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Abstract. The development and validation of the vertical dif- et al, 2011, Yu et al, 2013. Moreover, transport of volcanic
fusion module of IL-GLOBO, a Lagrangian transport model emissions (e.g. the recent Eyjafjallajokull eruption) or acci-
coupled online with the Eulerian general circulation model dental hazardous releases (like the Fukushima and Chernobyl
GLOBO, is described. The module simulates the effects ofnuclear accidents) are also important at the global scale.
turbulence on particle motion by means of a Lagrangian The natural framework for the description of tracer trans-
stochastic model (LSM) consistently with the turbulent dif- port inflows is the Lagrangian approach (see, for exam-
fusion equation used in GLOBO. The implemented LSM in- ple, the seminal works byaylor, 1921, and Richardson
tegrates particle trajectories, using the natiybrid co-  1926. In the Lagrangian framework, the tracer transport is
ordinates of the Eulerian component, and fulfils the well- described by integrating the kinematic equation of motion
mixed condition (WMC) in the general case of a variable for fluid “particles” in a given flow velocity field, provided
density profile. The module is validated through a series ofby, e.g. a meteorological model. The turbulent motion unre-
1-D offline numerical experiments by assessing its accuracyolved by Eulerian equations for averaged quantities (in the
in maintaining an initially well-mixed distribution in the ver- Reynolds or volume-filtered sense) can be accounted for by
tical. A dynamical time-step selection algorithm with con- including a stochastic component into the kinematic equa-
straints related to the shape of the diffusion coefficient pro-tion.
file is developed and discussed. Finally, the skills of a lin- The stochastic component can be added to the particle
ear interpolation and a modified Akima spline interpolation position to give the Lagrangian equivalent of the Eulerian
method are compared, showing that both satisfy the WMCadvection-diffusion equation. This kind of model is usually
with significant differences in computational time. A prelim- called a random displacement model (RDM) and is suit-
inary run of the fully integrated 3-D model confirms the re- able for dispersion over long timescales. When the stochas-
sult only for the Akima interpolation scheme while the linear tic component is added to the velocity, the model is usually
interpolation does not satisfy the WMC with a reasonablecalled a random flight model (RFM), which is more suit-
choice of the minimum integration time step. able for shorter time dispersion. In both cases, the stochas-

tic model formulation has to be consistent with some basic

physical requirementdhomson 1987, 1995.

Various Lagrangian transport models exist which can be

1 Introduction used at the global scale. Some are designed specifically for

the description of atmospheric chemistfgejthmeier and
Global- (or hemispheric-) scale transport is recognised as aausen2002 Wohltmann and Regx2009 Pugh et al.2012

important issue in air pollution and climate change studies.see’ e.g.), while others focus on the transport of tracers. In
Pollutants can travel across continents and have an influencge |atter class, two of the most widely used models are

even far from their source (see, for recent examptésre
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FLEXPART (FLEXible PARTicle dispersion modelstohl 0,1,...), are described by a set of stochastic differential
et al, 2005 and HYSPLIT (Hybrid Single Particle La- equations (SDEs). The equation for thh order derivative
grangian Integrated Trajectory Modelpraxler and Hess M is

1998, which are highly flexible and can be easily used in

a variety of situations. Both are compatible with different in- dXi(M) =a;dt + b;;dW;, 1)

put types (usually provided by meteorological services like

the European Centre for Medium-Range Weather Forecasigherei and j indicate the components agq(k) is the kth-
(ECMWF)), relying on their own parameterisation for fields order time-derivative of the Lagrangian Cartesian coordinate
not available from the meteorological model output. Models componentx; = x©. Coefficientsy, andb;; are called drift

of this kind are suited for both forward and backward disper-3nd Wiener coeffilcients, respectively. The remaining equa-

sion studies. _ _ tions of the set (k k < M) are described by
An alternative approach is to couple the Eulerian and La-
grangian parts online. On one hand, this makes the Euleriagy -1 _ y®)y, )
2 i :

fields available to the Lagrangian model at each Eulerian
time step, increasing the accuracy for temporal scales shorter thea set of equations is equivalent to the Fokker—Planck
than the typical meteorological output interval. On the Otherequation:

hand, it also allows the consistent parameterisation of pro-

cesses in the Eulerian and Lagrangian frameworks (e.g. th<=a Mg 52
vertical dispersion in the boundary layer). Moreover, where 2 — — > W(A{'( P+ —an—an Kiip). (3)
the considered tracer may have an impact on meteorolog)pt =0 0X; dx; " 0x;

(e.g. on radiation or cloud microphysics), online integration

provides a natural way to include these effe@@Klanov ~ where A¥ =1 for k < M and A¥ = q; for k = M, x; is the
et al, 2014. Online coupling also ensures the consistencyEulerian equivalent ofY; and K;; = bjxb;i/2 (Thomson
of a mixed Eulerian—-Lagrangian analysis of the evolution of 1987). Equation 8) describes the evolution of the prob-
atmospheric constituents (e.g. water or pollutants) along ability density functionp(x©,...,x®™ 1), where x® =
trajectory Sodemann et 32008 Real etal.2010 see, e.9.).  (x{¥, x{", x{). For the evolution of X©@, ..., X*) to be

Malguzzi et al(201]) recently developed a new global nu- approximated by a Markov process, the time correlation of
merical weather prediction model, named GLOBO, based onthe variableX ¥+ has to be much shorter than the charac-
a uniform latitude—longitude grid. The model is an extensionteristic evolution time ofX ™). If the model has to describe
to the global scale of the Bologna Limited Area Model (BO- the evolution of dispersion at times ¢, wherer is the cor-
LAM) (Buzzi et al, 2004, developed and employed during relation time of turbulent velocity fluctuations, the process is
the early 90s. GLOBO is used for daily forecasting at thewell captured at orde¥ = 0. When shorter times are consid-
Institute of Atmospheric Sciences and Climate of the Na-ered, as in the case of dispersion from a single point source
tional Research Council of Italy (ISAC-CNR) and is also before theTaylor (1921) diffusive regime occurst (< ), or-
used to produce monthly forecasts. Online integration withder M must be increased to 1. The model of lowest order
BOLAM family models has already yielded interesting re- (M = 0) is referred to as random displacement model (RDM)
sults in the development of the meteorology and compositionand is sufficiently accurate to describe the transport and mix-
model BOLCHEM (BOLam + CHEMistry) Nlircea et al.  ing of particles at a time and space resolution typical of a
2008. Considering that experience, the GLOBO model con-global model.
stitutes the natural basis for the further development of an The correct formulation of a RDM in a variable density
integrated Lagrangian model. flow was first obtained bywenkatram(1993 and then re-

In the following, the development of the vertical diffusion fined and generalised Bjhomson(1995 and is briefly re-
module is presented, focusing in particular on its compliancecalled here. Equation3) is valid for the probability den-
with basic theoretical requiremenfShomson 1987 1995  sity function p of particle position with the initial condition
the well-mixed condition, see ) in connection with different p((x), )|, = p((x), 70). Since the ensemble average con-
numerical issues. In Sect. 2 the theoretical basis of the modedentration(c) is proportional top, Eq. 3) can be rewritten as
formulation is given, while Sect. 3 describes different aspects
of the numerical implementation. Finally, the model verifica-

tion is presented and discussed in Sect. 4. a{c) 0 32
P A (Kij(c)). (4)
at ax; 0x; ij
2 Lagrangian stochastic model formulation If (c) o (p) at some time’, where(p) is the ensemble aver-

age of air density, then for all> ¢’ the two quantities must
In application to dispersion in turbulent flows, Lagrangian remain proportional. This condition, called well-mixed con-
stochastic models (LSMs), Markovian at ordgéf(M = dition (WMC) afterThomson(1987), implies that(p) is also
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a solution of Eq. 4). Substitutingc with p in Eq. @) and  tends, with height above the ground, to a pressure coordinate

using the continuity equation P, according to

d(p) 9 _ P = Pyo — (Pp— Ps)o“, 10
= (i) . 5) 00 = (Po = Fs)o (10)
ot 0x;

where Py is a reference pressure (typically 1000 hFRy)is
whereu; is the density weighted mean velocity, defined asthe surface pressure ands a parameter that gives the clas-
(Thomson1995: sicalo coordinate forx = 1 (Phillips, 1957). The parameter
a depends on the model orography and, therefore, on resolu-

. I
u; = {uip) _ (u;) + {uip >, (6)  tion. Itis limited by the condmorb—o > O that results in the
(p) (p) relationship:
the following expression is obtained: Po
a< S (11)
0 32 PO - m|n(PS)
_a_xl @i (o)) = _8_x,-(ai tn+ 0x;0x; (Kij (0) ™ which is satisfied by the typical settiag= 2, used for a wide
. . ) ) ) range of resolutions in GLOBO applicationddlguzzi et al,
Then, integrating both sides and rearranging gives 2012).
OKij  Kij 0(p) The vertical Lagrangian coordinate is identified®ycor-
di = UW +u;, 8 responding to the vertical coordinate and is connected to
J J

the Lagrangian vertical positiali above the ground through
where the non-unigueness implied by the integration is re-Eq. (10) and the hydrostatic relationship. In the meteorologi-
moved considering that in the well-mixed state, the mixing cal component, the height above the grounsl a diagnostic
ratio flux must be proportional @; (o). Substituting Eq.&) guantity that can be derived from the geopotentiaghrough
into Eq. @) gives the equivalent of Eq. (2) imhomson z(o) = (CI>(0)—<I>g)g_1, whered, is the geopotential at the
(1995. height of roughness length. Since the determination of the
At the coarse resolution typical of global models, ver- different terms in Eq.9) involves discrete Eulerian fields
tical motions can be considered decoupled from the hori-and their numerical derivatives, the choice of employing
zontal ones. Therefore, only the vertical coordinage= z also has the advantage of making interpolation straightfor-
(andX3 = Z in Lagrangian terms) need to be considered. Inward and consistent with the Eulerian part.
this case, the RDM reduces to a single differential stochastic Becauser(z) is not linear ¢ is not a Cartesian coordi-

equation nate system), the stochastic chain rule (see }dagden and
9K K 9lp Platen 1992 p. 80) must be used to derive the correct form
dz = (w+ 2z T ; >>dt+x/2KdW (9) ofEaq. @ for X, giving
Z 4
do\> 1 9 9%
wherew = uz andK = K33. daxz = a)+<—a> ——{p)K )+K— dr (12)
9z ) (p) do
L . . do 1/2
3 Numerical implementation of the vertical + ™ (2K)7<dw,

diffusion module
wherew is the vertical velocity in ther coordinate system

In its final form, IL-GLOBO is designed to be a fully online andz is the Cartesian vertical coordinate. The last term in
integrated model (or at least an online-access model, accordquare brackets stems from the Ité—Taylor expansion of order
ing to Baklanov et al. 2014, where the different compo- dW?2, which must be included for the correct description at
nents share the same “view” of the atmosphere, i.e. use therder d (Gardiner 199Q p. 63).
same discretisation, parameterisations, etc. The development
of the vertical diffusion module is based on this principle. 3.2 Discretisation and interpolation

3.1 Vertical coordinate The GLOBO prognostic variables are computed doeenz
(1960 vertical grid: all the quantities are on “integer” lev-

Within IL-GLOBO, the Lagrangian equations are integrated els ¢;, except vertical velocity, turbulent kinetic energy and
in the same coordinate system used in the Eulerian modeimixing length and, consequently, diffusion coefficients, lo-
This choice maintains the consistency between the Lacated at “semi-integer” Ievelsih (see Fig.1). In typical ap-
grangian and Eulerian components and reduces the interpglications, the GLOBO vertical grid is regularly spaced in
lation errors and computational cost. o (Malguzzi et al, 2011, although it is possible to use a

GLOBO uses a hybrid vertical coordinate system in which variable grid spacing, as in its limited-area version BOLAM
the terrain-following coordinates (0 <o < 1) smoothly  (Buzzi et al, 1994).

www.geosci-model-dev.net/7/2181/2014/ Geosci. Model Dev., 7, 27484, 2014
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6=0 a"=0 k=1 For D, the values of the first-order derivative at the lowest
boundary are computed as

oK _ Kniev41 — KnLEv

,,,,,,,, 6 o _______k1 — (15)
90 |NLEV4+1  ONLEV+1 — ONLEV
u,v, T, q, Ps k-1 .. . .
This is assumed becaugeé is expected to be linear near
77777777 P R the surface, according to Monin—Obukhov similarity theory
where
u,v,T,q,Ps,®___ ¢ k
K(z) = kuqz (16)
________ 0 _ o _______kHt
for the neutral case, with proper modifications for diabatic
cases.
60 ' ohe1 JNLEV+1 The second method (labelled A) is based on Akéma

s (199]) cubic Spline. For each interval it considers the preVi-
ous and the next two adjacent intervals (for a total number of
ix grid points) to compute the coefficients of the interpolat-
?ng cubic polynomial. This algorithm reduces the number of
oscillations in the interpolating function compared to regular
cubic splines and enforces the linearity when four points are
¥ being a continuous coordinate, the quantities needed tgollinear (Akima, 1991). Using this property, a linear pro-
compute the terms of Eql®) must be interpolated from the file near the ground is imposed to the interpolating function
Eulerian fields given at discrete levels. The computation ofby adding two fictitious points below the ground that are

first- and second-order derivatives of Eulerian model quan-collinear with the two lower grid points of the domain. In ad-
tities is also required in the implementation of the LSM. In- dition, to ensure the positivity of the interpolating functions,
terpolation and derivation algorithms can influence both thethe local algorithm oFischer et al(199]) is used, which also
accuracy and the computational cost of the Lagrangian modepreserves the continuity of first-order derivatives.
and thus require careful assessment. ) ] ]

For densityp and geopotentiab, linear interpolation and  3-3  Integration scheme and time-step selection
central differences derivative are used assuming that thos
fields are regular enough. At the lower boundary, it is re-

Figure 1. Schematic representation of field value distributions be-
tween integer (continuous lines) and semi-integer (dashed lines
levels in the GLOBO model.

The most common integration scheme for SDE in atmo-
spheric transport models is the Euler—Maruyama forward

quired that scheme:

2 2
3_/; _ 3_/; ’ (13)  Srvar =S +aAr+bAW. (17)
d0°INLEV+L  90% INLEV

The coefficientss and b come from Eq. 12). The Euler—
which implies Maruyama forward scheme is the simplest strong Taylor ap-
proximation and turns out to be of the order of strong con-

a_p _ (14) vergencey = 0.5 (Kloeden and Plateri992 p. 305).

90 INLEV 1 By a rather simple modification of the Euler—-Maruyama
dp 32p scheme, i.e. adding the term:
— 3 (ONLEV+1 — ONLEV)
30 |NLev 997 INLEV 1

Zbhb' (AW? — At), (18)

for the first-order derivative. Following the same considera-

tions made forp, the derivatives ob with respect of; are  whereb’ is the first-order derivative df, the Milstein scheme

computed from relationships similar to Eq$3) and (L4). is obtained, which is of the order of strong convergence
For the highly varyingK profiles, two different methods y = 1. It is worth noting that the strong order= 1 of the

are tested, the first with two variants. The first method in- Milstein scheme corresponds to the strong order 1 of the

terpolates the function linearly at the particle position andEuler deterministic scheme. Therefore, Milstein can be re-

uses finite differences derivatives. In the first variant (la- garded as the correct generalisation of the deterministic Euler

belled D), the first-order two-point derivative is computed scheme Kloeden and Plateri992 p. 345). The additional

and kept constant between two grid points. In order to giveterm uses only already-computed quantities involved in the

a smoother description of the derivatives, a variant (labelleddetermination of the drift term of Eq1®). Preliminary ide-

D’) is also tested in which the three-point centered derivativealised tests do not show any appreciable accuracy improve-

is computed and interpolated linearly at the particle position.ment with respect to the Euler—Maruyama scheme. However,

Geosci. Model Dev., 7, 21812191, 2014 www.geosci-model-dev.net/7/2181/2014/
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92K
do?

because they confirm the negligible extra computational cosThe above equation has the property of limitiagy accord-
of this method, the Milstein scheme will be used to integrateing to the sharpness of thé peak.
the model. Taking the minimum among T, At; andAr, (and replac-
In the meteorology component of IL-GLOBO, the Eule- ing « with = Cr in Egs.19and20), gives
rian equations are solved with a macro time s, which _2 1
depends basically on the horizontal resolution due to the lim-, , _ in {AT ﬁK (3_K> Cr } 1)
itations imposed by the Courant number. Other time steps are T2 do 2 ’
involved in the Eulerian part but are not relevant here. In typ- n . ., .
ical implementationsAT ranges from 432's for 362 242 where the parametér; quantifies the “much less” condition
point resolution (used for monthly foreca$t¢o 150s for and_, therefore, must be at_lea_sto.l or smaller. i
1202x 818 point resolution (used for high-resolution weather F19ureé2 shows the application of Eq2{) for a k' profile
forecast?). The macro time step is taken as the upper limit 'éPresentative of GLOBO (see Settand aCr = 0.01. The
for the solution of Eq. 12). The time step needed to reach A decréases in the presencefofgradients thanks to con-
the required accuracy depends on the quantities involved iifition (19). and is limited around th& maximum (where
determining the various elements in E47), 9K /do = 0) by condition 0). The maximum ofAr = AT
First, a straightforward constraint is that the time step must'S ttained at higher levels. _
satisfy the relationship It sheuld be keptin _m_md that the_method is base_d on local
gquantities and may fail if strong variations &foccur in one
9k |71 time step along the particle path. To overcome this problem,
V2KAn <K ‘g ; (19)  an additional constraint is used to make the algorithm non-
local (or “less local”). Using thé\tg computed at the particle
(Wilson and Yee 2007, see, e.g.), which expresses the re- position at timer, two other time stepsAr; and Ar_) are
quirement that the average root mean square step length mustaluated at the positions:
be much smaller than the scale of the variation&ofThis 12
gives rise to a limitation that is consistent with the surface- 2+ = X +alto £ bAlg (22)
Iayer_ l_)ehaviour of the diffusion coefficient_, Edl6). The  The minimumA? amongAro, Az, andAr_ is then used to
condition expressed by EdLY makesAr venlsh for_z — 0. advance the particle positiaya;.
Such behaviour ensures that the WMC is satisfied theoret-
ically, but clearly poses problems for numerical implemen-3.4 Boundary conditions
tation Ermak and Nasstron200Q Wilson and Yee2007).
However, in the application of a global model, where parti- The necessary boundary condition for the conservation of
cles can be distributed throughout the troposphere, this probthe probability (and therefore of the mass) is the reflective
lem affects only a small fraction of particles in the vicinity boundary Gardiney199Q p. 121)Wilson and Flescl1993
of the surface. Therefore, it can be dealt with by selecting ashow that the elastic reflection ensures the WMC if the inte-
Atmin small enough for the solution to be within the acceptedgration time step is small enough. However, in cases of non-
error and, at the same time, large enough to not impact thédomogeneou&’, numerical implementation requires thist
overall computational cost. vanishes as the particle approaches the boundary. For models
In addition to Eq. 19), another constraint is needed to ac- that focus on near-surface dispersion, the time step needed to
count also for the presence of maxima in f@rofile, which ~ achieve the required accuracy can become very sEraak
must be present if one considers the whole atmosphere. Aand Nasstron{2000 describe a theoretically well-founded
maxima (or minima), Eq.19) gives an unlimitedA#;, which method to speed up (roughly by a factor of 10) simulations
is not suitable for the integration of the model as it could of this kind.
cause the trajectory to cross the maximum (or minimum), In the case of IL-GLOBO, it will be shown that the elas-
with a significant change ik (z) associated to a change in tic reflection condition at- = 1, coupled with the adaptive
0, K sign. To avoid this problem, a further constraint is in- time-step algorithm described in Seg13, can ensure a good
troduced, based on the normalised second-order derivativepproximation of the solution while maintaining affordable
which gives an estimation of the width of the maximum. The the computational cost.
constraint reads

2p 71 4 Model verification: the well-mixed condition
2KA < K W (20)
o In order to verify the vertical diffusion module of IL-
Lttp://www.isac.cnr.it/dinamica/projects/forecast_dpc/month_ GLOBO, a series of experiments was performed with a 1-D
en.htm version of the code and then tested in a preliminary version
2http:/Awww.isac.cnr.it/dinamica/projects/forecasts/glob_ of the full 3-D model. Input profiles were obtained by run-
newNH/ ning the low-resolution version of GLOBO (horizontal grid

www.geosci-model-dev.net/7/2181/2014/ Geosci. Model Dev., 7, 27484, 2014
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Figure 2. Values of integration time stefs for the diffusivity pro- ~ Figure 3. Average GLOBO profiles op (green symbols) and/g
file shown by the red curve. The green line shows the contribution of(blue symbols) as a function of vertical coordinatand their ana-
Eq. (19), the blue line the contribution of Eq2Q) and the black line  Iytical fits (Egqs.23 and24).

the combined condition (EQ1, with AT =432s andCr = 0.01).

Table 1. RMSE and execution time for differenty .

of 362x 242 cells and 50 vertical levels evenly spaced)n

starting at 11 March 2011 00:00 UTC. After 36 h of simula- Cr RMSE  Time[s]

tion (12:00 UTC), averaging af = const surfaces were per- 0.5 0.044 76
formed forK, p and®, obtaining vertical profiles as a func- 0.1  0.037 238
tion of o. Fields of p and ® were averaged over the whole 0.01 0.021 1172
domain. As far ax is concerned, averages were performed 0.001  0.021 7317

for latitudes betweer-60 and—60° North in daytime (lon-
gitudes betweer-45 and+45° East) and night-time (longi-
tudes betweer-135 and—135’ East) conditions, over land 5 seq 1o account for the specific features: it should dis-

ar;]‘?‘ rs]ea separatc(jely. Tﬂe (rjnos_t |ntem§rpf|le IS sellec;ed play a linear behaviour near the surface, must tend to zero
which corresponds to the daytime conditions over land. Proy,q 5 e boundary layer td@nd, therefore, must display a

files of p andz are rather smooth and regular over space an‘ﬂwaximum at some height. In EE), A = 0.29ms ! was

t?me, while K digplays Ia_rge Vari"?‘bi”ty' The profiles WET® first determined according to average surface-layer proper-
fitted with analytical functions derived by combining the hy- ¢ (the first GLOBO vertical level), and corresponds to a

drostatic equation and the perfect gas law. The following an+istion velocity u, ~ 0.7 ms"L. Then, the other two param-
. ) ) « 0. . ,
alytical expressions were used: eters were allowed to vary to fit the average profile giving

p(0) = poo Ra/e+D (23 B=13x 10-3m~tandC = 16.
Although the above profile is representative of the typi-
and cal GLOBO diffusivity, real profiles can be remarkably less
RoT regular, creating challenging conditions for the model. For
(o~ Ral/8 _ 1Ty ) . A
2(0) = i (24) this reason, a profile was selected among those showing iso
r lated strong maxima near the ground. This is typical of strong
with  Tp=2880K po=12kgm?3 and I = convective conditions just after sunrise. Fitting E26)(to

this second profile givegd =0.3ms™!, B=4.0x103m1!
and C = 4.5. Figure4 reports the GLOBO “average” and
“peaked”’K profiles as function of .

—0.007Km 1. As a consequence of the hydrostatic
perfect gas assumption, by expressing the depsitysigma

vertical units(,og =p ’g—g‘) and using Eqs.24) and @3),

the following constant value is obtained: 4.1 Determination of the optimal setting for the
_ poRaTo adaptive time-step selection algorithm
g The first series of experiments concerns the optimisation of
Figure3 shows the GLOBO-average profiles and their fitting the adaptive scheme foks, i.e. the selection of the best
functions for the density and the geopotential heigtitg —* suited value for the coefficieddy in Eq. 21).
as function ob.
As far as theK profile is concerned, the function

(25)

o

3In GLOBO, K also accounts for a part of the instability gener-
c ated by moist convection and, therefore, it might not vanish at the
K(z) = Az eXp[—(Bz) ] , (26)  boundary layer top.

Geosci. Model Dev., 7, 21812191, 2014 www.geosci-model-dev.net/7/2181/2014/
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06065 07 075 08 0.8 05 095 Figure 5. Dispersion experiment with different choices of param-

eterCr. Top panel: diffusivity profile (black line) andt profiles
Figure 4. Diffusivity profiles used in the experiments. The symbols for Cr = 0.5 (light blue),Cr = 0.1 (green),Cr = 0.01 (red) and
represents the data from GLOBO and the lines, their fitting function.Cr = 0.001 (blue). Bottom panel: normalised concentration pro-
The “average” profile is shown in red, while the “peaked” profile is files for differentCr (line colours as in the top panel).
shown in green. The functional form of both profiles is described by
Eq. (26).

Simulations were performed in flow conditions described Ozzz J
by Egs. £3), (24) and @6), distributing particles with num- 00a | |
ber concentration proportional te. For the WMC to be 0.035 ¥ |
satisfied, this distribution must remain constant as the time

m L A
evolves. Equation1(2) was integrated for 4 10° particles % O(Z)(Z I
and for 200 macro time steps, each 432 s long, for a total of 0.02
T =86 400s=24h. The actual time step used is given by 0015 |
Eq. @1) with the additional lower limitAfmin = 0.01. Sim- P
ulations were performed using 12 cores of an Intel Xeon 0.005 ‘ ‘
machine. Since the initial condition was already well-mixed 0.001 0-‘”C 0.1

T

(C « p), the simulation time was considered sufficient to as-
sess the skill of the model in satisfying the WMC. At the end Figure 6. RMSE obtained from experiments made wittP{6ed),

of the simulation, final concentration profiles were computeds x 10° (green) and 16 10° (blue) particles as a function @fy.

in “o volume”, i.e.c(c) = N(o)(Ac)~ 1, whereN (o) is the

number of particles betweenando + Ac. The skill of the

model in reproducing the WMC was evaluated using the root4.2  Evaluation of the interpolation algorithms

mean square error (RMSE) of the final normalised concen-

tration profile with respect to the normalised density profile In the subsequent set of experiments, the model skill in re-

(derived using Eq25). producing the WMC was evaluated for the interpolation tech-
Figure5 reports the different profiles of concentration af- niques D, D and A described in Sec3.2
ter 24 h of simulation computed using different value€'of In the first experiment, the analytical fields described by

The shaded region represents the interval between 3 standaBbs. £3), (24) and @6) with the parameters of the “average”
deviations from the expected value. RMSE values for eachdiffusivity profile were resampled on a 50-point regular grid.
simulation are reported in Tablealong with the computa- This provides a discrete version of the experiment described
tion time. The RMSE error becomes comparable to the stain the previous section, with the same vertical resolution of
tistical error forCy = 0.01, which is selected as the optimal the GLOBO original fields.
value. In order to evaluate the possible dependencg of The particle number, initial distribution and simulation
on the number of particles, two additional sets of runs weretime are the same as in the experiment described in &4ct.
performed with 18 and 16x 10° particles that correspond to  The integration time step is selected using the local algo-
halving and doubling, respectively, the statistical error of therithm. The time-step selection algorithm requires the com-
base experiment. Results are reported in Eigyhich shows  putation of the second-order derivative &f which is not
that, in the considered range, the optindal is quite inde-  possible for the D interpolation scheme. Therefore, it is es-
pendent of the number of particles. timated using finite differences of the first-order derivative.
It is worth noting that the time-step selection algorithm The results of this experiment are shown in Fig.n the
with the proper choice ofCr ensures that the WMC is upper panel, the integration time-step profiles of the three
also satisfied at the reflective boundary too, as mentioned isimulations and the Akima interpolated diffusion coefficient
Sect.3.4. profile are displayed. The lower panel shows the normalised

www.geosci-model-dev.net/7/2181/2014/ Geosci. Model Dev., 7, 27484, 2014
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Table 2. Execution time and RMSE for experiments made with the Table 3. Execution time and RMSE for experiments made with the
sampled “average” diffusivity distribution and varying interpolation “peaked” diffusivity distribution, varying interpolation method and

method. At selection algorithm.
Interpolation algorithm  Exec.time RMSE Interpolation algorithm Ar selection  Exec.time RMSE
A 237s  0.025 A local 313s  0.042
D 155s  0.023 D local 181s  0.065
D’ 162s  0.044 A non-local 1122s  0.016
D non-local 593s 0.022
0 0
— 1o A\ 60 7 1000
o N o || 1 40
z ! J w0 & 100 I\ SNA -
o1 / 0 M = 10 f oS
. 3 1 J—Q—A _U-:JA 20 E
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Figure 7. Experiments with the sampled “average” diffusivity dis-
tribution for the interpolation algorithms D (blue); @reen) and A
(red). Top panel: diffusivity profile as interpolated by A (black) an i ) .
At profiles for the different interpolation settings. Bottom panel: local (right) Ar selection algorithm.
normalised final concentration and expected distribution (black).

Figure 8. Same as in Fig7 for experiments with the “peaked” dif-
d fusivity distribution. Results obtained using the local (left) or non-

time-step selection algorithms. Figu8eeports the time-step

distribution of the particle after 24 h of simulation along with and concentration profiles, while execution times and RM-
the expected value. TabRdisplays the integration time and SEs are shown in Tabl@. Although the integration time-
RMSE obtained for the various experimental settings. step profiles look very similar for the local and non-local al-
The time-step profiles are similar, except for the A pro- gOfitth, the small differences have a Iarge impact on the
file around the region of the maximum &f, where it shows  results: the local algorithm mostly fails in reproducing the
strong variations and, on the average, is longer than the oth?MC for both interpolation schemes, especially for D. Con-
ers. Looking at the distribution of particles (lower panel), it versely, the non-local algorithm turns out to be effective in
can be observed that simulations with A and D interpolationselecting the appropriate time step, even in the presence of
algorithms both satisfy the WMC within the statistical limit, Strong gradients and isolated maxima. This is reflected in its
while the simulation with the Dalgorithm fails to maintain higher computational cost (see TaB)e
the well-mixed state, in particular near the ground. Addi-
tional experiments (not reported) show that in order to obtain4.3 Implementation on the 3-D model
a well-mixed solution with O} resolution must be doubled
at least. The problem is probably related to the definition of A preliminary test of the algorithms on the 3-D model has
derivatives of K between grid points. In fact, although' D been performed. The interpolation algorithm has been imple-
computes derivatives at a higher order of approximation tharmented in a simplified quasi-1-D form, where the diffusion
D, they are not consistent with a linear variationof Al- coefficient has been considered to be horizontally constant
though the use of Dcan be appropriate for slowly varying between grid points. IL-GLOBO uses the same parallelisa-
and monotone functions like andz, it turns out to be un-  tion of GLOBO, with particles exchanged between processes
suitable for the more compleX profile which, in addition,  at each macro time step. Particles are first advected horizon
affects both the Wiener stochastic term and the drift term. Fortally for a macro time step using their deterministic velocity
these reasons, the interpolation scheme is not used in the and then “diffused” in the vertical according to E42).
following experiments. After 12 h of spin-up, 5« 10° particles are released with a
The second experiment concerns the “peaked” profile. Invertical distribution proportional to the average density pro-
this case, theK profile is used directly, without the re- file, and randomly and homogeneously distributed in the hor-
sampling of the fitting function. Simulations with A and D izontal. Particle statistics are computed after 24 h from the
algorithms were performed with both local and non-local release.
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Figure 9. Distribution of At requirement for the conditions of the o

first-order derivative (Eql9) as a function ot for interpolation

algorithms A (left) and D (right). Figure 10. Normalised distribution of particles for the 3-D exper-
iment. The initial distributionx (o) (black) and the final distribu-
tions obtained using the A interpolation scheme (red) and the D in-

A and D interpolation algorithms were tested using terpolation scheme (blue). Dashed lines show the limit of 3 standard

the non-local time-step selection. It is found that while deviations around the initial distribution.

interpolation scheme A maintains the WMC reasonably

(RMSE=0.024), the time-step selection algorithm for

scheme D requires extremely short time stegs Afmin,

see Sect4.]) in the region between = 0.9 and the lowest

boundary (see Fi@). Figure10shows the result of an exper-

iment where the WMC compliance of schemes A and D was :

tested with the lower limit forAr changed toAfmin = 1072 posed in order to ;olve the problem. L

for D. It can be observed that, for the D scheme, strong fluctu- Two numerical interpolation gnd'denvanon schemes are

ations are still present in the same region where the requireI plemented and tested. The first is based on the linear in-

. - S erpolation ofK, and it is presented in two versions: one
time step exceeds the lower limit. This is likely to be caused . o i
e(rD) keeps a constant first order derivative between two grid

Ipoints, while the other () uses linearly interpolated deriva-

than in the “peaked” case, near points with extremely small’. . . )
values ofK. In these cases, the A scheme interpolates with atlveS in the same interval. The second scheme (A) is based

smoother function which reduces the problem on a modifiedAkima (199]) interpolation algorithm with a
P ' local algorithm that ensures the positivity of the interpolating

function (Fischer et a].1991).

It is found that although the method Dses derivatives
of higher order of approximation, it creates a local incon-
The development of a vertical Lagrangian diffusion mode|sist§nqy between the linearly interpolated .fL.InCtiOI’l and its
is presented. This constitutes the first step in building 1L- dérivatives and prevents the model from fulfilling the WMC.
GLOBO, a Lagrangian particle model integrated in the Eule- | € Other two schemes (D and A) both satisfy the WMC, but
rian global circulation model GLOBO. Critical details of the €Xtremely peaked profiles af may require the use of the
implementation have been analysed and discussed. non-local time-step selection algorithm.

The model is developed with the variable density term and A test with a preliminary |mplem_entat|on of the fully 3-D
the proper coordinate transformation term. The numericaImOdel (IL-GLOBO) shows that, while the A scheme displays

scheme selected to integrate the SDE is the Milstein schemé COTéCt behaviour, the D interpolation scheme requires an
which is of the order of strong convergenge= 1. There- extremely strong reduction pf _the_lntegranon t|m_e step that
fore, it should be regarded as the natural extension of the de2r€vents the WMC to be satisfied in reasonable time.
terministic Euler scheme, in contrast to the so-called Euler—

Maruyama scheme, which is merely the “transcription”
the deterministic Euler scheme, but not its equivalent.

An adaptive time-step scheme is proposed to ensure th¢he numerical code of the vertical diffusion module (Fortran
consistency of the model implementation with the WMC re- g0 s released under the GNU Public Licence and is avail-
quirements. The time-step selection algorithm is limited notgp|e at the BOLCHEM websife
only by the condition imposed by the spatial scale of gradi- The software is packed as a library usiagtoconf
ents, but also by taking into account the scale of the width ofatomake andlibtools ~ which allows for configuration
maxima and minima of the diffusion coefficient, where the
former criterium fails. It is shown that this algorithm ensures  “http:/bolchem.isac.cnr.it/source_code.do

that the error is within an acceptable range also at the reflect-
ing boundaries. However, in case of isolated maxima, this
scheme may fail. The implementation of a non-local algo-

rithm, which evaluateg\t in two additional points, is pro-

5 Conclusions

of Code availability
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and installation on a variety of systems. The code is devel-Gardiner, C. W.: Handbook of Stochastic Methods for Physics,
oped in a modular way, permitting the easy improvement of Chemistry and the Natural Sciences, Springer-Verlag, 2nd Edn.,

physical and numerical schemes.

1990.

the CNR-ISAC Dynamic Meteorology Group (contact:
p.malguzzi@isac.cnr.it).
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