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Abstract. This paper explores the feasibility of an experi-
mentation strategy for investigating sensitivities in fast com-
ponents of atmospheric general circulation models. The ba-
sic idea is to replace the traditional serial-in-time long-term
climate integrations by representative ensembles of shorter
simulations. The key advantage of the proposed method lies
in its efficiency: since fewer days of simulation are needed,
the computational cost is less, and because individual realiza-
tions are independent and can be integrated simultaneously,
the new dimension of parallelism can dramatically reduce the
turnaround time in benchmark tests, sensitivities studies, and
model tuning exercises. The strategy is not appropriate for
exploring sensitivity of all model features, but it is very ef-
fective in many situations.

Two examples are presented using the Community Atmo-
sphere Model, version 5. In the first example, the method is
used to characterize sensitivities of the simulated clouds to
time-step length. Results show that 3-day ensembles of 20
to 50 members are sufficient to reproduce the main signals
revealed by traditional 5-year simulations. A nudging tech-
nique is applied to an additional set of simulations to help
understand the contribution of physics–dynamics interaction
to the detected time-step sensitivity. In the second example,
multiple empirical parameters related to cloud microphysics
and aerosol life cycle are perturbed simultaneously in order
to find out which parameters have the largest impact on the
simulated global mean top-of-atmosphere radiation balance.
It turns out that 12-member ensembles of 10-day simulations
are able to reveal the same sensitivities as seen in 4-year sim-
ulations performed in a previous study. In both cases, the en-
semble method reduces the total computational time by a fac-
tor of about 15, and the turnaround time by a factor of several

hundred. The efficiency of the method makes it particularly
useful for the development of high-resolution, costly, and
complex climate models.

1 Introduction

Climate, by definition, is the statistical characterization of
the state of the earth’s atmosphere, land, and ocean on
time scales longer than a few months (e.g.,IPCC, 2013).
Because of the strong natural variabilities resulting from
non-linear interactions between relevant processes, atmo-
spheric general circulation models (AGCMs), used in sen-
sitivity studies, need to be integrated for multiple years,
usually decades, in order to obtain statistically meaning-
ful and robust signals. However, state-of-the-art AGCMs
are computationally expensive to integrate when resolu-
tion is high, or when a large number of simulations are
needed. Recent examples of such studies include those of
Wehner et al.(2013), Zhao et al.(2013), Yang et al.(2012,
2013), andQian et al.(2014), to name a few.

The high computational costs have motivated researchers
to look for alternative methods to facilitate extracting signals
from noise in climate models. For example,Kooperman et al.
(2012) showed that anthropogenic aerosol indirect effects
could be estimated from substantially shorter simulations if
temperature and horizontal winds in the AGCM are relaxed
(nudged) towards prescribed conditions to reduce variabil-
ity in those fields, while allowing the model to calculate the
responses to aerosol emissions in cloud, water, and aerosol
fields. For more general applications, however, nudging can
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hide sensitivities in the constrained fields, as well as in feed-
back that involves these quantities.

In the climate modeling community, it has been widely
recognized that fast processes (those that produce a model
response to a perturbation on a timescale of days for simu-
lations with fixed sea-surface temperature, such as those re-
lated to clouds) are important sources of discrepancies be-
tween the observed and simulated climate, and between the
future climate projections provided by different models (Cess
et al., 1990; Colman, 2003; Soden and Held, 2006; Ringer
et al., 2006; Dufresne and Bony, 2008). In addition, it has
been noticed that, when climate models are used in short-
range weather-prediction experiments starting from realistic
initial conditions, many of the key model biases form within
a very short time period, i.e., hours to a few days (see e.g.,
Phillips et al., 2004; Williamson et al., 2005; Boyle et al.,
2005; Rodwell and Palmer, 2007; Martin et al., 2010; Xie
et al., 2012; Ma et al., 2013, 2014; Klocke and Rodwell,
2013). There has been increasing interest in running climate
models in weather-prediction mode to diagnose model errors.
The most well-known examples include the Climate Change
Prediction Program – Atmospheric Radiation Measurement
(CCPP-ARM) Parameterization Testbed (CAPT) initiative of
the US Department of Energy (Phillips et al., 2004), and the
phase II experiment of the Transpose Atmospheric Model In-
tercomparison Project (Transpose-AMIP II,Williams et al.,
2013) that was run alongside phase 5 of the Coupled Model
Intercomparison Project (CMIP5,Taylor et al., 2012).

In this study, we demonstrate that the important role of fast
processes in the climate system can be exploited in more gen-
eral ways to provide an alternate strategy to efficiently carry
out model-sensitivity experiments and tuning exercises. The
basic idea is to replace the traditional serial-in-time long-
term climate integrations by generating representative en-
sembles of shorter simulations (details are discussed in later
sections). Significant gain in computational efficiency can
be expected for two reasons: firstly, unlike a serial-in-time
multi-year simulation, the ensemble of realizations can be
integrated simultaneously. This introduces an additional di-
mension of parallelism to better exploit modern supercom-
puter systems that consist of order 105–106 cores, leading
to substantial reduction of the turnaround time in sensitivity
experiments. Secondly, in comparison to a long-term inte-
gration which can be understood as an ensemble with auto-
correlated realizations, the use of independent members in-
creases the effective sample size. One can thus expect equally
robust statistics to be obtained from a smaller number of sim-
ulation days, resulting in a reduction of total CPU time.

While the Transpose-AMIP-type evaluation focuses on
comparison with observations to understand the initial de-
velopment of model biases, in this study we are interested in
model sensitivities to parametric and structural changes near
the model’s equilibrium climate. Using the Community At-
mosphere Model, version 5 (CAM5,Neale et al., 2010, cf.
Sect. 2), we present two examples to elaborate the ensemble

strategy and evaluate its effectiveness (Sects.3 and4). Fur-
ther discussions and conclusions are given in Sect.5.

2 Model and initial conditions

The climate model used here is CAM5.1 (Neale et al., 2010),
with a finite volume dynamical core that uses the numerical
schemes ofLin and Rood(1996) and Lin (2004) to repre-
sent the hydrostatic adiabatic fluid dynamics and large-scale
tracer transport. Deep convection is treated with the mass-
flux-type parameterization ofZhang and McFarlane(1995),
with further modifications byRichter and Rasch(2008) and
Neale et al.(2008). Shallow convection is parameterized as
in Park and Bretherton(2009). Large-scale condensation and
stratiform cloud fraction are handled by the parameterization
of Park et al.(2014). The stratiform cloud microphysics is
represented by a two-moment scheme that explicitly calcu-
lates the mass and number concentrations of cloud liquid,
cloud ice, rain, and snow (Morrison and Gettelman, 2008;
Gettelman et al., 2008, 2010). The vertical transport of heat,
momentum, and moisture by turbulent eddies is represented
following the work of Bretherton and Park(2009). Solar
and terrestrial radiation calculations are performed using the
Rapid Radiative Transfer Model for GCMs (RRTMG,Iacono
et al., 2008; Mlawer et al., 1997). The life cycle of aerosols
is represented with a comprehensive module that describes
the aerosol size distribution with three log-normal modes
(MAM3, Liu et al., 2012). Land surface processes, includ-
ing hydrological and biogeochemical processes, dynamical
vegetation and biogeophysics, are handled by the Commu-
nity Land Model, version 4 (CLM4,Lawrence et al., 2011).
A detailed description of the CAM5 model can be found in
Neale et al.(2010). All simulations in the present paper used
the tropospheric version of CAM5 with 30 vertical layers, at
a horizontal resolution of 1.9◦ latitude× 2.5◦ longitude. The
default model time step for this configuration is 30 min.

As mentioned in the introduction, the motivation for ex-
ploring a new experimentation strategy is to reduce the wall-
clock time and CPU time spent on model integration. We thus
intend to perform as few as possible simulations that are as
short as possible. This requires the ensemble members to be
appropriately sampled, so that the ensemble average is rep-
resentative of the long-term climate. Based on the viewpoint
that climate is the “average weather”, we initialize individual
realizations using atmospheric states representing different
synoptic patterns of the large-scale circulation. The source
of such initial conditions could be global weather analyses,
as done in CAPT and Transpose-AMIP, which would require
interpolation and adjustments to take into account the differ-
ent grids and topography used for the analysis data and by
the CAM5 model. Initialization of the aerosol module would
remain an issue, because detailed information about aerosol
concentrations in different size ranges is not normally pro-
vided by the analyses. Considering that our focus here is

Geosci. Model Dev., 7, 1961–1977, 2014 www.geosci-model-dev.net/7/1961/2014/



H. Wan et al.: Experimentation strategy for climate models 1963

not to compare with observation, it is not necessary to have
a realistic initialization of model state variables that matches
particular meteorological events. We therefore chose to use
initial conditions generated by the GCM itself, using an in-
expensive model configuration. For the application examples
discussed in the present paper, the CAM5 model was inte-
grated for 20 years at a 1.9◦ latitude× 2.5◦ longitude res-
olution using the default choices for model parameters and
model time step, driven by annually cycled monthly mean
climatological sea-surface temperature distributions and sea-
ice concentrations. Emissions of aerosols and reactive gases
are specified by their values in the year 2000 following
Lamarque et al.(2010). Model state variables, including the
meteorological fields, aerosol concentrations, and land sur-
face variables, are archived at 5-day intervals in the “native”
format of the initial condition files.

This initialization procedure requires minimal effort be-
cause output from a prior simulation can be used directly in
the ensemble simulations, or conveniently interpolated for
studies that involve different spatial resolutions. Also, the
same archive can be used in different sensitivity studies.
When the model configuration (e.g., parameters, resolution,
or time step) changes, the simulated climate can change ac-
cordingly, in which case the integrations starting from the
aforementioned initial conditions will need some time to ad-
just before entering the new quasi-equilibrium. Identification
of the spin-up phase is one of the issues that we attempt to ad-
dress in the following sections, and we will demonstrate that
the initial adjustment is indeed short in the examples shown
in Sects.3 and4.

3 Example I: time-step sensitivity of clouds

In this section, the utility of the ensemble approach is demon-
strated using simulations in which the model time step used
in CAM5 is reduced from the default value of 30 to 4 min.
We focus on cloud and precipitation-related model variables.
Our example is motivated by the desire (in a separate study
with a focus on scientific issues) to characterize the time-step
sensitivities of the atmospheric water cycle in CAM5, and
to assess numerical convergence. Since we also want to dis-
tinguish different climate regimes, the analysis here focuses
on a particular season (boreal winter) to avoid the additional
complexity introduced by seasonal variations in geographic
locations.

For evaluation purposes, two simulations (with 30 and
4 min time steps respectively) were first performed for
5 years (plus a 1-year spin-up) in the conventional way. Sen-
sitivities in the simulated climate were identified by compar-
ing fields from the multi-year December–January–February
(DJF) averages of the two simulations. This pair of simula-
tions is hereafter regarded as the “reference” simulations.

We also performed ensembles of short simulations
with the two time-step lengths. Within an ensemble, all

realizations were assigned a start time of 1 January using
different initial conditions drawn from the 20-year archive
(cf. Sect.2) of dates in the DJF season that were at least
10 days apart, in order to ensure independence and repre-
sentativeness. The same set of initial conditions were used
for the 30 and 4 min ensembles.

Other aspects of the simulation set-up were identical for
the long-term and short ensemble simulations. For example,
both were forced by yearly cycled climatological sea-surface
temperature and sea-ice concentrations, as well as the year
2000 emissions for aerosols and their precursors (Lamarque
et al., 2010).

In the analysis, we concentrate on the geographical dis-
tribution and radiative properties of clouds. We focus on
whether

i. ensemble averages of a moderate number of realizations
can reasonably represent the long-term climate;

ii. integrations of a few days are sufficient to get rid of the
spin-up phase;

iii. responses to time-step change detected with the ensem-
ble approach agree quantitatively well with those re-
vealed by the conventional long-term simulations;

iv. there is a clear gain of computational efficiency.

For evaluation purposes, the ensemble simulations were in-
tegrated for a period of 20 days.

3.1 Representing the mean state

Our evaluation of the ensemble strategy starts with question I
by examining the mean state simulated with the default time
step (30 min). Because the initial conditions were generated
using the same model configuration and experimental setup
(in other words, sampled from the same climate), there is no
spin-up issue here. The question is how many realizations
are needed to average out the “weather noise” and obtain the
“climate signal”.

In Fig. 1, the vertically integrated total cloud amount is
shown for the two different experimentation methods, where
the 5-year DJF average in the long simulation is compared
with the day-1 average of a 50-member ensemble. The agree-
ment with the reference simulation is remarkable. High cloud
fractions associated with the Intertropical Convergence Zone
(ITCZ), the South Pacific Convergence Zone (SPCZ), mid-
latitude storm tracks, and high-latitude regions in the winter
hemisphere are well captured. Less frequent occurrences of
clouds over the subtropical ocean high pressure systems and
desert areas are also well represented. It is worth noting that
the moderately sized ensemble not only reproduces these ba-
sic features of the geographical distribution, but also captures
the magnitude of total cloud amount quite well at most grid
points.
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Table 1. Global mean values and pattern correlations of the atmospheric mean state in a multi-year climate integration and an ensemble
of short simulations. The 5-year mean climatology of December–January–February (DJF) is compared to the 50-member mean of day 1
average. All simulations were performed with a 30 min model time step. Further details are explained in Sect.3.1.

Global mean

5-year DJF avg. Day 1 ensemble avg. Relative difference Pattern correlation

Sea level pressure (hPa) 1011.77 1011.76 −0.0 % 0.99
Planetary boundary layer height (m) 486.57 478.58 −1.6 % 0.98
10 m wind speed (m s−1) 5.98 5.96 −0.3 % 0.99
Temperature at reference height (K) 285.02 285.05 0.0 % 1.00
Relative humidity at reference height (%) 79.59 80.13 0.7 % 0.98
Total precipitable water (kg m−2) 24.34 24.30 −0.1 % 1.00
Vertically integrated total cloud fraction 0.65 0.66 1.3 % 0.96
Low-level cloud fraction 0.46 0.47 2.3 % 0.98
Mid-level cloud fraction 0.28 0.28 0.0 % 0.95
High-level cloud fraction 0.38 0.38 0.7 % 0.94
Liquid water path (g m−2) 42.24 41.92 −0.8 % 0.98
Ice water path (g m−2) 17.62 17.66 0.2 % 0.97
Shortwave cloud forcing (W m−2) −54.00 −53.91 −0.2 % 0.98
Long-wave cloud forcing (W m−2) 23.08 23.06 −0.1 % 0.98
Large-scale precipitation rate (mm day−1) 0.89 0.88 −0.9 % 0.93
Convective precipitation rate (mm day−1) 2.06 2.07 0.2 % 0.98

Figure 1. Total cloud cover (unit: %) in CAM5 simulations us-
ing the default model time step (30 min).(a) 5-year December–
January–February (DJF) average from a long-term climate simu-
lation. (b) 50-member ensemble average of the first model day in
a set of short simulations. Further details are explained in Sect.3.1.

The same can be said for other key aspects of the model
climate, as can be seen in Table1. Global mean values in
the 5-year simulation and the 1-day ensemble differ only by

a few percent at most, and the pattern correlations are high
(> 0.9). This suggests that, at least for the default model
configuration, the ensemble average of very short integra-
tions is a good representation of the long-term climatology.
In the following, we demonstrate that the ensemble simu-
lations are also able to accurately reproduce the response of
cloud-related fields to parameterization changes (in this case,
time-step length).

3.2 Fast response of clouds

Our ensemble simulations with 4 min time steps are ini-
tialized using snapshots of atmospheric and land-surface
conditions, sampled from the model climate resulting from
a 30 min time step. Because cloud processes operate on short
timescales, we expect quick responses to changes in model
time step. This is indeed observed in the simulations.

The 5-year simulations indicate that a reduction from a 30
to 4 min time step leads to an overall increase of total cloud
cover. The most prominent signals occur in the shallow cu-
mulus regions where the absolute changes range from about
10 % to more than 40 % in boreal winter (Fig.2a), corre-
sponding to typical relative changes from 20 % to more than
100 % (not shown). Such characteristic patterns are apparent
in the ensemble simulations on the first model day (Fig.2b).
Although the differences are somewhat smaller than the 5-
year DJF averages, statistical tests suggest they are signifi-
cant at the 95 % confidence level. By the third day, the mag-
nitudes of the differences between 4 and 30 min simulations
are close to those seen in the 5-year average.
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Figure 2. Differences in total cloud cover (unit: %) between sim-
ulations using 4 and 30 min time steps.(a) 5-year DJF average
from a climate simulation performed in the traditional way;(b) 50-
member ensemble average of the first simulation day;(c) as in(b)
but for the third simulation day. Stippling in panels(b) and(c) in-
dicates where the differences are statistically significant at the 95 %
confidence level. Further details are explained in Sect.3.2.

The ensembles simulations can also capture changes in
vertical structures. Figure3 shows the zonally averaged
stratiform cloud-ice mass concentration as an example.
According to the 5-year simulations (Fig.3b), a shorter time
step leads to higher ice concentrations throughout the tropo-
sphere. The largest increases occur in the lower levels over
the storm tracks, and in the tropical upper troposphere be-
tween 300 and 400 hPa, where deep convection detrains con-
densate into the environment. There is a secondary center of
large increase near 150 hPa, corresponding to frequent ho-
mogeneous ice nucleation. The close resemblance between
the 5-year DJF average (Fig.3b) and the day-3 average of
the ensemble results (Fig.3c) indicates that the characteristic
distributions of cloud ice are well established within a couple
of model days.
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Fig. 3. (a) Zonally averaged, 5 yr DJF mean mass concentration
of stratiform cloud ice (unit: mgkg−1) simulated by CAM5 using
a 30 min time step. (b) 5 yr DJF mean cloud ice mass concentration
differences between simulations using 4 min and 30 min time steps
(unit: mgkg−1). (c) As in panel (b) but showing the 50-member
ensemble mean at day 3. Stippling in panel (c) indicates locations
where the differences are statistically significant at 95 % confidence
level. Further details are explained in Sect. 3.2.

3.2 Fast response of clouds280

Our ensemble simulations with 4 min time step are initialized
using snapshots of atmospheric and land-surface conditions
sampled from the model climate resulting from a 30 min time
step. Because cloud processes operate on short timescales,
we expect quick responses to changes in model time step.285

This is indeed observed in the simulations.

The 5 yr simulations indicate that a reduction from 30 to
4 min time step leads to an overall increase of total cloud
cover. The most prominent signals occur in the shallow cu-
mulus regions where the absolute changes range from about290

10 % to more than 40 % in boreal winter (Fig. 2a), corre-
sponding to typical relative changes from 20 % to more than
100 % (not shown). Such characteristic patterns are apparent
in the ensemble simulations in the first model day (Fig. 2b).
Although the differences are somewhat smaller than the 5 yr295

DJF averages, statistical tests suggest they are significant at
the 95 % confidence level. By the third day, the magnitudes
of the differences between 4 and 30 min simulations are close
to those seen in the 5 yr average.

The ensembles simulations can also capture changes in300

vertical structures. Figure 3 shows the zonally averaged
stratiform cloud ice mass concentration as an example.
According to the 5 yr simulations (Fig. 3b), shorter time
step leads to higher ice concentrations throughout the tropo-
sphere. The largest increases occur in the lower levels over305

the storm tracks, and in the tropical upper troposphere be-
tween 300 and 400 hPa where deep convection detrains con-
densate into the environment. There is a secondary center of
large increase near 150 hPa, corresponding to frequent ho-
mogeneous ice nucleation. The close resemblance between310

the 5 yr DJF average (Fig. 3b) and the day 3 average of the
ensemble results (Fig. 3c) indicates that the characteristic
distributions of cloud ice are well established within a couple
of model days.

We reinforce the conclusion of fast spin-up by showing315

the day-to-day variation of global mean cloud cover (Fig. 4a),
vertically integrated liquid and ice water path (LWP and IWP,
Fig. 4b–c), longwave and shortwave cloud forcing (LWCF
and SWCF, Fig. 4d–e) and large-scale precipitation rate
(PRECL, Fig. 4f) from the ensemble simulations. The 95 %320

confidence intervals of the ensemble averages are shown by
the filled boxes, with the ensemble mean indicated by the
horizontal bar in each box. Lower and upper ends of the
whiskers, corresponding to the 10th and 90th percentiles, de-
pict the ensemble spread. The 5 yr DJF and January averages,325

as well as the year-to-year variations, are shown in the right
part of each panel for comparison. Figure 4 indicates that
during the 20 day integration period of the ensemble simu-
lations, there is no obvious trend either in the 50-member
averages of the 30 min and 4 min ensembles or in their dif-330

ferences; in addition, the ensemble averages agree reason-
ably well with the 5 yr averages. Therefore, for detecting fast
changes in cloud properties and distribution, it is sufficient to
perform simulations that are only a few days in length. The
additional computing time spent on longer integration does335

not provide significantly more information.
Figure 4 also provides a quantification of the time step

sensitivity in the depicted variables with respect to their nat-
ural variability. Comparing differences between the 4 min
and 30 min ensemble averages with the ensemble spreads,340

one can conclude that the total cloud fraction, LWP and

Figure 3. (a) Zonally averaged, 5-year DJF mean mass concentra-
tion of stratiform cloud ice (unit: mg kg−1) simulated by CAM5
using a 30 min time step.(b) 5-year DJF mean cloud ice mass
concentration differences between simulations using 4 and 30 min
time steps (unit: mg kg−1). (c) As in panel(b) but showing the 50-
member ensemble mean at day 3. Stippling in panel(c) indicates
locations where the differences are statistically significant at 95 %
confidence level. Further details are explained in Sect.3.2.

We reinforce the conclusion of fast spin-up by showing the
day-to-day variation of global mean cloud cover (Fig.4a),
vertically integrated liquid and ice water path (LWP and
IWP, Fig. 4b–c), long-wave and shortwave cloud forcing
(LWCF and SWCF, Fig.4d–e), and large-scale precipita-
tion rate (PRECL, Fig.4f) from the ensemble simulations.
The 95 % confidence intervals of the ensemble averages are
shown by the filled boxes, with the ensemble mean indicated
by the horizontal bar in each box. Lower and upper ends of
the whiskers, corresponding to the 10th and 90th percentiles,
depict the ensemble spread. The 5-year DJF and January
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Fig. 4. Global mean values of some cloud-related variables from the 50-member ensembles and from the 5 yr climate simulations. Blue and
green indicate simulations performed with 30 min and 4 min time steps, respectively. Left part of each panel show the daily mean global
averages in the first 20 days of the ensemble simulations. Lower and upper ends of the whiskers denote the 10th and 90th percentiles. The
hinges in the middle indicate ensemble mean. The filled boxes show the 95 % confidence interval of the mean. In the right part of each panel,
the January and DJF averages of the 5 yr climate simulations are shown. The bottom and top of each box correspond to the minimum and
maximum January or DJF averages in the simulation period. Hinges in the middle indicate the 5 yr average. Further details are explained in
Sect. 3.2.

Fig. 5. Impact of ensemble size on the estimated (a) global mean ice water path, (c) global mean large-scale precipitation rate, and (b, d)
their sensitivity to model time step. In panels (a) and (c), blue and green correspond to simulations performed with 30 min and 4 min time
steps, respectively. The dots inside filled boxes are ensemble mean values averaged over the entire integration period (20 days). Top and
bottom of the boxes denote the maximum and minimum daily averages. Similarly, the 4 min/30 min differences are shown in panels (b) and
(d), except that all values are normalized by the 20 day average of the 180-member ensemble mean, in order to show the relative differences
among the estimates associated with different ensemble sizes. Further details are explained in Sect. 3.3.

IWP (Fig. 4a–c) are more sensitive to the time step change
than SWCF, LWCF and PRECL are (Fig. 4d–f). On the
other hand, although individual members from the 30 min
and 4 min ensembles can have the same globally averaged345

SWCF, LWCF, or PRECL, the 95 % confidence intervals of
the ensemble mean do not overlap on any day during the inte-
gration period, suggesting that the time step sensitivities are
nevertheless statistically significant.

3.3 Ensemble size350

So far we have shown the effectiveness of the short simu-
lations using results from 50-member ensembles. We now
demonstrate the robustness of the method and discuss the
choice of ensemble size. The essence of the experimenta-
tion method we propose in this paper is to approximate the355

long-term temporal average by the ensemble average over
a short period. The accuracy of this approximation naturally
depends on the ensemble size and properties of the state vari-
able in question.

Figure 4. Global mean values of some cloud-related variables from the 50-member ensembles and from the 5-year climate simulations. Blue
and green indicate simulations performed with 30 and 4 min time steps, respectively. The left part of each panel shows the daily mean global
averages in the first 20 days of the ensemble simulations. The lower and upper ends of the whiskers denote the 10th and 90th percentiles. The
hinges in the middle indicate ensemble mean. The filled boxes show the 95 % confidence interval of the mean. In the right part of each panel,
the January and DJF averages of the 5-year climate simulations are shown. The bottom and top of each box correspond to the minimum and
maximum January or DJF averages in the simulation period. Hinges in the middle indicate the 5-year average. Further details are explained
in Sect.3.2.

averages, as well as the year-to-year variations, are shown
on the right-hand part of each panel for comparison. Figure4
indicates that, during the 20-day integration period of the en-
semble simulations, there is no obvious trend either in the
50-member averages of the 30 and 4 min ensembles or in
their differences; in addition, the ensemble averages agree
reasonably well with the 5-year averages. Therefore, for de-
tecting fast changes in cloud properties and distribution, it is
sufficient to perform simulations that are only a few days in
length. The additional computing time spent on longer inte-
gration does not provide significantly more information.

Figure 4 also provides a quantification of the time-step
sensitivity in the depicted variables with respect to their nat-
ural variability. Comparing differences between the 4 and
30 min ensemble averages with the ensemble spreads, one
can conclude that the total cloud fraction, LWP and IWP
(Fig. 4a–c) are more sensitive to the time-step change than
SWCF, LWCF and PRECL are (Fig.4d–f). On the other
hand, although individual members from the 30 min and
4 min ensembles can have the same globally averaged SWCF,
LWCF, or PRECL, the 95 % confidence intervals of the en-
semble mean do not overlap on any day during the integration
period, suggesting that the time-step sensitivities are never-
theless statistically significant.

3.3 Ensemble size

So far we have shown the effectiveness of the short simu-
lations using results from 50-member ensembles. We now
demonstrate the robustness of the method and discuss the
choice of ensemble size. The essence of the experimentation

method we propose in this paper is to approximate the long-
term temporal average by the ensemble average over a short
period. The accuracy of this approximation naturally depends
on the ensemble size and properties of the state variable in
question.

3.3.1 Global averages

In Fig. 5, the accuracy of estimated global averages is an-
alyzed for the ice water path and large-scale precipitation
rate. Results are shown for 10, 20, 50, 90, and 180 ensemble
members. At each ensemble size, the day-to-day variability
of the ensemble mean daily average is indicated by the ver-
tical extent of a filled box, with its top and bottom showing
the maximum and minimum values during the 20-day simu-
lation period. The 20-day averages are denoted by the black
dot in each box. Based on the conclusion drawn from Fig.4
about fast spin-up, it is reasonable to assume when a suffi-
ciently large number of realizations are obtained, the ensem-
ble mean values averaged over 20 days will indicate the long-
term climatological mean within a small uncertainty induced
by natural variability. Thus, the vertical size of a colored box
in Fig. 5 can be used as a measure of approximation error in
the global averages estimated from a single-day simulation at
the corresponding ensemble size. In panels Fig.5b and d, the
4/ 30 min differences are normalized by the 20-day average
of the 180-member ensemble mean, in order to indicate the
uncertainties in relative terms.

Figure5 conveys several messages. First, the 20-day aver-
ages change very little with ensemble size (Fig.5a and c),
suggesting that the sampling method is representative in
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Fig. 4. Global mean values of some cloud-related variables from the 50-member ensembles and from the 5 yr climate simulations. Blue and
green indicate simulations performed with 30 min and 4 min time steps, respectively. Left part of each panel show the daily mean global
averages in the first 20 days of the ensemble simulations. Lower and upper ends of the whiskers denote the 10th and 90th percentiles. The
hinges in the middle indicate ensemble mean. The filled boxes show the 95 % confidence interval of the mean. In the right part of each panel,
the January and DJF averages of the 5 yr climate simulations are shown. The bottom and top of each box correspond to the minimum and
maximum January or DJF averages in the simulation period. Hinges in the middle indicate the 5 yr average. Further details are explained in
Sect. 3.2.

Fig. 5. Impact of ensemble size on the estimated (a) global mean ice water path, (c) global mean large-scale precipitation rate, and (b, d)
their sensitivity to model time step. In panels (a) and (c), blue and green correspond to simulations performed with 30 min and 4 min time
steps, respectively. The dots inside filled boxes are ensemble mean values averaged over the entire integration period (20 days). Top and
bottom of the boxes denote the maximum and minimum daily averages. Similarly, the 4 min/30 min differences are shown in panels (b) and
(d), except that all values are normalized by the 20 day average of the 180-member ensemble mean, in order to show the relative differences
among the estimates associated with different ensemble sizes. Further details are explained in Sect. 3.3.

IWP (Fig. 4a–c) are more sensitive to the time step change
than SWCF, LWCF and PRECL are (Fig. 4d–f). On the
other hand, although individual members from the 30 min
and 4 min ensembles can have the same globally averaged345

SWCF, LWCF, or PRECL, the 95 % confidence intervals of
the ensemble mean do not overlap on any day during the inte-
gration period, suggesting that the time step sensitivities are
nevertheless statistically significant.

3.3 Ensemble size350

So far we have shown the effectiveness of the short simu-
lations using results from 50-member ensembles. We now
demonstrate the robustness of the method and discuss the
choice of ensemble size. The essence of the experimenta-
tion method we propose in this paper is to approximate the355

long-term temporal average by the ensemble average over
a short period. The accuracy of this approximation naturally
depends on the ensemble size and properties of the state vari-
able in question.

Figure 5. Impact of ensemble size on the estimated(a) global mean ice water path,(c) global mean large-scale precipitation rate, and(b,
d) their sensitivity to model time step. In panels(a) and(c), blue and green correspond to simulations performed with 30 and 4 min time
steps, respectively. The dots inside filled boxes are ensemble mean values averaged over the entire integration period (20 days). Top and
bottom of the boxes denote the maximum and minimum daily averages. Similarly, the 4/ 30 min differences are shown in panels(b) and(d),
except that all values are normalized by the 20-day average of the 180-member ensemble mean, in order to show the relative differences
among the estimates associated with different ensemble sizes. Further details are explained in Sect.3.3.

capturing the impact of time-step change. Second, as the
number of independent realizations increases, variances in
the daily average decrease, producing more accurate approx-
imations of the long-term climatology (Fig.5a and c). Third,
different model variables are associated with different vari-
ability, thus require different numbers of realizations. Last
but not least, good estimates of the time-step sensitivities can
be obtained with rather small ensembles. With 20 indepen-
dent members, the global mean1IWP (1PRECL) calculated
from a 1-day simulation agrees within 10 % (25 %) with the
180-member 20-day average (Fig.5b and d). Similar accura-
cies are obtained in our experiments for the other variables
shown in Fig.4 for global averages. To capture regional dif-
ferences, some highly variable fields may need more realiza-
tions, as discussed below.

3.3.2 Climate regimes

When assessing model sensitivities, it is often necessary to
examine not only global averages, but also regional features
and climate regimes. Because clouds are highly variable in
their occurrence and properties, regional patterns are some-
times difficult to detect due to the low signal-to-noise ratio.
For example,Kooperman et al.(2012) showed that to get
a clear signature of the anthropogenic aerosol indirect effect,
it is necessary to run CAM5 for multiple decades in conven-
tional climate simulations.

Figure6 shows the SWCF changes (1SWCF) caused by
a reduction of model time step in the 5-year integrations
(Fig. 6a) and, on day 3, in the ensemble simulations (Fig.6b
and c). Both methods reveal a systematic increase of SWCF
in the trade cumulus regions, while the reduction of cloud
forcing in the ITCZ and SPCZ are more clearly seen in the
ensemble results. It is remarkable that the convergence zones
emerge clearly in Fig.6b with only 50 ensemble members,
a result attributable to our initialization method that uses the
same set of initial conditions for the 4 and 30 min simula-
tions. In the early stage of the integration (first∼ 5 days), the

large-scale environmental conditions remain similar in each
pair of ensemble members, resulting in the synoptic systems
and convective activities occurring at similar locations, thus
avoiding strong noise in1SWCF associated with synoptic
scale variabilities in the circulation.

In Fig. 6b,1SWCF, in the shallow cumulus and deep con-
vection regions have similar magnitudes, but those in the
latter regime do not pass the statistical test because of the
large natural variability of deep convection in the conver-
gence zones. The evaluation procedure can be made more ro-
bust using regime compositing, e.g., by assessing the SWCF
changes over tropical (20◦ S–20◦ N) ocean grid points, where
the convective precipitation is important (in this case, de-
fined to be where the convective precipitation rate exceeds
3 mm day−1). Figure7 indicates that, for such a “deep con-
vection SWCF”, ensembles of 20 members are sufficient to
distinguish the difference between the 4 and 30 min simu-
lations. For the purpose of verification, we performed ad-
ditional simulations and present them in Fig.6c. The 360-
member results confirm that the1SWCF patterns and mag-
nitudes detected by the 50-member ensembles are not inci-
dental.

3.4 Combining ensembles with nudging

The nudging technique has been repeatedly used in model
evaluation and intercomparison studies as a method for con-
straining model meteorology, reducing uncertainties induced
by natural variability, and facilitating comparison with ob-
servations (e.g.,Jeuken et al., 1996; Feichter and Lohmann,
1999; Machenhauer and Kirchner, 2000; Ghan et al., 2001;
Kooperman et al., 2012). Here, we briefly show that nudging
can be applied in combination with ensembles to assess the
contribution of physics–dynamics interaction to the model’s
time-step sensitivity.

Two sets of ensemble simulations, each with 50 mem-
bers, were performed with the 30 and 4 min time steps, re-
spectively, with the horizontal wind and temperature relaxed
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3.3.1 Global averages360

In Fig. 5 the accuracy of estimated global averages is an-
alyzed for the ice water path and large-scale precipitation
rate. Results are shown for 10, 20, 50, 90, and 180 ensemble
members. At each ensemble size, the day-to-day variability
of the ensemble mean daily average is indicated by the ver-365

tical extent of a filled box, with its top and bottom showing
the maximum and minimum values during the 20 day simu-
lation period. The 20 day averages are denoted by the black
dot in each box. Based on the conclusion drawn from Fig. 4
about fast spin-up, it is reasonable to assume when a suffi-370

ciently large number of realizations are obtained, the ensem-
ble mean values averaged over 20 days will indicate the long-
term climatological mean within a small uncertainty induced
by natural variability. Thus the vertical size of a colored box
in Fig. 5 can be used as a measure of approximation error in375

the global averages estimated from a single-day simulation at
the corresponding ensemble size. In panels Fig. 5b and d, the
4 min/30 min differences are normalized by the 20 day aver-
age of the 180-member ensemble mean, in order to indicate
the uncertainties in relative terms.380

Figure 5 conveys several messages. First, the 20 day av-
erages change very little with ensemble size (Fig. 5a and c),
suggesting that the sampling method is representative in cap-
turing the impact of time step change. Second, as the number
of independent realizations increases, variances in the daily385

average decrease, producing more accurate approximations
of the long-term climatology (Fig. 5a and c). Third, dif-
ferent model variables are associated with different variabil-
ity, thus require different numbers of realizations. Last but
not least, good estimates of the time step sensitivities can390

be obtained with rather small ensembles. With 20 indepen-
dent members, the global mean ∆IWP (∆PRECL) calcu-
lated from a one-day simulation agrees within 10 % (25 %)
with the 180-member 20 day average (Fig. 5b and d). Sim-
ilar accuracies are obtained in our experiments for the other395

variables shown in Fig. 4 for global averages. To capture
regional differences, some highly variable fields may need
more realizations, as discussed below.

3.3.2 Climate regimes

When assessing model sensitivities, it is often necessary to400

examine not only global averages, but also regional features
and climate regimes. Because clouds are highly variable in
their occurrence and properties, regional patterns are some-
times difficult to detect due to the low signal-to-noise ratio.
For example, Kooperman et al. (2012) showed that to get405

a clear signature of the anthropogenic aerosol indirect effect,
it is necessary to run CAM5 for multiple decades in conven-
tional climate simulations.

Figure 6 shows the SWCF changes (∆SWCF) caused
by a reduction of model time step in the 5 yr integrations410

(Fig. 6a) and at day 3 in the ensemble simulations (Fig. 6b

(a)

(b)

(c)

Fig. 6. Shortwave cloud forcing differences (unit: Wm−2) between
simulations using 4 min and 30 min time steps. (a) 5 yr DJF av-
erage from a climate simulation performed in the traditional way;
(b) day 3 average from ensemble simulations with 50 independent
members; (c) day 3 average from ensemble simulations with 360
independent members. In panels (b) and (c), stippled regions are
associated with differences significant at the 95 % confidence level.

and c). Both methods reveal a systematic increase of SWCF
in the trade cumulus regions, while the reduction of cloud
forcing in the ITCZ and SPCZ are more clearly seen in the
ensemble results. It is remarkable that the convergence zones415

emerge clearly in Fig. 6b with only 50 ensemble members,
a result attributable to our initialization method that uses the
same set of initial conditions for the 4 min and 30 min simula-
tions. In the early stage of the integration (first∼ 5 days), the
large-scale environmental conditions remain similar in each420

pair of ensemble members, resulting in the synoptic systems
and convective activities occurring at similar locations, thus
avoiding strong noise in ∆SWCF associated with synoptic
scale variabilities in the circulation.

In Fig. 6b, ∆SWCF in the shallow cumulus and deep con-425

vection regions have similar magnitudes, but those in the
latter regime do not pass the statistical test because of the

Figure 6. Shortwave cloud forcing differences (unit: W m−2) be-
tween simulations using 4 and 30 min time steps.(a) 5-year DJF
average from a climate simulation performed in the traditional way;
(b) day-3 average from ensemble simulations with 50 independent
members;(c) day-3 average from ensemble simulations with 360
independent members. In panels(b) and (c), stippled regions are
associated with differences significant at the 95 % confidence level.

towards those from the unconstrained 30 min time-step sim-
ulations. Each pair of control (30 min time step) and sensitiv-
ity (4 min) experiments starting from the same initial condi-
tions were nudged to the same temperature and wind fields,
while different pairs were relaxed towards different large-
scale conditions. As inKooperman et al.(2012), a 6 h re-
laxation time was used.

Figure 8 compares the globally/regionally averaged to-
tal cloud fraction, IWP, and SWCF in the free-running and
nudged simulations. SWCF in the deep and shallow con-
vection regions are presented separately because the two
regimes are associated with opposite sensitivities to time
step (cf. Fig.6). As expected, the unconstrained and nudged
30 min simulations give very similar results. The ensemble
averages are not distinguishable in a statistical sense; the
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Fig. 7. Shortwave cloud forcing (SWCF) associated with tropical
deep convection in simulations performed with 30 min (blue) and
4 min (green) time steps. The SWCF is averaged over tropical ocean
grid points where the daily mean convective precipitation rate ex-
ceeds 3 mmday−1. Like in Fig. 4, horizontal bars in the middle
of filled boxes indicate the mean value of each ensemble. Lower
and upper ends of the whiskers correspond to the 10th and 90th per-
centiles, respectively. Filled boxes show the 95 % confidence inter-
val of the ensemble mean. Further details are explained in Sect. 3.3.

large natural variability of deep convection in the conver-
gence zones. The evaluation procedure can be made more ro-
bust using regime compositing, e.g., by assessing the SWCF430

changes over tropical (20◦ S–20◦ N) ocean grid points where
the convective precipitation is important, in this case de-
fined to be where the convective precipitation rate exceeds
3 mmday−1. Figure 7 indicates that for such a “deep con-
vection SWCF”, ensembles of 20 members are sufficient to435

distinguish the difference between the 4 min and 30 min sim-
ulations. For the purpose of verification, we performed ad-
ditional simulations and present them in Fig. 6c. The 360-
member results confirm that the ∆SWCF patterns and mag-
nitudes detected by the 50-member ensembles are not inci-440

dental.

3.4 Combining ensembles with nudging

The nudging technique has been repeatedly used in model
evaluation and intercomparison studies as a method for con-
straining model meteorology, reducing uncertainties induced445

by natural variability, and facilitating comparison with ob-
servations (e.g., Jeuken et al., 1996; Feichter and Lohmann,
1999; Machenhauer and Kirchner, 2000; Ghan et al., 2001;
Kooperman et al., 2012). Here we briefly show that nudging
can be applied in combination with ensembles to assess the450

contribution of physics-dynamics interaction to the model’s
time step sensitivity.

Two sets of ensemble simulations, each with 50 members,
were performed with the 30 min and 4 min time steps, re-
spectively, with the horizontal wind and temperature relaxed455

towards those from the unconstrained 30 min time step simu-
lations. Each pair of control (30 min time step) and sensitiv-

ity (4 min) experiments starting from the same initial condi-
tions were nudged to the same temperature and wind fields,
while different pairs were relaxed towards different large-460

scale conditions. As in Kooperman et al. (2012), a 6 h re-
laxation time was used.

Figure 8 compares the globally/regionally averaged to-
tal cloud fraction, IWP and SWCF in the free-running and
nudged simulations. SWCF in the deep and shallow convec-465

tion regions are presented separately because the two regimes
are associated with opposite sensitivities to time step (cf.
Fig. 6). As expected, the unconstrained and nudged 30 min
simulations give very similar results. The ensemble averages
are not distinguishable in a statistical sense, the 95 % con-470

fidence intervals are comparable, and the ensemble spreads
are also similar. The 4 min simulations, on the other hand,
are significantly different. When wind and temperature are
constrained, the differences between 4 min and 30 min sim-
ulations are reduced by about 30 % for the variables shown475

in the figure, suggesting that fast interactions (feedbacks) be-
tween resolved dynamics and parameterized physics increase
the time step sensitivity of the CAM5 model.

3.5 Computational efficiency

The results presented above provide clear answers to the480

questions posed at the beginning of this section. To detect
time step sensitivities in cloud-related fields, it is sufficient
to perform 20 to 50 independent 3 day simulations. The en-
semble method reveals signals that agree well with those de-
tected by 5 yr simulations performed in the traditional way,485

but costs substantially less total CPU time, and dramatically
less in terms of the experiment “completion time” in situa-
tions where there are more processors available than a single
job can use effectively, or is allowed to use without a long
queuing time, and many realizations can be run simultane-490

ously. Our experience showed that on the Yellowstone su-
percomputer (Computational and Information Systems Lab-
oratory, 2012) at the National Center for Atmospheric Re-
search (NCAR) Computational and Information System Lab
(CISL), a 5 yr simulation with 4 min time step typically takes495

about 4 to 7 days of wall-clock time to finish with 64 pro-
cesses running in parallel. (The actual duration depends on
the amount of model output as well as traffic in the queuing
system.) For the ensemble simulations, a set of fifty 3 day
simulations usually takes less than 20 min to finish, counting500

from the instant when the jobs are submitted till the point
when the last job is completed, resulting in a reduction of
turnaround time by a factor of several hundred. Such fast
turnaround will be particularly helpful when additional sim-
ulations are conducted with varied model configurations to505

identify the source of the time step sensitivity, and when even
smaller time steps are used to assess the convergence proper-
ties of the model behavior.

From the results above, we conclude that the ensemble
method as applied is both effective and efficient for the in-510

Figure 7.Shortwave cloud forcing (SWCF) associated with tropical
deep convection in simulations performed with 30 (blue) and 4 min
(green) time steps. The SWCF is averaged over tropical ocean grid
points, where the daily mean convective precipitation rate exceeds
3 mm day−1. Like in Fig. 4, horizontal bars in the middle of filled
boxes indicate the mean value of each ensemble. Lower and upper
ends of the whiskers correspond to the 10th and 90th percentiles,
respectively. Filled boxes show the 95 % confidence interval of the
ensemble mean. Further details are explained in Sect.3.3.

95 % confidence intervals are comparable, and the ensemble
spreads are also similar. The 4 min simulations, on the other
hand, are significantly different. When wind and temperature
are constrained, the differences between 4 and 30 min sim-
ulations are reduced by about 30 % for the variables shown
in the figure, suggesting that fast interactions (feedback) be-
tween resolved dynamics and parameterized physics increase
the time-step sensitivity of the CAM5 model.

3.5 Computational efficiency

The results presented above provide clear answers to the
questions posed at the beginning of this section. To detect
time-step sensitivities in cloud-related fields, it is sufficient to
perform 20 to 50 independent 3-day simulations. The ensem-
ble method reveals signals that agree well with those detected
by 5-year simulations performed in the traditional way, but
costs substantially less in terms of total CPU time, and dra-
matically less in terms of the experiment “completion time”
in situations where there are more processors available than
a single job can use effectively or is allowed to use with-
out a long queuing time, and many realizations can be run
simultaneously. Our experience showed that, on the Yellow-
stone supercomputer (Computational and Information Sys-
tems Laboratory, 2012) at the National Center for Atmo-
spheric Research (NCAR) Computational and Information
System Lab (CISL), a 5-year simulation with a 4 min time
step typically takes about 4 to 7 days of wall-clock time to
finish with 64 processes running in parallel (the actual dura-
tion depends on the amount of model output, as well as traffic
in the queuing system). For the ensemble simulations, a set
of 50 3-day simulations usually takes less than 20 min to fin-
ish, counting from the instant when the jobs are submitted
until the point at which the last job is completed, resulting
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Fig. 8. Comparison of the free-running (“F”) and nudged (“N”) simulations performed with 30 min (blue) and 4 min (green) time steps.
Meanings of the whiskers, boxes and hinges are the same as in Figs. 4 and 7. Each ensemble consists of 50 independent members. In the
nudged simulations, temperature and horizontal wind are relaxed towards those from the 30 min time step unconstrained simulations, using
a nudging time scale of 6 h. Panels (a) and (b) show the globally averaged, vertically integrated total cloud fraction and ice water path,
respectively. Panels (c) and (d) show the shortwave cloud forcing (SWCF) averaged over the shallow and deep convection regions. SWCF
associated with shallow convection is the average over ocean grid points between 30◦ N and 30◦ S where the frequency of occurrence of
shallow convection is larger than 0.5, and the daily mean convective precipitation rate is lower than 1 mmday−1. SWCF associated with
deep convection is calculated in the same way as in Fig. 7 (cf. Sect. 3.3.2). All results are shown for the third simulation day.

Fig. 9. Time evolution of the global mean aerosol optical depth
(AOD, at 550 nm wavelength) in the ensemble simulations de-
scribed in Sect. 4. The thick curve shows the AOD averaged over
256 ensembles that used different values for 16 empirical param-
eters in the CAM5 model (cf. Table 2). Vertical bars indicate the
spread (minimum to maximum) among the 256 ensembles.

vestigation of time step sensitivity. In the next section, we
use an additional example to show that the method can also
be very useful in other sensitivity studies.

4 Example II: parametric sensitivity of the global mean
top-of-atmosphere radiation balance515

The parameterization schemes of sub-grid scale processes
in AGCMs include various empirical, uncertain constants
whose values are often adjusted to obtain desired radiation
balance at the top of the model atmosphere (TOA), and to
achieve good fidelity when evaluated against observations520

(e.g., Mauritsen et al., 2012; Golaz and Levy, 2013). There
is a large volume of literature discussing the sensitivities of

model behavior to empirial parameters. In the context of
global climate change, there is also increasing interest in as-
sessing the impact of such parameters on the uncertainties in525

future climate projections (e.g., Murphy et al., 2004; Stain-
forth et al., 2005; Collins et al., 2006).

Because there are a large number of adjustable parameters
in AGCMs, and many of them have wide ranges of possi-
ble values, systematic investigations of model sensitivity in-530

evitably require numerous simulations. Earlier studies that
varied the value of one parameter at a time (e.g., Lohmann
and Ferrachat, 2010) only covered very small portions of the
full parameter space. In recent years, the use of advanced
sampling approaches such as Latin hypercube (McKay et al.,535

1979) and quasi-Monte Carlo method (Caflisch, 1998) have
allowed more extensive explorations of the parameter space
(e.g., Lee et al., 2012, 2013; Zhao et al., 2013). Perturbing
multiple parameters simultaneously not only allows for a dra-
matic reduction of the number of simulations needed for the540

sensitivity study, but also provides the opportunity to investi-
gate parameter interactions, leading to a more comprehensive
understanding of model sensitivity.

On the other hand, even with efficient sampling ap-
proaches applied, systematic investigations of parametric545

sensitivity are still inherently expensive because of the high
dimensionality of the parameter space. For instance, to
simultaneously perturbe O(101) parameters, one needs to
sampleO(102∼ 103) points from the parameter space to en-
sure sufficient coverage. Performing long-term climate sim-550

ulations with this many model configurations requires a sub-
stantial amount of computer time. In this section, we demon-
strate that there are circumstances in which a very good char-
acterization of the parametric sensitivity can be obtained with
small ensembles of short integrations, resulting in a signifi-555

Figure 8. Comparison of the free-running (F) and nudged (N) simulations performed with 30 min (blue) and 4 min (green) time steps.
Meanings of the whiskers, boxes, and hinges are the same as in Figs.4 and7. Each ensemble consists of 50 independent members. In the
nudged simulations, temperature and horizontal wind were relaxed, using a nudging time scale of 6 h towards those from the unconstrained
simulations that used 30 min time steps. Panels(a) and (b) show the globally averaged, vertically integrated total cloud fraction and ice
water path, respectively. Panels(c) and (d) show the shortwave cloud forcing (SWCF) averaged over the shallow and deep convection
regions. SWCF associated with shallow convection is the average over ocean grid points between 30◦ N and 30◦ S, where the frequency
of occurrence of shallow convection is larger than 0.5, and the daily mean convective precipitation rate is lower than 1 mm day−1. SWCF
associated with deep convection is calculated in the same way as in Fig.7 (cf. Sect.3.3.2). All results are shown for the third simulation day.

in a reduction of turnaround time by a factor of several hun-
dred. Such a fast turnaround will be particularly helpful when
additional simulations are conducted with varied model con-
figurations to identify the source of the time-step sensitivity,
and when even smaller time steps are used to assess the con-
vergence properties of the model behavior.

From the results above, we conclude that the ensemble
method, as applied, is both effective and efficient for the in-
vestigation of time-step sensitivity. In the next section, we
use an additional example to show that the method can also
be very useful in other sensitivity studies.

4 Example II: parametric sensitivity of the global mean
top-of-atmosphere radiation balance

The parameterization schemes of sub-grid scale processes
in AGCMs include various empirical, uncertain constants
whose values are often adjusted to obtain desired radiation
balance at the top of the model atmosphere (TOA), and to
achieve good fidelity when evaluated against observations
(e.g.,Mauritsen et al., 2012; Golaz and Levy, 2013). There
is a large volume of literature discussing model sensitivi-
ties to empirical parameters. In the context of global climate
change, there is also increasing interest in assessing the im-
pact of such parameters on the uncertainties in future climate
projections (e.g.,Murphy et al., 2004; Stainforth et al., 2005;
Collins et al., 2006).

Because there are a large number of adjustable parameters
in AGCMs, and many of them have wide ranges of possi-
ble values, systematic investigations of model sensitivity in-
evitably require numerous simulations. Earlier studies that
varied the value of one parameter at a time (e.g.,Lohmann
and Ferrachat, 2010) only covered very small portions of the
full parameter space. In recent years, the use of advanced

sampling approaches such as Latin hypercube (McKay et al.,
1979) and quasi-Monte Carlo method (Caflisch, 1998) have
allowed more extensive explorations of the parameter space
(e.g.,Lee et al., 2012, 2013; Zhao et al., 2013). Perturbing
multiple parameters simultaneously not only allows for a dra-
matic reduction of the number of simulations needed for the
sensitivity study, but it also provides the opportunity to in-
vestigate parameter interactions, leading to a more compre-
hensive understanding of model sensitivity.

On the other hand, even with efficient sampling ap-
proaches applied, systematic investigations of parametric
sensitivity are still inherently expensive because of the high
dimensionality of the parameter space. For instance, to si-
multaneously perturbeO(101) parameters, one needs to sam-
pleO(102

∼ 103) points from the parameter space to ensure
sufficient coverage. Performing long-term climate simula-
tions with that many model configurations requires a substan-
tial amount of computer time. In this section, we demonstrate
that there are circumstances in which a very good charac-
terization of the parametric sensitivity can be obtained with
small ensembles of short integrations, resulting in a signifi-
cant reduction in the computational cost.

4.1 Reference simulations

A recent study byZhao et al.(2013) investigated the sensi-
tivity of TOA radiative fluxes in present-day climate simu-
lations to the values of 16 parameters in CAM5. The 16 pa-
rameters included 5 adjustable constants related to stratiform
cloud microphysics (indices 1–5 in Table2), 3 parameters
related to the physical properties of aerosols (indices 6–8 in
Table2), and 8 scale factors for aerosol emissions (indices
9–16 in Table2). To efficiently explore the high-dimensional
parameter space, the quasi-Monte Carlo sampling method
(Caflisch, 1998) was chosen for its good performance in
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Table 2.Empirical parameters in the cloud microphysics and aerosol life cycle parameterizations in CAM5 that are perturbed in the sensitivity
analysis described in Sect.4. Adapted from Table 1 inZhao et al.(2013).

Index Parameter Description Unit Default value Investigated range

1 ai Fall-speed parameter for cloud ice s−1 700 350–1400
2 as Fall-speed parameter for snow m0.59s−1 11.72 5.86–23.44
3 cdnl Lower bound of grid-box mean cloud droplet number m−3 0 0–1× 107

concentration
4 dcs Size threshold assumed for the auto-conversion of cloud µm 400 100–500

ice to snow
5 wsubmin Minimum sub-grid vertical velocity assumed for cloud m s−1 0.2 0–1

droplet activation
6 facti Solubility factor for the removal of cloud-borne – 1.0 0.5–1

aerosols in stratiform clouds
7 factic Solubility factor for the removal of interstitial aerosols – 0.4 0.2–0.8

in convective clouds
8 ref_dust Imaginary part of the refractive index of dust in visible – 0.005 0.001–0.01

bands of the solar radiation
9 e_dust Emission tuning factor for dust – 0.35 0.21–0.86
10 e_sst Emission tuning factor for sea salt – 1.0 0.5–2.0
11 e_soag Emission tuning factor for secondary organic aerosols – 1.5 0.5–2.0
12 e_so2 Emission tuning factor for anthropogenic SO2 – 1.0 0–2
13 e_bc Emission tuning factor for anthropogenic black carbon – 1.0 0–3
14 e_pom Emission tuning factor for anthropogenic particulate – 1.0 0–3

organic matter
15 e_acnum Emission tuning factor for aerosol number concen- – 1.0 0.3–5.0

tration in the accumulation mode
16 e_so4f Tuning factor for the fraction of SO2 emitted as sulfate – 0.025 0–0.05

terms of sample dispersion. From the 16-dimensional param-
eter space, 256 sample points were drawn. Each sample point
corresponds to one set of values for the 16 parameters, to
which we hereafter refer as a “parameter combination”. For
each parameter combination, an AMIP (Atmospheric Model
Intercomparison Project,Gates et al., 1998) simulation was
conducted during the years 2000 to 2004. The average of the
last 4 years (2001–2004) was used in their sensitivity anal-
ysis to identify which parameters have the largest impact on
the model’s radiation budget.

4.2 Short ensembles

In this study we demonstrate that it is possible to use short
ensembles to reproduce the results ofZhao et al.(2013). The
same 256 parameter combinations were used in our simu-
lations, while each of their 4+ 1 year AMIP runs were re-
placed by an ensemble of short simulations started in each
month of the year, so that the ensemble averages character-
ize the annual averages examined in the reference study. As
in Sect.3, the initial conditions were taken from a prior long-
term simulation. The same set of 12 initial conditions were
used for all 256 ensembles.

4.3 Spin-up time

It is worth noting that 11 out of the 16 perturbed parame-
ters (indices 6 through 16 in Table2) directly affect the con-
centrations of aerosols. How these aerosol-related parame-
ters affect the TOA radiative fluxes is a key question to be
answered by the sensitivity analysis. The AMIP simulations
of Zhao et al.(2013) were initialized with zero aerosol mass
and number concentrations. Such an initialization in CAM5
usually requires a spin-up of several months (or longer) be-
fore the aerosol concentrations have evolved and approach
the climatological values. Therefore, the first simulation year
was discarded in the study ofZhao et al.(2013).

For our ensembles, all simulations were started with
aerosol concentrations that were spun-up under the default
model configuration and were consistent with the corre-
sponding meteorological fields. This set-up is expected to
require shorter spin-up than the zero-aerosol conditions. On
the other hand, after the aerosol emissions, solubility factors,
and cloud parameters were perturbed (Table2), we expect
an initial adjustment by at least a few days, considering that
the global mean aerosol lifetime is about 4 days in MAM3
(cf. Tables 3, 5–8 inLiu et al., 2012). To get a quantitative
assessment of the spin-up time, we monitored the time evo-
lution of the aerosol optical depth (AOD) in the ensemble
simulations. In Fig.9, the global mean AOD is shown for the
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Fig. 8. Comparison of the free-running (“F”) and nudged (“N”) simulations performed with 30 min (blue) and 4 min (green) time steps.
Meanings of the whiskers, boxes and hinges are the same as in Figs. 4 and 7. Each ensemble consists of 50 independent members. In the
nudged simulations, temperature and horizontal wind are relaxed towards those from the 30 min time step unconstrained simulations, using
a nudging time scale of 6 h. Panels (a) and (b) show the globally averaged, vertically integrated total cloud fraction and ice water path,
respectively. Panels (c) and (d) show the shortwave cloud forcing (SWCF) averaged over the shallow and deep convection regions. SWCF
associated with shallow convection is the average over ocean grid points between 30◦ N and 30◦ S where the frequency of occurrence of
shallow convection is larger than 0.5, and the daily mean convective precipitation rate is lower than 1 mmday−1. SWCF associated with
deep convection is calculated in the same way as in Fig. 7 (cf. Sect. 3.3.2). All results are shown for the third simulation day.

Fig. 9. Time evolution of the global mean aerosol optical depth
(AOD, at 550 nm wavelength) in the ensemble simulations de-
scribed in Sect. 4. The thick curve shows the AOD averaged over
256 ensembles that used different values for 16 empirical param-
eters in the CAM5 model (cf. Table 2). Vertical bars indicate the
spread (minimum to maximum) among the 256 ensembles.

vestigation of time step sensitivity. In the next section, we
use an additional example to show that the method can also
be very useful in other sensitivity studies.

4 Example II: parametric sensitivity of the global mean
top-of-atmosphere radiation balance515

The parameterization schemes of sub-grid scale processes
in AGCMs include various empirical, uncertain constants
whose values are often adjusted to obtain desired radiation
balance at the top of the model atmosphere (TOA), and to
achieve good fidelity when evaluated against observations520

(e.g., Mauritsen et al., 2012; Golaz and Levy, 2013). There
is a large volume of literature discussing the sensitivities of

model behavior to empirial parameters. In the context of
global climate change, there is also increasing interest in as-
sessing the impact of such parameters on the uncertainties in525

future climate projections (e.g., Murphy et al., 2004; Stain-
forth et al., 2005; Collins et al., 2006).

Because there are a large number of adjustable parameters
in AGCMs, and many of them have wide ranges of possi-
ble values, systematic investigations of model sensitivity in-530

evitably require numerous simulations. Earlier studies that
varied the value of one parameter at a time (e.g., Lohmann
and Ferrachat, 2010) only covered very small portions of the
full parameter space. In recent years, the use of advanced
sampling approaches such as Latin hypercube (McKay et al.,535

1979) and quasi-Monte Carlo method (Caflisch, 1998) have
allowed more extensive explorations of the parameter space
(e.g., Lee et al., 2012, 2013; Zhao et al., 2013). Perturbing
multiple parameters simultaneously not only allows for a dra-
matic reduction of the number of simulations needed for the540

sensitivity study, but also provides the opportunity to investi-
gate parameter interactions, leading to a more comprehensive
understanding of model sensitivity.

On the other hand, even with efficient sampling ap-
proaches applied, systematic investigations of parametric545

sensitivity are still inherently expensive because of the high
dimensionality of the parameter space. For instance, to
simultaneously perturbe O(101) parameters, one needs to
sampleO(102∼ 103) points from the parameter space to en-
sure sufficient coverage. Performing long-term climate sim-550

ulations with this many model configurations requires a sub-
stantial amount of computer time. In this section, we demon-
strate that there are circumstances in which a very good char-
acterization of the parametric sensitivity can be obtained with
small ensembles of short integrations, resulting in a signifi-555

Figure 9. Time evolution of the global mean aerosol optical depth
(AOD, at 550 nm wavelength) in the ensemble simulations de-
scribed in Sect.4. The thick curve shows the AOD averaged over
256 ensembles that used different values for 16 empirical param-
eters in the CAM5 model (cf. Table2). Vertical bars indicate the
spread (minimum to maximum) among the 256 ensembles.

first 60 days. The daily mean values that are averaged over
the 256 ensembles are indicated by the thick curve. Varia-
tions among the ensemble averages are shown by the vertical
bars, with the lower and upper ends indicating the minimum
and maximum, respectively. As expected, the globally aver-
aged AOD of different ensembles are similar at the beginning
of the integration. They quickly diverge in the next few days
and then stabilize. After about 10 days, there are no substan-
tial changes in either the average or the spread of the 256 en-
sembles. We thus use the day-10 average for the sensitivity
analysis below. In other words, we compare the parametric
sensitivities derived from the 12-member ensemble averages
at day 10 with the results inZhao et al.(2013), which were
based on 4-year averages.

4.4 Global mean radiation budget

Our analysis starts with the TOA net radiative flux (FNET).
To give a first sense of the model’s response to the param-
eter perturbation, Table3 lists the mean and standard de-
viation of the 256 simulations/ensembles. Similar statistics
are presented in the same table for the total cloud forcing
(CF), as well as for the shortwave and long-wave cloud forc-
ing (SWCF and LWCF). The mean FNET obtained with the
two methods differ by about 3 % (0.11 W m−2), while the
discrepancies in CF, SWCF, and LWCF are smaller in terms
of relative differences. Variations among the 256 experiments
tend to be somewhat smaller in the 4-year AMIP simulations,
probably because the substantially larger number of days in-
volved in the temporal average leads to a stronger smoothing
effect.

The sensitivities of global mean FNET to individual pa-
rameters are shown in Fig.10. In each panel, the global
mean 4-year averages (Fig.10, upper row) or day-10 ensem-
ble averages (Fig.10, lower row) corresponding to the 256
parameter combinations are sorted into eight bins according
to the value of one perturbed parameter. The square mark

Table 3. Global mean TOA net radiative flux (FNET), total cloud
forcing (CF), shortwave cloud forcing (SWCF), and long-wave
cloud forcing (LWCF) in the parametric sensitivity simulations de-
scribed in Sect.4. The numbers given are the average of 256 simu-
lations/ensembles± one standard deviation (unit: W m−2).

Variable 4-year average 12-member average at day 10

FNET −3.73± 2.36 −3.84± 2.63
CF −33.70± 5.64 −34.07± 7.07
SWCF −56.20± 2.13 −56.42± 2.12
LWCF +22.49± 2.14 +22.35± 2.56

associated with each bin indicates the FNET anomaly (rela-
tive to the average of 256 experiments) averaged within that
bin. The vertical bars depict the spread (minimum to maxi-
mum) caused by the perturbation of other parameters.

The 4-year AMIP simulations (Fig.10, upper row) indi-
cate that the global mean FNET increases withdcs (the
size threshold between cloud ice and snow) andfactic
(solubility factor of aerosols in convective clouds). It de-
creases withai (a fall-speed parameter for cloud ice),
cdnl (the minimum concentration of cloud droplet num-
ber),wsubmin (the minimum sub-grid vertical velocity for
droplet activation), ande_sst (tuning factor for sea-salt
emission). FNET is less sensitive to the other parameters.

As discussed inZhao et al.(2013), the detected sensitivi-
ties in FNET are mainly attributable to clouds, while the con-
tribution of clear-sky areas is relatively small. Therefore, in
Fig. 11we present the responses of SWCF and LWCF to the
parameter perturbation. The long-wave cloud forcing is pri-
marily affected by cloud microphysics parametersai , as ,
cdnl , anddcs . The shortwave cloud forcing is additionally
affected bywsubmin , and the aerosol-related parameters
factic (solubility factor of aerosols in convective clouds)
ande_so2 (tuning factor for the emission of anthropogenic
SO2).

Comparing the upper and lower rows of Figs.10 and11,
we see that not only the qualitative conclusions drawn in the
previous paragraphs stay unchanged in the ensemble simu-
lations, but also the quantitative details of the functional re-
lationships between FNET/SWCF/LWCF and the perturbed
parameters are correctly reproduced by the short simulations.
Considering that the ensemble results used to derive these
relationships were averaged over only 12 realizations and 1
model day, the agreement with the 4-year climate simulations
is rather remarkable.

In Figs. 10 and 11, the relative contributions of individ-
ual parameters to the total variation of FNET, SWCF, and
LWCF are noted above the corresponding panels. These
numbers were obtained by applying the generalized linear
model (GLM) which assumes the relationships between the
output variables (i.e., FNET, SWCF, and LWCF) and in-
put parameters are polynomial functions that include linear,
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Fig. 10. Sensitivities of the global mean top-of-atmosphere net radiative flux (FNET, unit: Wm−2) to the empirical parameters listed in
Table 2. CAM5 simulations were carried out using 256 different model configurations corresponding to 256 sampling points drawn from
the 16-dimensional parameter space (cf. Table 2 and Sect. 4.1). In each panel, the global mean FNET corresponding to the 256 model
configurations are sorted into 8 bins according to the values of one perturbed parameter. The spread (minimum to maximum) of FNET
within a bin is shown by a vertical bar, while the mean value is indicated by a square mark. Note that the FNET shown here is the anomaly
relative to the mean of the 256 simulations/ensembles. The mean values that have been subtracted are given in Table 3. Numbers noted above
the panels are the relative contribution of individual parameters to the total variation of FNET, estimated using a generalized linear model
(cf. Sect. 4.4). Red font means the contribution is statistically significant at the 95 % confidence level. The upper row shows results obtained
from the AMIP simulations of Zhao et al. (2013) (cf. Sect 4.1). The lower row shows results from the ensemble simulations performed in
this study.
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Fig. 11. As in Fig. 10 but showing parametric sensitivities of the global mean (a) shortwave and (b) longwave cloud forcing (unit: Wm−2).

Figure 10.Sensitivities of the global mean top-of-atmosphere net radiative flux (FNET, unit: W m−2) to the empirical parameters listed in
Table2. CAM5 simulations were carried out using 256 different model configurations corresponding to 256 sampling points drawn from
the 16-dimensional parameter space (cf. Table2 and Sect.4.1). In each panel, the global mean FNET corresponding to the 256 model
configurations are sorted into eight bins according to the values of one perturbed parameter. The spread (minimum to maximum) of FNET
within a bin is shown by a vertical bar, while the mean value is indicated by a square mark. Note that the FNET shown here is the anomaly
relative to the mean of the 256 simulations/ensembles. The mean values that have been subtracted are given in Table3. Numbers noted above
the panels are the relative contribution of individual parameters to the total variation of FNET, estimated using a generalized linear model
(cf. Sect.4.4). Red font means the contribution is statistically significant at the 95 % confidence level. The upper row shows results obtained
from the AMIP simulations ofZhao et al.(2013) (cf. Sect4.1). The lower row shows results from the ensemble simulations performed in
this study.

quadratic, and interaction terms. Percentages given in red in
the figures are statistically significant at the 95 % confidence
level. Details of the GLM fitting are described in Sect. 2.3.3
in Zhao et al.(2013), and are not repeated in this paper. Here,
we only point out that the GLM provides a quantitative way
to rank the relative importance of the empirical parameters
in determining the total variation in the output variables. The
rankings derived from the 4-year simulations and the day-10
ensembles agree quite well. For example,dcs , wsubmin ,
e_sst and factic are identified by both methods as the
most influential parameters for FNET. In terms of the per-
centage contribution of individual parameters to the total
variance, the results derived from the 4-year simulations and
the short ensembles are also similar. There are a few cases in
which the percentage is regarded as significant in the 4-year
simulations but insignificant in the ensembles (e.g.,e_soag
for FNET, facti ande_acnum for LWCF), but these are
typically associated with small contributions and thus should
not be considered as large discrepancies.

4.5 Computational efficiency

The 12 10-day simulations cost about 1/15 of the total CPU
time in comparison to the original 5-year (4 years plus a 1-
year spin-up) simulations, a substantial reduction in compu-
tational cost. As for the turnaround time, on Yellowstone at
NCAR CISL, the 256× 12 simulations submitted as sepa-
rate jobs finished within 8 h of wall-clock time. Typically,
the queuing system allowed 50 to 100 jobs running in par-
allel. These numbers were smaller than the total number of
parameter combinations (256). Therefore, in this case, the
reduction of turnaround time was mainly achieved from the

smaller number of simulation days required by the ensem-
ble strategy. On larger computing facilities that could allow
more than 256 simultaneous jobs from a single user, it would
be possible to make fuller use of the available resources us-
ing the ensemble strategy, but not with the long-term sim-
ulations. On a dedicated system that could accommodate
O(103) concurrent simulations, it would be possible to com-
plete all of our ensemble simulations within 1 hour. Such a
fast turnaround can be very useful in systematic sensitivity
studies, where influential parameters can be identified from
a large number of candidates within a reasonable time period,
and more attention can subsequently be paid to the most im-
portant parameters.

Furthermore, during the development of climate models, it
is often necessary to adjust empirical parameters after major
updates of model components, so that the long-term global
mean TOA radiative flux stays close to zero. Since the global
mean FNET, SWCF, and LWCF are among the most impor-
tant metrics for model tuning, our results suggest that short
ensembles can be useful in such exercises, as well.

5 Conclusions and discussion

We have demonstrated that ensembles of short simulations
can be used to estimate the fast responses of a climate model
to perturbations. The strategy can produce signatures that
agree quantitatively and qualitatively with those produced
by traditional multi-year brute-force simulation strategies, at
a fraction of the computational and wall-clock cost.

Our first example explored the response of simulated
clouds to a change in model time step. The results suggest
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Fig. 10. Sensitivities of the global mean top-of-atmosphere net radiative flux (FNET, unit: Wm−2) to the empirical parameters listed in
Table 2. CAM5 simulations were carried out using 256 different model configurations corresponding to 256 sampling points drawn from
the 16-dimensional parameter space (cf. Table 2 and Sect. 4.1). In each panel, the global mean FNET corresponding to the 256 model
configurations are sorted into 8 bins according to the values of one perturbed parameter. The spread (minimum to maximum) of FNET
within a bin is shown by a vertical bar, while the mean value is indicated by a square mark. Note that the FNET shown here is the anomaly
relative to the mean of the 256 simulations/ensembles. The mean values that have been subtracted are given in Table 3. Numbers noted above
the panels are the relative contribution of individual parameters to the total variation of FNET, estimated using a generalized linear model
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Fig. 11. As in Fig. 10 but showing parametric sensitivities of the global mean (a) shortwave and (b) longwave cloud forcing (unit: Wm−2).
Figure 11. As in Fig. 10 but showing parametric sensitivities of the global mean(a) shortwave and(b) long-wave cloud forcing (unit:
W m−2).

that 3-day integrations are sufficient to reproduce the time-
step sensitivities seen in the commonly used 5-year climate
simulations, due to the rapid response in cloud fields. For the
global mean total cloud fraction, liquid water path, and ice
water path, the time-step-induced changes can be clearly de-
tected with 20 ensemble members. For the global mean large-
scale precipitation rate, which has higher natural variability,
and for the regional features of cloud forcing, robust signals
can be detected from ensembles of 50 members. A combined
use of ensemble and nudging led to the finding that inter-
actions between the resolved dynamics and parameterized
physics provide positive feedback that enhances the model’s
time-step sensitivity.

The second example demonstrated that the strategy is ca-
pable of characterizing sensitivities of the global mean TOA
radiation budget to 16 empirical parameters related to strat-
iform cloud microphysics and aerosol life cycle. This type
of investigation is inherently expensive in terms of computa-
tional cost, because a large number of simulations are needed
to sufficiently sample the high-dimensional parameter space.
Following a previous study byZhao et al.(2013), we used the
quasi-Monte Carlo method to obtain 256 sample points (pa-
rameter combinations) from the 16-dimensional parameter

space. For each parameter combination, ensemble simula-
tions were conducted with one realization, starting from each
month of the year 2001. We showed that parametric sensitiv-
ities of the global mean TOA FNET and cloud forcing de-
rived from 12-member ensemble averages at day 10 agree
very well with results obtained byZhao et al.(2013), who
used 4-year AMIP simulations in their analysis. The short
ensembles correctly identified the most influential parame-
ters for the FNET and cloud forcing, and successfully repro-
duced the functional relationships between these quantities
and the perturbed parameters.

These results indicate that, although climate is, by defini-
tion, a long-term average and is associated with strong natu-
ral variability, fast processes and robust features exist that do
not need very long simulations to characterize them. This fact
is already widely known, and has formed the foundation for
the CAPT and Transpose-AMIP activities in which climate
models are run in weather-forecast mode to reveal the bi-
ases, with respect to observations. Here, we have shown that
the philosophy behind the Transpose-AMIP-type evaluation
can be applied in more general ways to carry out sensitivity
studies. Using short ensembles instead of traditional multi-
year climate simulations, sensitivity studies can be carried
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out more efficiently, benefitting from a substantial reduction
of the total CPU time spent on numerical integration, as well
as a much faster turnaround in the investigation because the
independent ensemble members introduce an additional di-
mension of parallelism that can be exploited with current
flagship supercomputers.

The strategy discussed in this paper using simulations that
last a few days certainly has limitations. It cannot be used as
formulated here to investigate modes of climate variability or
feedback mechanisms that operate on time scales of months
to years, thus could not replace long-term simulations when
long time scales are important. For example, in the time-step
sensitivity experiments discussed in Sect.3, while the 5-year
simulations reveal an increase of DJF precipitation in the
SPCZ, when time step is shortened (not shown), the ensem-
ble simulations do not indicate statistically significant dif-
ferences in this region. This is probably because systematic
changes in the SPCZ involve feedback from the large-scale
circulation that can not sufficiently spin-up in just a few days.

Nevertheless, since fast processes are important contribu-
tors to the sensitivities and uncertainties in current climate
models, short ensembles can help to obtain first-order esti-
mates of rapid responses in the climate system rather quickly.
Such economical, approximate answers can be useful in var-
ious situations. For example, in systematic studies of para-
metric uncertainties, short ensembles can be used in prelim-
inary investigations to pre-select influential parameters from
a large number of candidates, and to narrow down possible
ranges of parameter values. In convergence studies, short en-
sembles may be the only way to conduct simulations at ultra-
high spatial and/or temporal resolutions that would otherwise
be impractical to complete. As the climate modeling com-
munity actively pursues higher resolutions, more physically
based parameterizations, and inclusion of new, highly sophis-
ticated processes, wide applications can be anticipated for the
experimentation method discussed here.

It should be noted that, in this paper, we are advocating
the ensemble method as a general strategy, not a recipe. As
can be seen from the two examples, for different variables
and physical processes, one must generate ensembles differ-
ently, and may need different spin-up time and/or ensemble
sizes. The most beneficial experimentation design for a par-
ticular research question needs to be figured out on a case-by-
case basis. Whenever affordable, one should first evaluate the
short ensembles against traditional climate simulations. If it
is impractical to do so, we recommend testing the experimen-
tal design using a range of integration lengths and ensemble
sizes, so as to obtain a better understanding of the robustness
of the results.

An additional remark worth making here is that the def-
initions of fast and slow processes need to be understood
in relative terms. In this paper, where an atmosphere-only
GCM was used, we considered time scales of a few days as
“short”, and simulations of multiple years as “long”. In other
situations, fast and slow processes can be reclassified. For

example, if one were interested in identifying how seasonal
features, such as the Asian summer monsoon, responded
to anthropogenic and natural forcings (e.g.,Ganguly et al.,
2012; Vinoj et al., 2014; Song et al., 2014), or to changes
in model formulation (e.g.,Zhou and Li, 2002; Chen et al.,
2010), it might be possible to generate realizations of simu-
lations that last a few months, and use ensemble averages to
remove multi-year and multi-decade scale noise that would
otherwise require hundreds of years of simulations. As such,
the ensemble strategy may have much wider applications
than demonstrated in the present paper.
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