column specifies the data type.

4.2.3 The runtime configuration files of the
model simulations

Corresponding to the design and implementation of the run-
time software system, the runtime configuration files contain
the following information about a model simulation: (1) the
configuration files of the corresponding components and ex-
ternal algorithms; (2) a CoR script to specify the grids and
the weights for remapping algorithms; (3) the configuration

files for each runtime procedure in each component that will
be further illustrated in Sect. 5.1; and (4) the namelist of the
model simulation that is common to all components, includ-
ing the start time, stop time, run type (initial run or restart
run), etc.

4.2.4 Summary

Similar to the OASIS coupler and BFG, C-Coupler devel-
ops a “namcouple” configuration system for specifying the
coupling characteristics of an experiment model. BFG de-
fines the metadata of coupling characteristics in three phases:
model definition, composition, and deployment. Regarding
C-Coupler, the configuration files of a component model
function similarly to the model definition metadata and the
configuration files of an experiment model function similarly
to metadata composition. Generally, the “namcouple” imple-
mentation in C-Coupler is different from that in the OASIS
coupler and BFG as follows:

1. The procedure registration system with runtime proce-
dures and runtime algorithms can support a wide num-
ber of coupled model configurations while maintaining
the same codebase for component models.

2. Grids and parallel decompositions are referenced by
name in the configuration system. As a result, most
of the configuration files of an experiment model can
remain the same when changing the parallel settings,
model resolutions, or model grids.

3. With the help of CoR, the configuration system can
bridge the relationship between parallel decomposi-
tions, grids, remap weights, etc. Therefore more kinds
of diagnoses can be conducted to make C-Coupler
and experiment models more reliable. For example, the
remapping manager can examine whether the grids of
source fields and target fields match the grids of remap-
ping weights.

4.3 The C-Coupler platform

To facilitate operating the simulation of various experiment
models with C-Coupler1, we designed and developed the C-
Coupler platform. Figure 5 shows its general architecture. It
manages the input data and the software modules for the ex-
periment models, including standardized component models,
external algorithms, runtime configuration files of the model
simulations, and the runtime software system. There are four
steps to operating a model simulation on the C-Coupler plat-
form: “create case”, “configure”, “compile”, and “run case”.
The “create case” step means creating a model simulation.
There are two approaches for creating a model simulation:
creating a default simulation of an experiment model using
the script “create_newcase” and creating a model simulation
from an existing model simulation. The C-Coupler platform
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(a) Main information for the external algorithm 5 
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(b). Configuration file fields_mult_input_fields.cfg for specifying the input fields of the 10 

external algorithm. 11 

Fig. 4. Configuration files for an external algorithm. 12 

fields_mult 

seconds  3600     0 

fields_mult_input_fields.cfg 

fields_mult_output_fields.cfg 

itime  atm_model NULL       NULL   integer 

tbot  atm_model atm_2D_decomp1      atm_2D_grid1  real8 

qpert  atm_model atm_2D_decomp1      atm_3D_grid1  real8 

59

Figure 4. Configuration files for an external algorithm.

facilitates the second approach. At each time of “config-
ure” of a model simulation, a package of the correspond-
ing experimental setup is automatically generated and stored.
This package can be used to reproduce the existing model
simulation or develop new model simulations. After creat-
ing a model simulation, users can modify the experimental
setup, such as the namelist, parallel settings, hardware plat-
form, compiling options, output settings, start and stop time,
etc. After the modification of the experimental setup, users
should “configure” the model simulation, and then users can
“compile” and “run case”. For various experiment models on
various hardware platforms, users can use the same opera-
tions for various model simulations. For more information
about the C-Coupler platform, please read its users’ guide
(Liu et al., 2014a).

The model platforms of CCSM3 and CCSM4/CESM have
demonstrated that the four steps, i.e., “create case”, “con-
figure”, “compile”, and “run case”, are sufficient and user-
friendly for model simulations. We therefore used a simi-
lar four-step design for the C-Coupler platform. The most
unique feature of the C-Coupler platform is the enhancement
for reproducibility of bitwise-identical simulation result for
Earth system modeling. Please refer to Liu et al. (2014b) for
details.

4.4 How to couple a component model

Generally, it takes the following steps to couple a component
model with C-Coupler1:

1. Generate remapping weights if necessary.

2. Write a CoR script to register the grids of the component
model and read in the remapping weights.

3. Initialize the C-Coupler runtime software system and
get the MPI communicator through calling the API

c_coupler_initialize, finalize the runtime software sys-
tem through calling the API c_coupler_finalize, and
advance the simulation time through calling the API
c_coupler_advance_timer in the source code of the
component model.

4. Register each parallel decomposition
to C-Coupler through calling the API
c_coupler_register_decomposition, register
each field instance through calling the API
c_coupler_register_model_data, and provide or
obtain coupling fields through calling the API
c_coupler_execute_procedure in the source code of the
component model.

5. Write configuration files (Sect. 4.2) for the component
model in order to integrate the component model into
the C-Coupler platform.

We note that the steps similar to the above 1, 3, and 4 are
always required when coupling a new component model with
other couplers. Steps 2 and 5, which produce configuration
files for coupling, are specific to C-Coupler. In C-Coupler1,
these configuration files for the coupling procedures are writ-
ten manually by scientists. In the future C-Coupler2, they
will be generated automatically by the coupling generator.

4.5 Enhancement for reliability of software

Reliability is an important characteristic of software quality.
To make C-Coupler1 and experiment models more reliable,
more than 900 diagnoses are inserted into the source code
(about 30 000 lines) of C-Coupler1. These diagnoses focus
on the following functions:

1. Trace the behavior of coupling during a model simula-
tion. C-Coupler1 can trace the flow of coupling for each
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Fig. 3. The general software architecture of the C-Coupler platform. 2 Figure 5. The general software architecture of the C-Coupler platform.

component model and the I/O fields for each runtime
algorithm at each coupling step.

2. Detect errors (software bugs) in C-Coupler1. There are
more than 600 diagnoses for detecting potential errors
in the input and output of managers in the runtime soft-
ware system of C-Coupler1.

3. Detect errors in the configuration files. C-Coupler1 can
check whether a configuration file is right in format and
content, and whether configuration files are consistent
between component models. For example, given that a
runtime algorithm transfers a number of coupling field
instances from component model A to B, each of A
and B has a configuration file for this data transfer. C-
Coupler1 will check the consistency between these two
configuration files.

4. Detect errors in the C-Coupler API calls. When a com-
ponent model calls a C-Coupler API, C-Coupler1 will
check the consistency between the API call and the cor-
responding configuration files. Moreover, C-Coupler1
can detect the field instances which are required as input
for coupling but not provided by any component mod-
els.

In a default setting, the trace for coupling behavior is dis-
abled because it is time-consuming and will produce a large
amount of data. This detection of errors in C-Coupler1, con-
figuration files, and C-Coupler API calls is always enabled
because it only slows down the initialization for the runtime
software system.

5 Evaluation

To evaluate C-Coupler1, we used it to construct several
experiment models, including FGOALS-gc, GAMIL2-sole,
GAMIL2-CLM3, MASNUM-sole, POM-sole, MASNUM-
POM, and MOM4p1-sole. FGOALS-gc is a CSM version
based on the CSM FGOALS-g2 (Li et al., 2013a), where
the original CPL6 coupler in FGOALS-g2 is replaced by C-
Coupler1. GAMIL2-sole is a stand-alone component model
configuration of the atmosphere model GAMIL2 (Li et
al., 2013b), the atmosphere component in FGOALS-g2,
which participated in the Atmosphere Model Intercompar-
ison Project (AMIP) in CMIP5. GAMIL2-CLM3 is a cou-
pled model configuration consisting of GAMIL2 and the
land surface model CLM3 (Oleson et al., 2004). MASNUM-
sole is a stand-alone component model configuration of the
wave model MASNUM (Yang et al., 2005). POM-sole is a
stand-alone component model configuration based on a par-
allel version of the ocean model POM (Wang et al., 2010).
MASNUM-POM is a coupled model configuration consist-
ing of MASNUM and POM. MOM4p1-sole is a stand-alone
component model version of the ocean model MOM4p1
(Griffies et al., 2010).

In the following context of this section, we will evaluate
C-Coupler1 in several aspects, including the coupler com-
ponent, direct coupling, 3-D coupling, code sharing, parallel
performance, and the work amount for integrating a stand-
alone component model version onto the C-Coupler plat-
form.

www.geosci-model-dev.net/7/2281/2014/ Geosci. Model Dev., 7, 2281–2302, 2014



2296 L. Liu et al.: C-Coupler1: a Chinese community coupler for Earth system modeling

 1 

 1 

Fig. 4. The code of the main driver of the coupler component in the FGOALS-gc. The C-2 

Coupler APIs are marked in blue.  3 

program cpl 

 

   use cpl_read_namelist_mod 

   use c_coupler_interface_mod 

 

   implicit none 

   integer comm 

 

   call c_coupler_initialize(comm) 

 

   call parse_cpl_nml 

 

   call c_coupler_execute_procedure("calc_frac", "initialize") 

   call c_coupler_execute_procedure("sendalb_to_atm", "initialize") 

   call c_coupler_execute_procedure("check_stage", "initialize") 

   call c_coupler_do_restart_read 

   if (c_coupler_is_first_restart_step())  call c_coupler_advance_timer 

 

   do while (.not. c_coupler_check_coupled_run_finished()) 

      call c_coupler_execute_procedure("kernel_stage", "kernel") 

      call c_coupler_do_restart_write() 

      call c_coupler_advance_timer() 

   enddo 

 

   call c_coupler_finalize() 

 

stop 

end program cpl 

Figure 6. The code of the main driver of the coupler component in
FGOALS-gc. The C-Coupler APIs are marked in blue.

5.1 Coupler component and direct coupling

To construct FGOALS-gc, we use C-Coupler1 to develop
a separate and centralized coupler component according
to the CPL6 coupler. Then the four component models in
FGOALS-g2 – i.e., the atmosphere model GAMIL2, land
surface model CLM3, ocean model LICOM2 (Liu et al.,
2012), and an improved version of the sea ice model CICE4
(Liu, 2010) – are coupled together with the C-Coupler1
coupler component. All flux calculation algorithms in the
CPL6 coupler are integrated into C-Coupler1 as external al-
gorithms. These algorithms can be treated as public algo-
rithms that can be shared by other experiment models. Fig-
ure 6 shows the main driver of the coupler component in
FGOALS-gc. It is very simple, with a few lines of code, most
of which call the C-Coupler APIs, while the main driver of
the CPL6 coupler has about 1000 lines of code. This is be-
cause the coupling flow derived from the CPL6 has been

 1 

 1 

Fig. 5. Part of the runtime configuration file of the algorithm list for the coupler component in 2 

the FGOALS-gc. The first column specifies the type of each runtime algorithm. Transfer 3 

specifies the data transfer algorithms, remap specifies the data interpolation algorithms, and 4 

normal specifies the external algorithms. The second column specifies the configuration file 5 

of each runtime algorithm.  6 

transfer         runtime_transfer_cpl_a2c_areac_recv.cfg 

transfer         runtime_transfer_cpl_o2c_areac_recv.cfg 

transfer         runtime_transfer_cpl_i2c_areac_recv.cfg 

normal   frac_init_step1.cfg 

remap    frac_init_remap.cfg 

normal   frac_init_step2.cfg 

transfer         runtime_transfer_cpl_c2lg_2D_send.cfg 

transfer         runtime_transfer_cpl_r2c_areac_recv.cfg 

normal   areafact_init.cfg 

transfer         runtime_transfer_cpl_i2c_2D_recv.cfg 

transfer         runtime_transfer_cpl_l2c_2D_recv.cfg 

transfer         runtime_transfer_cpl_o2c_scalar_recv.cfg 

transfer         runtime_transfer_cpl_o2c_2D_recv.cfg 

transfer         runtime_transfer_cpl_a2c_2D_recv.cfg 

normal   areafact_o2c.cfg 

normal   areafact_i2c.cfg 

normal   areafact_a2c.cfg 

normal   areafact_l2c.cfg 

normal   areafact_r2c.cfg 

remap    runtime_remap_Xr2c.cfg 

Figure 7. Part of the runtime configuration file of the algorithm
list for the coupler component in FGOALS-gc. The first column
specifies the type of each runtime algorithm.Transferspecifies the
data transfer algorithms,remapspecifies the data interpolation al-
gorithms, andnormalspecifies the external algorithms. The second
column specifies the configuration file of each runtime algorithm.

described by a set of configuration files that are manually
defined by us. Figure 7 shows a part of the runtime configu-
ration file of the algorithm list for the coupler component. In
detail, each line is the keyword of a runtime algorithm. The
first column in the keyword specifies the type of the runtime
algorithm.Transferdenotes a data transfer algorithm,remap
denotes a data interpolation algorithm, andnormal denotes
an external algorithm. The second column specifies the con-
figuration file of the runtime algorithm. In sum, this runtime
configuration file clearly lists out 91 runtime algorithms. For
each runtime algorithm, there are configuration files to spec-
ify the input and output field instances.

Figure 8 shows the runtime configuration file of the run-
time procedures for the coupler component, where each line
corresponds to a runtime procedure. All runtime procedures
share the same runtime configuration file of the algorithm
list in Fig. 7. For a runtime procedure, the first column is the
procedure name, which is the input parameter when model
code calls the C-Coupler API c_coupler_execute_procedure.
The second column and third column respectively specify the
start and end index of the runtime algorithms in the algorithm
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Fig. 6. The runtime configuration file of the runtime procedures for the coupler component in 2 

the FGOALS-gc. 3 

calc_frac         0        6 

sendalb_to_atm   7        39 

check_stage      40       44 

kernel_stage     45       90 

Figure 8. The runtime configuration file of the runtime procedures
for the coupler component in FGOALS-gc.

list in Fig. 7. Then a runtime procedure can find the keywords
of all runtime algorithms in it.

Our tests show that FGOALS-gc achieves the same
(bitwise-identical) simulation result with FGOALS-g2. This
result demonstrates that C-Coupler1 can be used to construct
a coupler component for a complicated coupled model,
such as a CSM, without changing the simulation result.
FGOALS-g2 and FGOALS-gc can be downloaded through
“svn–username=guest–password=guest cohttp://thucpl1.
3322.org/svn/coupler/CCPL_CPL6_consistency_checking.”

When constructing the experiment models GAMIL2-
CLM3 and MASNUM-POM, we did not build a separate
coupler component but used the direct coupling where no
separate executable is generated for coupling. For GAMIL2-
CLM3, as GAMIL2 and CLM3 share the same horizon-
tal grid, there is only data transfer between them. For
MASNUM-POM, as the grid of MASNUM is different from
the grid of POM, both data transfer and data interpolation are
between these two component models.

5.2 Parallel 3-D coupling

In MASNUM-POM, there is only one coupling field, the
wave-induced mixing coefficient (Qiao et al., 2004), a 3-D
field from MASNUM to POM. As the horizontal grids and
vertical grids in these two component models are different,
3-D interpolation is required during coupling. In detail, we
use CoR to generate the remapping weights for the 3-D in-
terpolation. The corresponding 3-D remapping algorithm is
generated through cascading two remapping algorithms: a bi-
linear remapping algorithm for the horizontal grids and a 1-D
spline remapping algorithm for the vertical grids. For the 1-
D vertical interpolation, MASNUM and POM have different
kinds of vertical grids: az grid for MASNUM and asigma
grid for POM.

As introduced in Sect. 5.1, MASNUM-POM uses direct
coupling without a coupler component. As the resolution of
MASNUM is lower than the resolution of POM, we put the
calculation of the 3-D interpolation in the runtime proce-
dure of POM in order to achieve better parallel performance.
Therefore, the 3-D interpolation shares the same processes
with POM. When POM runs with multiple processes, the 3-
D interpolation is computed in parallel. Our evaluation shows

that the 3-D interpolation keeps the same (bitwise-identical)
result with different numbers of processes.

5.3 Code sharing

The experiment models FGOALS-gc, GAMIL2-CLM3, and
GAMIL2-sole share the same atmosphere model, GAMIL2.
In FGOALS-gc, the surface fields required by GAMIL2 are
provided by other component models and computed by the
coupler component with C-Coupler1. In GAMIL2-CLM3,
the surface fields required by GAMIL2 are provided by
CLM3 and the I/O data files which contain ocean fields and
sea ice fields, and computed by the private flux algorithms
in GAMIL2. GAMIL2-sole is similar to GAMIL2-CLM3,
while the difference is that GAMIL2-sole directly calls a land
surface package to simulate the surface fields from the land.
Therefore, in these three experiment models, GAMIL2 has
different procedures for the surface fields.

However, we make GAMIL2 share the same code version
in these three experiment models. All algorithms for com-
puting the input surface fields in GAMIL2 have been reg-
istered to C-Coupler1 as the private external algorithms. In
different experiment models, the same runtime procedures
of GAMIL2 have different lists of runtime algorithms. As a
result, all these experiment models keep the same (bitwise-
identical) simulation result with the original model versions
without C-Coupler1.

MASNUM-POM and MASNUM-sole share the same
wave model, MASNUM, while MASNUM-POM and POM-
sole share the same ocean model, POM. Similarly, we make
MASNUM and POM share the same code in these exper-
iment models that keeps the same (bitwise-identical) sim-
ulation result with the original model versions without C-
Coupler1.

5.4 Parallel performance

To evaluate the parallel performance of C-Coupler1, we use
a high-performance computer named Tansuo100 in Tsing-
hua University in China. It consists of more than 700 com-
puting nodes, each of which contains two Intel Xeon 5670
six-core CPUs and 32 GB main memory. All computing
nodes are connected by a high-speed InfiniBand network
with peak communication bandwidth 5 GB s−1. We use the
Intel C/C++/Fortran compiler version 11.1 and the Intel
MPI library version 4.0 for compiling the experiment mod-
els, with optimization level O2 or O3.

This evaluation focuses on the internal algorithms imple-
mented in the runtime software system, including the data
transfer algorithm and data-remapping algorithm, without
the consideration of the serial data I/O algorithm. Although
the Tansuo100 computer has more than 8000 CPU cores, we
can only use less than 1000 CPU cores because a lot of other
users require the use of this computer. As each computing
node has 12 CPU cores, we set the number of processes (each

www.geosci-model-dev.net/7/2281/2014/ Geosci. Model Dev., 7, 2281–2302, 2014
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Fig. 9. The scaling performance of a data transfer in the MASNUM-POM: transferring the 3-2 
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Figure 9. The scaling performance of a data transfer in MASNUM-
POM: transferring the 3-D field wave-induced mixing coefficient
from MASNUM to POM.

process runs on a CPU core) to an integral multiple of 12
when the number is no less than 12. A data transfer occurs
between two components. When evaluating its parallel per-
formance, the maximum number of processes for each of the
corresponding two components is 384, and the process num-
ber of the two components keeps the same in each test. The
two components do not share the same computing node, and
so the data transfer must go through the InfiniBand network.
A data interpolation is processed within a component. When
evaluating its parallel performance, the maximum number of
processes for the corresponding component is 768.

5.4.1 Parallel performance of the data transfer
algorithm

We first use MASNUM-POM for this evaluation, where a
3-D field, the wave-induced mixing coefficient, is directly
transferred from MASNUM to POM. Both the horizontal
grids of MASNUM and POM have about 400 000 (721×625)
grid cells. For the vertical grid, MASNUM has 18 vertical
levels, while POM has 30. Figure 9 shows the performance
of a data transfer when gradually increasing the process num-
ber of MASNUM and POM from 1 to 384. When increasing
the process number from 1 to 12 within a computing node,
the performance is slightly improved. However, from process
number 12 to 384, almost linear speedup is achieved. This is
because the decomposition is still coarse (more than 1000
horizontal grid cells per process, with 18 vertical levels) at
384 processes.

Next we use the data transfer from the atmospherical
model GAMIL2 to the coupler component in FGOALS-gc
for further evaluation, where 19 fields on the GAMIL2 hori-
zontal grid (the grid size is 128×60= 7680) are transferred.
Figure 10 shows the performance of a data transfer. The per-
formance is also slightly improved when increasing the pro-
cess number from 1 to 12. From process number 12 to 192,
the performance is improved slowly. From process number
192 to 384, the performance gets much worse. This relatively
low speedup is because, when the process number increases,
the package size for MPI communication decreased, and thus
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Fig. 10. The scaling performance of a data transfer in the FGOALS-gc: transferring 19 fields 2 

on the GAMIL2 horizontal grid from the GAMIL2 to the coupler component. 3 

77

Figure 10.The scaling performance of a data transfer in FGOALS-
gc: transferring 19 fields on the GAMIL2 horizontal grid from
GAMIL2 to the coupler component.
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Fig. 11. The scaling performance of a 3-D interpolation in the MASNUM-POM: interpolating 2 

the 3-D field wave-induced mixing coefficient from the 3-D grid of MASNUM to the 3-D 3 

grid of POM on the POM. 4 

Figure 11. The scaling performance of a 3-D interpolation in
MASNUM-POM: interpolating the 3-D field wave-induced mixing
coefficient from the 3-D grid of MASNUM to the 3-D grid of POM
on POM.

the communication bandwidth achieved in each MPI com-
munication decreases.

5.4.2 Parallel performance of the data-remapping
algorithm

Similarly, we first use MASNUM-POM for this evaluation,
where the 3-D field, the wave-induced mixing coefficient,
is interpolated from the 3-D grid of MASNUM to the 3-D
grid of POM on the processes for POM. Figure 11 shows
the performance of a data interpolation when gradually in-
creasing the process number of POM from 1 to 768, includ-
ing the total time, the time for rearranging the field, and the
time for interpolation calculation. For the performance of the
total and interpolation calculation, almost linear speedup is
achieved. However, the data rearrangement achieves much
poorer performance. When increasing the process number
from 12 to 768, only 16.x-fold speedup is achieved. This is
because the package size for MPI communication decreases
when increasing the process number.
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Fig. 12. The scaling performance of a 2-D interpolation in the FGOALS-gc: interpolating 19 2 
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Figure 12. The scaling performance of a 2-D interpolation in
FGOALS-gc: interpolating 19 horizontal fields from the GAMIL2
grid to the LICOM2 grid on the coupler component.

For further evaluation, we use the horizontal data interpo-
lation from the atmospherical grid (GAMIL2 grid) to ocean
grid (LICOM2 grid with 360× 196= 70 560 cells) on the
coupler component in FGOALS-gc, where 19 fields are in-
terpolated. As shown in Fig. 12, the data rearrangement
achieves much poorer performance speedup than the inter-
polation calculation. As a result, the performance speedup of
the total interpolation is poor. From process number 1 to 96,
only 16-fold speedup is achieved. From processor number
96 to 768, the total performance gets poorer. This is because
the package size for MPI communication is very small when
rearranging the fields.

5.5 Integration of a stand-alone component
model version

A common model software platform can prospectively facil-
itate model development and scientific research through uni-
fying the manner for operating various model simulations.
As the C-Coupler platform is targeted to be a common model
software platform, it should be able to flexibly integrate
various models for simulations. Besides the coupled model
configurations that use C-Coupler for coupling, the stand-
alone component model versions without coupling and the
coupled model versions that use other couplers but not C-
Coupler1 for coupling can also be integrated onto the C-
Coupler platform. For the corresponding evaluation, we inte-
grated a stand-alone component model version of MOM4p1
onto the C-Coupler platform.

Section 4.4 shows the five major steps for coupling a com-
ponent model with C-Coupler1. It only takes steps 3 and
5 to integrate the stand-alone MOM4p1. For step 3, less
than 10 lines of source code are added to the main driver
of MOM4p1. For step 5, we wrote five simple configura-
tion files according to Sect. 4.2.1. Finally, the stand-alone
MOM4p1 can be operated on the C-Coupler platform. When
further coupling MOM4p1 and other component models

together on the C-Coupler platform, the other steps (i.e.,
steps 1, 2, and 4) need to be conducted.

6 Discussion of future developments

C-Coupler is now ready for model development with its
first version C-Coupler1. As C-Coupler is a community cou-
pler, we welcome scientists and engineers to use it and con-
tribute to it in various aspects, such as providing component
models, coupled models, flux algorithms, model simulations,
bug reports, etc. Furthermore, we welcome further modeling
groups in the use of C-Coupler for model development. Any
new requirements from scientists, engineers, and modeling
groups regarding C-Coupler can likely be considered in the
future plan for development of C-Coupler. In China, the num-
ber of users of C-Coupler is increasing, and more and more
component models and coupled models are integrated on the
same C-Coupler model platform.

As the first version, C-Coupler1 does not achieve all the
targets of C-Coupler. For the future versions of C-Coupler,
we will consider at least the following several aspects:

1. Coupling generator. The runtime software system takes
the runtime configuration files of a model simulation
as input. In C-Coupler1, the runtime configuration files
have to be written manually by users. To facilitate the
work for building a model simulation, we propose to
design and develop a coupling generator in the future
which can automatically generate the runtime config-
uration files according to the configuration files of the
component models, experiment model, and external al-
gorithms. Moreover, the coupling generator will be able
to automatically optimize the parallel performance of
the whole model simulation. For example, for the direct
coupling between two component models with different
horizontal resolutions, the coupling generator will make
the corresponding data interpolation run in the runtime
procedures of the component model with higher reso-
lution in order to minimize the data size of the fields
transferred between these two component models. We
plan to develop the coupling generator in C-Coupler2,
the second version of C-Coupler.

2. Single executable. C-Coupler1 uses multiple executa-
bles for a coupled model. A typical problem with this
approach is that the processor time will be wasted when
the components do not run concurrently. The CPL7 cou-
pler has demonstrated that the approach of using a sin-
gle executable with a top-level driver, which manages
the processor layout and time sequencing between the
components, can solve this problem and thus improve
the overall parallel performance of the whole coupled
model. For the future versions of C-Coupler, we will
consider how to achieve a similar top-level driver in
a simple way, under the general design of C-Coupler.

www.geosci-model-dev.net/7/2281/2014/ Geosci. Model Dev., 7, 2281–2302, 2014



2300 L. Liu et al.: C-Coupler1: a Chinese community coupler for Earth system modeling

For example, the top-level driver should be as simple as
the main driver of the coupler component in FGOALS-
gc, as shown in Fig. 6.

3. Parallel performance optimization. As shown in
Sect. 5.4, the parallel performance of the data trans-
fer algorithm is not particularly good, and the data-
remapping algorithm is not good enough, even poor,
when the grid size is small and the parallel performance
of the data transfer algorithm is not particularly good,
even poor. For future work, we will try to further im-
prove the data transfer algorithm. Moreover, we will
consider how to improve the parallel performance of
the whole experiment mode with C-Coupler, especially
when the resolution of models increases in the future.
For example, C-Coupler will provide a parallel I/O li-
brary and the coupling generator will automatically im-
prove the overall performance when generating runtime
configuration files.

4. More functions. As demonstrated in Sect. 5, C-
Coupler1 is able to unify various stand-alone compo-
nent models and coupled models onto the same model
platform. In order to unify more kinds of models onto
the same model platform, the future versions of C-
Coupler will provide more functions to support one-
way, or even two-way, model nesting, interactive cou-
pled ensembles (Kirtman and Shukla, 2002), etc. In ad-
dition, we will consider how to make it possible for C-
Coupler to integrate various assimilation systems and
diagnostic systems onto the same model platform.

5. More remapping algorithms. Recently, we merged the
development of CoR and C-Coupler together. The avail-
able 2-D remapping algorithms in CoR are currently
of low order. In the future, we will develop more 2-
D remapping algorithms with higher order, so as to
provide more selections for model coupling and scien-
tific researches. Moreover, we will consider developing
some pure 3-D remapping algorithms in CoR, such as
the 3-Dn neighbor distance-weighted average and tri-
linear remapping algorithms used in the OASIS coupler,
and compare them with the “2-D+ 1-D” approach.

7 Conclusion

C-Coupler1 is a parallel 3-D coupler which achieves bitwise-
identical simulation result with different numbers of pro-
cesses. Guided by the general design of C-Coupler, C-
Coupler1 enables the same code of runtime software system
and component models to be shared by multiple experiment
models, and enables multiple experiment models to work on
the same model platform. It can be used to construct a cou-
pler component with a few lines of code for constructing a
complex coupled model like CSM, and can also be used as

direct coupling for better parallel performance of the whole
coupled model. C-Coupler1 is ready for developing CSMs
and ESMs. In China, C-Coupler is beginning to assist more
and more in model development, e.g., the development of a
CSM at Tsinghua University targeting CMIP6; the develop-
ment of the atmosphere model GAMIL at the State Key Lab-
oratory of Numerical Modeling for Atmospheric Sciences
and Geophysical Fluid Dynamics (LASG), Institute of Atmo-
spheric Physics; and the development of the coupled model
MASNUM-POM at the first Institute of Oceanography, State
Oceanic Administration. We have begun development of a
uniform model platform which will integrate various com-
ponent models, experiment models, and model simulations
together. We believe that C-Coupler will help advance Earth
system modeling.

Code availability

The source code of CoR can be downloaded
through “svn–username=guest–password=guest co
http://thucpl1.3322.org/svn/coupler/CoR1.0”. The source
code of C-Coupler1 can be downloaded with FGOALS-
gc through “svn–username=guest–password=guest
co http://thucpl1.3322.org/svn/coupler/CCPL_CPL6_
consistency_checking.”. If any problems are encoun-
tered with the code, please feel free to contact us (liuli-
cess@tsinghua.edu.cn).

The Supplement related to this article is available online
at doi:10.5194/gmd-7-2281-2014-supplement.
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