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Abstract. Terrestrial ecosystem models are employed to
calculate the sources and sinks of carbon dioxide between
land and atmosphere. These models may be heavily parame-
terised. Where reliable estimates are unavailable for a param-
eter, it remains highly uncertain; uncertainty of parameters
can substantially contribute to overall model output uncer-
tainty. This paper builds on the work of the terrestrial Carbon
Cycle Data Assimilation System (CCDAS), which, here, as-
similates atmospheric CO2 concentrations to optimise 19 pa-
rameters of the underlying terrestrial ecosystem model (Bio-
sphere Energy Transfer and Hydrology scheme, BETHY).
Previous experiments have shown that the identified mini-
mum may contain non-physical parameter values. One way
to combat this problem is to use constrained optimisation and
so avoid the optimiser searching non-physical regions. An-
other technique is to use penalty terms in the cost function,
which are added when the optimisation searches outside of
a specified region. The use of parameter transformations is a
further method of avoiding this problem, where the optimi-
sation is carried out in a transformed parameter space, thus
ensuring that the optimal parameters at the minimum are in
the physical domain. We compare these different methods of
achieving meaningful parameter values, finding that the pa-
rameter transformation method shows consistent results and
that the other two provide no useful results.

1 Introduction

The response of the global carbon cycle to future changes in
climate is highly uncertain. It has been proposed that there is
a positive climate–carbon cycle feedback that might signifi-
cantly accelerate climate change; the study of Friedlingstein
et al. (2006) used 11 Earth System models with an interactive
carbon cycle and two simulations with each model, to isolate
the feedback between climate change and the carbon cycle.
All of the models showed that future climate change would
reduce the efficiency of the Earth system and in particular the
land biosphere to absorb the anthropogenic carbon perturba-
tion, with an additional CO2 of between 20 and 200 ppm be-
tween the two most extreme models by 2100. Friedlingstein
et al. (2006) estimated that this rise in CO2 would lead to a
further warming of 0.1 to 1.5◦C.

The sources and sinks of carbon dioxide between land
and atmosphere can be calculated using terrestrial ecosys-
tem models (TEMs). State of the art TEMs, such as the Bio-
sphere Energy Transfer and Hydrology (BETHY) scheme
(Knorr, 2000), encapsulate large numbers of biogeochemi-
cal processes and hence involve a large number of param-
eters. Results from TEMs can diverge markedly, indicating
limited understanding and representation of the processes in-
volved. The study of Sitch et al. (2008) used five dynamic
global vegetation models (DGVMs) to model the contempo-
rary terrestrial carbon cycling. They coupled the DGVMs to
a fast “climate analogue model” based on the Hadley Centre
General Circulation Model, and ran the coupled models to
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the year 2100 using four Special Report Emissions Scenar-
ios. The most extreme projections differed by up to 494 PgC
of cumulative land uptake across the DGVMs over the 21st
century (over 50 years of anthropogenic emissions at current
levels; Sitch et al., 2008), although they remained consistent
with the contemporary global land carbon budget. Further-
more, Huntingford et al. (2013) explored uncertainties of po-
tential future carbon loss from tropical forests. They found
that the DGVM response uncertainty dominated over varia-
tion between emission scenarios and climate models.

There are various sources of uncertainty within the model
– for example structural uncertainty, which depends on the
formulation of individual processes and their numerical rep-
resentation. Another source of uncertainty is parametric un-
certainty, which results from the uncertainty of the process
parameter values used in the model’s parameterisation, either
due to a lack of knowledge or to upscaling to larger spatial
domains. Model parameter values are commonly based on
“expert knowledge”. Where little information is known, this
can be just an educated guess. If estimates are unavailable for
a parameter, it remains highly uncertain. Uncertainty of pa-
rameters can substantially contribute to overall model output
uncertainty. In this case, parameter estimation to constrain
the model against observations can be very useful.

Many parameter estimation methods, such as gradient-
based, Kalman filter, Monte Carlo inversion, Levenberg–
Marquardt and genetic algorithm, use the Bayesian approach
(Tarantola, 1987, 2005), which combines probability den-
sity functions (PDFs) of observational information, prior in-
formation and the model dynamics. Four-dimensional vari-
ational (4D-Var) schemes use the gradient of the model for
the optimisation of parameters; this is usually provided by
the adjoint. These approaches are generally computation-
ally efficient but unlike some other variational data assimi-
lation methods, for example the Markov chain Monte Carlo
method, it is possible to identify only a local minimum. An-
other weakness of 4D-Var schemes is that they concentrate
only on the optimal solution without considering uncertain-
ties. However, there are some 4D-Var schemes, such as the
one used in the Carbon Cycle Data Assimilation System
(CCDAS) (Rayner et al., 2005), which are able to approx-
imate posterior parameter uncertainties using the inverse of
the second-order derivative of the cost function with respect
to the parameters (Hessian) at the global minimum.

Generally, Gaussian distributions are assumed for the prior
probability distributions of the parameters. This is not always
a good assumption as sometimes parameters are restricted to
certain values; many are positive, for example, and some are
restricted between two values, such as a fraction between 0
and 1. Another example is the terrestrial carbon parameter
Q10, which regulates the response of the decomposition rate
of organic material to changes in temperature and is known
to be greater than 1 (“A rule of thumb widely accepted in
the biological research community is that. . . theQ10 of de-
composition is two” Davidson and Janssens, 2006). Where

parameters are limited to certain values, optimal solutions
can contain non-physical parameter values, as has been seen
in Koffi et al. (2012) when using CCDAS (Rayner et al.,
2005) without attempting to limit the parameter space. Here,
the optimal value of one of the parameters in the photosyn-
thesis scheme was negative, which is unrealistic and would
lead to a reversed photosynthesis. Kaminski et al. (2012)
used, in addition, quadratic and double-bounded transfor-
mations to achieve a limited parameter space. Further, in
Trudinger et al. (2007), an optimisation inter-comparison
study of parameter estimation methods in terrestrial biogeo-
chemical models, and in Fox et al. (2009), another inter-
comparison project, the parameter space needed to be limited
to avoid non-physical values.

A simple method of avoiding these non-physical values
would be to place hard constraints within the search algo-
rithm. Byrd et al. (1995) described a limited memory quasi-
Newton algorithm for solving large nonlinear optimisation
problems, which can be applied to parameter estimation.

Alternatively, it is possible to modify the cost function for-
mulation by adding a so-called penalty term associated with
some of the parameters. The penalty term is zero when the
parameter is within its specified limits and increases as the
parameter goes further away from these limits. This has been
implemented in a study to estimate the turnover time of ter-
restrial carbon (Barrett, 2002). A genetic algorithm was used
to improve consistency between estimated model parameters
and data. All of the parameters were limited between two
values and a penalty term was added whenever they violated
these constraints.

A further option to avoid these non-physical values would
be to alter the estimation problem by using a parameter trans-
formation (i.e. a nonlinear change of parameters’ PDFs) so
that the parameter limits can never be reached. Simon and
Bertino (2009) performed a twin experiment with a coupled
ocean ecosystem model (HYCOM-NORWECOM) with an
ensemble Kalman filter (EnKf), with and without parameter
transformations to limit parameters to positive values. The
study compared EnKf with parameter transformations and
the plain EnKf with post-processing of results, where neg-
ative values are increased to zero. These two methods led to
similar results. However, the parameter transformations had
an advantage in efficiency. Simon and Bertino use the term
“Gaussian anamorphosis”, however, we will continue to use
the term “parameter transformation”.

Within CCDAS, a parameter transformation from a Gaus-
sian prior parameter distribution to a log-normal prior param-
eter distribution is already routinely in use for some selected
parameters such as theQ10 parameters. Koffi et al. (2012)
showed that the choice of prior parameter distribution can
have a great effect on the parameter’s uncertainty and the
resulting flux field. In their experiments a log-normal PDF
on prior parameters reduced the sensitivity of net CO2 ex-
change flux (net ecosystem productivity, NEP) to the ob-
servational network as well as the transport model. In the
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study, the differences in NEP between two configurations
are quantified by calculating the root mean square difference
(RMSD) over all the grid cells and all months in the study
period. After applying the log-normal PDF, the RMSD be-
tween the observational networks went from 42 gCm−2 yr−1

to 16 gCm−2 yr−1.
This paper builds upon the findings of Koffi et al. (2012)

and systematically investigates the ability of the above-
mentioned three different methods to limit the parameter
space within CCDAS.

The outline of the paper is as follows. First, we give an
overview of the data assimilation system and the model, go-
ing on to describe the parameter limiting methods and the
experiments (Sect. 2). Section 3 describes the results and dis-
cussion. Section 4 concludes.

2 Methodology

CCDAS employs a terrestrial ecosystem model BETHY
(Knorr, 2000) and an atmospheric tracer transport model
TM2 (Heimann, 1995), along with prescribed CO2 fluxes
constituting land-use change, sea surface–atmosphere ex-
change flux and fossil fuel emission (Rayner et al., 2005;
Scholze et al., 2007) that are not calculated by the BETHY
model. The biosphere model parameters are estimated using
the variational approach. The configuration of CCDAS has
been comprehensively described by Scholze (2003), Rayner
et al. (2005) and Ziehn et al. (2011b). Here, we provide a
brief summary and an explanation of the points where we
differ.

2.1 Data assimilation system

There are two steps to the data assimilation in CCDAS as can
be seen in Fig. 1. The first uses the full version of BETHY
to assimilate space-borne remote sensing data of vegetation
activity to optimise the model’s phenology and hydrology.
The second is a simplified form of BETHY and uses the op-
timised leaf area index (LAI) and soil moisture fields from
the full version as input.

This paper focuses on the soil carbon balance, a simpli-
fied part of the second step. This simplification of the model
keeps parameters that control net primary productivity (NPP)
fixed; previous studies (Rayner et al., 2005; Scholze et al.,
2007) have demonstrated that atmospheric CO2 data con-
strain these parameters only moderately. The NPP parame-
ters are calculated by an additional forward simulation cov-
ering the full 25-year simulation period after the first step.
They are then used as input, similar to soil moisture from the
first step.

Posterior parameter values are obtained via iterative min-
imisation of a cost functionJ (x). The cost function yields
the mismatch between the parameter vectorx and their pri-
orsx0 and modelled concentrationsM(x) and observations
c, where each is weighted by the uncertaintiesCx0 andCc

of the prior and the observations, respectively (Rayner et al.,
2005):

J (x) =
1

2

(
(x − x0)

T C−1
x0

(x − x0)

+(M(x) − c)T C−1
c (M(x) − c)

)
. (1)

The formulation of the cost function uses a Bayesian ap-
proach (Tarantola, 1987, 2005) and reflects an assumption
of Gaussian probability distributions on the observed con-
centrations and the prior information on the parameters (ex-
plained further in Ziehn et al., 2012). Minimisation of the
cost function uses the gradient ofJ with respect to the pa-
rametersx at each iteration. Transformation of Algorithms in
Fortran (TAF) (Giering and Kaminski, 1998; Kaminski et al.,
2003) is used to generate derivative code from the model’s
source code.

At the minimum in the cost function, the Hessian approx-
imates the inverse covariance of the parameter uncertainties
(Tarantola, 1987) and can therefore be used to estimate the
posterior uncertainties in the process parameters. Calculation
of the Hessian is done by using TAF once more to differen-
tiate the gradient vector in forward mode with respect to the
process parameters. Although there is a significant reduction
of the cost function within a few tens of iterations, for the
Hessian assumptions to hold, many more iterations are re-
quired to achieve the near-zero gradient of a cost function
minimum.

When using the gradient-based approach, it is possible that
only a local minimum is identified. Therefore, an ensemble
of optimisations is performed, with each optimisation start-
ing in slightly varied points in parameter space. In this way, if
they all converge to the same minimum, we have confidence
that we have found a minimum that is more likely to be a
global minimum within the physical parameter space.

Using the atmospheric tracer transport model TM2,
calculated fluxes from BETHY are mapped onto atmo-
spheric concentrations for comparison with measurements
of observations of CO2 obtained from the GLOBALVIEW
database (GLOBALVIEW-CO2, 2008). As in previous stud-
ies (Rayner et al., 2005), we are using global monthly mean
atmospheric CO2 concentration data from 41 sites, but here
we use data from a 25-year period (1979–2003).

As the interest of this study is the natural CO2 exchange
flux between land and atmosphere, the remaining fluxes con-
tributing to the atmospheric CO2 content are added sepa-
rately. We use the estimates of Houghton (2008) for the land-
use flux, without seasonality or interannual variability, fol-
lowing the procedure of Rayner et al. (2005). The flux pat-
tern and magnitude of ocean CO2 exchange is taken from
Takahashi et al. (1999) and estimations of interannual vari-
ability from Le Quéré et al. (2007). Background fluxes for
fossil fuel emissions, based on the flux magnitudes from Bo-
den et al. (2009), are described by the method of Scholze et
al. (2007).
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Figure 1. CCDAS structure. Top arrows indicate the parameters to be optimised and the observational data used in the various steps.

2.2 Terrestrial biosphere model and parameters

BETHY, a process-based model of the terrestrial biosphere
(Knorr, 2000), simulates carbon uptake and soil respira-
tion within a full energy and water balance and phenol-
ogy scheme. The grid resolution of BETHY in this study
is 2◦

× 2◦ with the global vegetation mapped onto 13 plant
functional types (PFTs) based on Wilson and Henderson-
Sellers (1985). Each grid cell can contain up to three PFTs.
The amount of present PFTs within a grid cell is specified by
their fractional coverage.

In BETHY, NEP is defined as

NEP= NPP− Rs = NPP− (RS,s+ RS,f), (2)

whereRS,s andRS,f are respiration fluxes from the slowly
and rapidly decomposing soil carbon pools. Input to the fast
pool is parameterised by the annual course of LAI for decid-
uous PFTs and the constant fraction of the leaf carbon pool
for evergreen PFTs. Soil respiration is simulated to be soil
moisture and temperature dependent assuming the following
functional dependencies:

RS,f = (1− fs)kfCf (3)

RS,s= ksCs, (4)

whereCf andCs represent sizes of the fast and slow carbon
pool, respectively, andfs the fraction of decomposition from
the fast pool to the long-lived soil carbon pool. The rate con-
stants are

kf = ωκQ
Ta/10
10,f

/
τf (5)

ks = ωκQ
Ta/10
10,s

/
τs, (6)

whereω is the dimensionless plant available soil moisture,
i.e. divided by the field capacity of the soil in the respective
grid cell (a value between 0 and 1),Ta air temperature,κ a
soil moisture dependence parameter,Q10,f andQ10,sare tem-
perature dependence parameters for the fast and slow pool,τf
andτs the pool turnover times at 25◦C.

A parameter can either be global or differentiated by cer-
tain criteria (in this study, PFT). In this simplified version

with NPP kept fixed, there are six controlling parameters;
five are global and one, theβ parameter, is PFT dependent.
There is an additional parameter, the offset, representing the
carbon dioxide concentration at the beginning of the optimi-
sation, giving 19 process parameters, as can be seen in Ta-
ble 3. Also shown in Table 3 are the prior uncertainties. As
little information is known about some of the parameters, we
have chosen to start with larger, realistic uncertainties. The
five global parameters areQ10,f andQ10,s, the temperature
dependence parameters for the fast and slow pool,τf the fast
pool turnover time at 25◦C,fs the fraction of decomposition
from the fast pool to the slow decomposing soil carbon pool
andκ the soil moisture dependence parameter. The PFT de-
pendent parameterβ, described in Eq. (7) and in more detail
in Ziehn et al. (2012), is the carbon balance parameter and
determines whether a PFT is a long-term source (β > 1) or
sink (0< β < 1):

NEP= NPP(1− β). (7)

Note that the vertical lines above denote the temporal av-
erage value over the full 25-year simulation period at each
subgrid cell. Theβ parameter is strictly positive and, whilst
it has no physical upper bound, it should not be unrealisti-
cally large; a value of 10, for example, would indicate that
locations covered by this PFT have a net flux, NEP, 9 times
that of NPP as described in Ziehn et al. (2011a). Therefore,
an upper bound of 2 is a reasonable selection and is the value
we have chosen when bounding this parameter.

We distinguish between the physical model parameterspi

and the parameters as seen by the optimisation routine, the
control variablesxi . Control variables have variance 1. In
this sense, all the parameters are on the same dimensionless
scale and so a change of 1 in that scale to the value of each
parameter contributes equally to the value of the cost func-
tion. Furthermore, the control variables have PDFs assuming
a Gaussian distribution, as mentioned above. To obtain the
control variables and to achieve the unit uncertainty, physi-
cal parameter values are divided by their prior standard devi-
ation:

xi =
pi

σpoi

. (8)
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2.3 Limiting the parameter space

It is not always the case that the physical parameters are dis-
tributed in a Gaussian way. For example, this gives positive
probability of negative values and as mentioned, some model
parameters are only physically meaningful with strictly pos-
itive values. Three methods of avoiding these non-physical
parameter values are examined in this paper. Two of the
methods incorporate the bounding directly into the optimi-
sation. The first, constrained optimisation, seeks a solution
within the physically meaningful parameter space. The sec-
ond adds a penalty term to the cost function when the opti-
miser begins to search the non-physical domain. This encour-
ages it to stay within the physically meaningful parameter
space. The final method investigated in this paper, param-
eter transformations, performs the optimisation in a trans-
formed parameter space, which ensures that, when back-
transformed, the minimum is always in the physically mean-
ingful parameter space. In addition to testing these three
methods, we go on to investigate the effect of different pa-
rameter transformations on the inferred target quantities and
their posterior uncertainties. One particular transformation,
the log transformation, has already been used in CCDAS and
found to have a large impact on the optimised parameter
values and also the resulting flux fields as explained above
(Koffi et al., 2012). In addition to this log-normal transfor-
mation we propose two other transformations: quadratic and
double-bounded log. The quadratic and log transformations
are used to provide a lower bound on a parameter and the
double-bounded log can be used to provide an upper and
lower bound on a parameter. We will examine the effect of
using these different parameter transformations on parame-
ter values and their uncertainties.

The essential difference between the three approaches is
the form of the prior (and thus posterior) PDFs in (physical)
parameter space. Both the constrained and the penalty func-
tion approaches produce a prior of Gaussian shape inside
the bounds/non-penalised region. Outside, the constrained
approach produces a zero probability while the penalty ap-
proach produces a non-zero probability consisting of a grad-
ual reduction of the Gaussian probability with increasing dis-
tance from the bounds. The parameter transformation ap-
proach produces a zero probability outside the bounds and
a non-zero but non-Gaussian probability within the bounds.

2.3.1 Constrained optimiser

When using the constrained optimisation, the optimiser can
only choose from amongst a restricted well-defined set. Min-
imisation of the cost function is done via a gradient-based
algorithm updating an approximation of the Hessian through
the L-BFGS-B method (Byrd et al., 1995; Zhu et al., 1997),
which limits the control parameter space to the restricted set.
This is a variant of the Davidon–Fletcher–Powell (DFP) for-
mula (Fletcher and Powell, 1963; Press et al., 1996).

2.3.2 Penalty term in the cost function

For the penalty term optimisation, we use BFGS but add a
penalty term to the cost function when the optimiser begins
to search a non-physical region in the form of

J (x) =
1

2

(
(x − x0)

T C−1
x0

(x − x0)

+(M(x) − c)T C−1
c (M(x) − c)

)
+

R∑
r=1

Pr(Drgrδrµr),

r = 1, . . . ,R = 19 (i.e. the number of parameters), (9)

whereDr is a penalty factor that scales the penalty func-
tion,gr is the threshold function,δr invokes the penalty when
the threshold is violated andµr determines the sensitivity of
the penalty function to threshold violation (with even, integer
values):

Pr = Drδrg
µr
r (10)

gr(αr) = (α∗
r − αr), (11)

whereαr is the current value of therth parameter andα∗
r is

the threshold value, the value beyond which the threshold is
violated and the penalty imposed:

δr =

{
1, if threshold violated
0, if threshold not violated.

(12)

2.3.3 Parameter transformations

Depending on the transformation used on the parameter, dif-
ferent equations are used to convert them from the model pa-
rameterspi into the control variablesxi . The equations give
control variables with a variance of 1. Where no transfor-
mation is used (i.e. the prior is assumed to have a Gaussian
distribution), the parameters are just normalised using Eq. (8)
as mentioned above.p0i is the prior value of theith model
parameter andσp0i

is its prior uncertainty. As further options
we have a double-bounded log, a lower-bounded log and a
quadratic transformation.

Where a parameter has a lower and upper bound,a and
b, the parameter transformation from optimisation space to
physical space is given by an equation of the form

p(x) = (b − a)
/
(1+ e−x) + a. (13)

For the log transformation with only a lower bound ofa,
this simplifies to an equation of the form

p(x) = ex
+ a. (14)

The quadratic transformation with lower bounda is com-
puted by a function like this:

p(x) = x2
+ a. (15)
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Table 1.Experiments performed to investigate the impact of different methods of limiting the parameter space on the optimisation.

Experiment Default set-up:
No parameter
transformation
of Q10,f
(Gaussian)

Parameter
transformation
of Q10,f
(log)

Parameter
transformation
of Q10,f
(quadratic)

Constrained Penalty term

Optimiser used BFGS BFGS BFGS L-BFGS-B BFGS
Parameters treated with a double-
bounded parameter transformation

8, 13, 18 8, 13, 18 8, 13, 18 none 8, 13

Treatment ofQ10,f in parameter
transformation experiments

No transforma-
tion (assuming
Gaussian PDF)

Logarithmic
transformation

Quadratic
transformation

none none

Parameters constrained none none none 8, 13, 18:
constrained be-
tween 0 and 2

none

Parameters with a penalty term added none none none none 18: penalty
term added
when negative

Abbreviation PTG PTL PTQ CONS PEN

Minimisation of the cost function is achieved via a
gradient-based algorithm updating an approximation of the
Hessian through the Broyden–Fletcher–Goldfarb–Shannon
formula (Fletcher and Powell, 1963; Press et al., 1996), a
quasi-Newton method.

2.4 Experiments

We performed a total of five experiments investigating the
impact of the three parameter space restriction methods on
the results of the optimisation. Table 1 provides an overview
of the experiments and how they differ.

Previous experiments with this reduced version of CCDAS
using no parameter transformations indicated threeβ param-
eters (8, 13, 18) that were either negative or extremely high,
so in this paper, unless otherwise stated, they have all been
limited between 0 and 2 using a double-bounded log transfor-
mation. The rest of theβ parameters have been left untrans-
formed (i.e. assumed Gaussian), as they did not require any
bounding since their posterior values already lay between 0
and 2.

To explore the effect that parameter transformations have
in the model, theQ10,f parameter’s treatment was varied be-
tween Gaussian, log and quadratic, whilst keeping all but the
threeβ parameters’ (8, 13 and 18) treatments Gaussian. (Ex-
periments PTG, PTL and PTQ.)

For the default penalty term optimisation, we only added
a penalty term when theβ parameter for crops (parameter
18) became negative. In Eq. (9), we choseD18 = 104 as the
penalty factor, since this is on the same order of magnitude as

the cost function minimum from previous experiments, and
µ18 = 4 for the sensitivity value, as it has to be positive but
we do not use 2 since we use the second derivative to cal-
culate posterior uncertainties. The other twoβ parameters (8
and 13) were still transformed using the double-bounded log
transformation. (Experiment PEN.)

In the default constrained optimisation, the threeβ param-
eters (8, 13 and 18) were restricted between 0 and 2 by the
hard limits imposed by the constrained optimiser. (Experi-
ment CONS.)

For each of the experiments above, four extra optimisa-
tions (building together an ensemble of five optimisations)
were performed with the default prior parameter values ran-
domly perturbed by up to 10 %. This ensures that if most of
the optimisations converge to the same minimum we have
found a robust solution.

3 Results and discussion

We present the results of the different experiments, with a
focus on the parameter transformations, as these are the ex-
periments that successfully located a minimum within the
physical parameter space. The other two methods were not
successful and so are of limited use. We commence with the
constrained optimisation (CONS), then briefly discuss the
penalty term experiment (PEN) and finish with the results
from the parameter transformations (PTG, PTL, PTQ). An
overview of the optimisation results is presented in Table 2.

Geosci. Model Dev., 7, 1609–1619, 2014 www.geosci-model-dev.net/7/1609/2014/
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Table 2.Values of the cost function, the contributions from data and parameters, the gradient, the number of iterations to achieve convergence
and how many optimisations from the ensemble of five converged to this value for the different parameter transformations ofQ10,f and the
constrained and penalty term experiments.

Parameter Treatment Used forQ10,f Constrained Penalty term
Gaussian Log Quadratic

Optimised cost function value 9666.8 9667.0 9666.9 9613.6 9639.0
Data contribution 9584.3 9584.3 9584.3 9552.8 9571.0
Parameter contribution 82.5 82.7 82.6 60.8 67.1
Final gradient value 2.3× 10−3 1.6× 10−4 1.2× 10−3 49.8 5.2× 102

Number of iterations 224 319 365 5000 154
Range of number of iterations 174–876 319–595 232–478 10–5000 154–208
Number of optimisations that successfully converged 4 4 4 0 0

CONS: Here, for the default prior parameter values, the
optimisation did not converge and reached the preset maxi-
mum number of iterations (5000). We did not continue this
optimisation as the number of iterations was already about 10
times more than the average number of iterations for the pa-
rameter transformation experiments. At this point there had
been a significant reduction in the cost function by around
a factor of 550 but the bounded parameters (8, 13, 18) were
exactly at their bounds of 0 or 2, which at least in the case
of 0 for a beta parameter does not make sense. Furthermore,
there was not a near-zero gradient. The other four ensemble
members terminated after fewer iterations (10–382), without
finding a minimum because of internal numerical problems
within the optimiser. There was some reduction in the cost
function by between a factor of around 20 and 400 but there
was still a very large gradient of at least 4000 and all of these
four ensembles had negative values for the soil moisture de-
pendence parameter,κ.

Since this method of limiting the parameter space was un-
successful for this problem, uncertainties have not been cal-
culated.

PEN: All of the five optimisations converged and found a
minimum in a mathematical sense (zero or at least close to
zero gradient). However, they did not achieve the parame-
ter bounding, as the limitedβ parameter (parameter 18) was
slightly negative (−0.024), contributing a penalty term of 0.8
to the cost function. As the penalty was non-zero, the experi-
ment was not successful in our aim of limiting the parameter.
The optimisation is able to offset this small negative penalty
contribution by achieving a smaller input to the cost function
from the data and the parameters. We performed further ex-
periments adding a penalty to parameter 8 as well, with no
successful bounding of these parameters. We also increased
the penalty term by a factor of 100 but still theβ parame-
ter was slightly negative. Again, uncertainties have not been
calculated due to the unsuccessful optimisation of the param-
eters to physically meaningful values.

PTG, PTL, PTQ: Using the parameter transformations we
were able to successfully limit the parameter space. In this
case, the transformation ofQ10,f did not seem to have an ef-
fect on the final value of the cost function. Of the 15 (3× 5)
optimisations, 12 converged to the same minimum in the
cost function ofJ = 9667 (reduced from an initial value of
5 294 051 when using the prior parameter values) and took
between 174 and 876 iterations. The other three (one from
each of the Gaussian, log and quadratic) converged to a dif-
ferent value of 9515, but were outside of the physical param-
eter space since another of theβ parameters (parameter 9)
was negative (−0.057), and are therefore not relevant. Hav-
ing been reduced from over 107 to 10−3, the gradient of the
minimum in the cost function can be considered to be suf-
ficiently small to indicate that a minimum has been located
for all three parameter transformation experiments. We cal-
culate posterior parameter uncertainties and also propagate
these uncertainties onto the net carbon flux using a linearisa-
tion of the model (Kaminski et al., 2003).

Prior and optimised parameter values for all the parame-
ter transformation experiments are shown in Table 3. Also
shown are prior and posterior uncertainties and percentage
reduction in uncertainty. The threeβ parameters that were
double bounded show their upper and lower percentiles,
equivalent to one standard deviation. The global parameters
behave in a consistent way to previous studies (Ziehn et al.,
2011a). The temperature dependence parameter of the fast
carbon pool,Q10,f, is somewhat reduced to 1.07 compared
to its initial value of 1.5, although this change is within the
range of the prior parameter uncertainty. The temperature de-
pendence parameter of the slow pool,Q10,s is increased from
its initial value of 1.5 to 1.82, which again lies within the one
sigma range of the parameter’s prior uncertainty. The two
Q10 parameters’ posterior uncertainties are lowered by more
than one order of magnitude, which confirms the result of
Scholze et al. (2007) that atmospheric CO2 data constrain
the parameters of soil respiration relatively well.
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Table 3.Controlling parameters and their initial and optimised values for each experiment, and parameters’ initial and posterior uncertainty
(equivalent to one standard deviation) and percentage reduction in uncertainty (relative to the upper standard deviation) after the optimisation
for the parameter transformation experiments. For the threeβ parameters that were transformed using the double-bounded log transformation,
upper and lower percentiles, equivalent to one standard deviation, are shown.

Parameter Initial Initial Optimised Percentage reduction
value

Optimised value
uncertainty uncertainty in uncertainty

CONS PEN PTG PTL PTQ

1 Q10,f 1.5 1.071 1.068 1.069 1.069 1.069 0.75 0.016 97.899
2 Q10,s 1.5 1.81 1.811 1.817 1.816 1.816 0.75 0.019 97.492
3 τf 1.5 3.456 3.417 3.435 3.436 3.435 3.0 0.12 95.993
4 κ 1 0.574 0.574 0.571 0.571 0.571 9.0 0.011 99.877
5 fs 0.2 0.734 0.735 0.735 0.735 0.735 0.2 0.004 98.073
6 β (TrEv) 1 0.803 0.807 0.796 0.796 0.796 0.25 0.017 93.387
7 β (TrDec) 1 0.889 0.896 0.926 0.926 0.926 0.25 0.043 82.999
8 β (TmpEv) 1 0 0.284 0.29 0.29 0.29 0.25 0.071/0.089 37.231
9 β (TmpDec) 1 0.075 0.101 0.037 0.037 0.037 0.25 0.05 79.889
10β (EvCn) 1 1.274 1.278 1.272 1.272 1.272 0.25 0.023 90.774
11β (DecCn) 1 0.36 0.398 0.325 0.325 0.325 0.25 0.121 51.785
12β (EvShr) 1 0.151 0.171 0.196 0.196 0.196 0.25 0.095 61.899
13β (DecShr) 1 2 1.912 1.913 1.913 1.913 0.25 0.024/0.019 48.949
14β (C3Gr) 1 1.508 1.509 1.485 1.485 1.485 0.25 0.029 88.468
15β (C4Gr) 1 1.138 1.131 1.129 1.129 1.129 0.25 0.024 90.508
16β (Tund) 1 0.866 0.866 0.876 0.876 0.876 0.25 0.05 79.816
17β (Wetl) 1 2.241 2.165 2.211 2.211 2.211 0.25 0.238 4.9
18β (Crop) 1 0 −0.024 0.066 0.066 0.066 0.25 0.013/0.017 54.095
19 offset 338 336.423 336.421 336.421 336.421 336.421 1.0 0.049 95.099

The fast pool turnover timeτf is also within the prior un-
certainty range of one standard deviation, increasing from
1.5 to 3.46, as is the soil moisture dependence parameter,
κ, which is reduced from 1 to 0.57. The small posterior un-
certainty of this parameter indicates that it is also well con-
strained by the data. The optimised parameter value of the
fractionfs, however, is outside of the prior uncertainty range,
increasing from 0.2 to 0.74. It behaves similarly to previous
studies (Ziehn et al., 2011a). Again, the posterior uncertainty
is very small. Lastly, the offset parameter also behaves in
a consistent way to Ziehn et al. (2011a). The posterior un-
certainties for all the global parameters are reduced by over
95 % compared to their prior uncertainty. This is due in part
to the fact that the global atmospheric CO2 network strongly
observes those parameters that act globally at all subgrid
cells and is further explained by the fact that moderately large
prior parameter uncertainty values are used.

For the PFT-dependentβ parameters, the uncertainty re-
duction varies between 5 and 90 % and so is clearly less than
for the global parameters. This is partly due to theβ param-
eter being differentiated by PFT, which means each PFT is
less well observed by the atmospheric network.

The cost function reduction of all of the five experiments
is shown in Fig. 2 up to the first 400 iterations on a log
scale. By 400 iterations, all of the parameter transformations
(PTG, PTL, PTQ) and the penalty term optimisation (PEN)

Figure 2. Cost function value for all five experiments in log scale
for the first 400 iterations and cost function value for constrained
optimisation from 400 to 5000 in linear scale (dark blue: Gaussian,
green: log, red: quadratic, light blue: constrained, pink: penalty).
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Figure 3. Gradient value for all five experiments in log scale up to
400 iterations (dark blue: Gaussian, green: log, red: quadratic, light
blue: constrained, pink: penalty).

had converged, but the constrained optimisation (CONS) had
not. The rest of the constrained optimisation’s performance
is shown inset in Fig. 2 on a linear scale. The majority of the
cost function reduction (around two orders of magnitude) is
within the first 30 iterations. After this, convergence is slower
but the optimisation continues until a near-zero gradient is
achieved, which indicates that we have found a minimum.
Only at the minimum can the inverse of the Hessian be used
to estimate the posterior parameter uncertainty.

The gradient value for all five optimisations is shown in
Fig. 3, again up to 400 iterations, where we can see that the
parameter transformations and the penalty term experiments
have converged. The constrained optimisation has not been
included up to its full 5000 iterations; it continues in much
the same way after this and does not achieve a near-zero gra-
dient. The different methods and the minimisations from dif-
ferent starting points converge differently as they are solv-
ing different problems. Each change in the formulation of
the cost function results in a different optimisation problem.
When an optimisation starts at a different point in the param-
eter space, it follows a different trajectory to find a minimum.

Figure 4 shows a time series of our target output quan-
tity of global mean NEP, along with uncertainties. We calcu-
lated the values for all three of the parameter transformation
experiments but as they are all within the same numerical
limits only the Gaussian case has been shown. The global
mean NEP time series and their uncertainties resemble that
of Ziehn et al. (2011b). This is because we are using exactly
the same set-up with identical forcing and assimilation data.
We also calculated NEP using the parameter values obtained
from the constrained and the penalty experiments. Each year,
NEP from these two cases does not differ much from the
parameter transformations (between 2 and 4 %), so we have
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Figure 4. Time series of annual global mean net ecosystem produc-
tivity (NEP) with posterior uncertainty.

not added this to Fig. 4. The resulting NEP fields look very
similar to each other as do the posterior parameter values,
but since each of the constrained and penalty experiments
yielded at least one unphysical value, we shall not consider
these any further. The effect of these unphysical parameters
does not show up in aggregated quantities such as annual
global values or even annual grid cell values since the NEP
of a grid cell is also the sum of the NEP of the individual
PFTs within that grid cell.

We also show the covariance between the flux uncertain-
ties, which, as in Ziehn et al. (2011b), we express using the
uncertainty correlation matrix of diagnostics,Rd, defined as
follows:

Rd
i,j

=
Cd

i,j

σiσj

, (16)

whereCi,j

d is elementi,j of the error covariance matrix of
global net CO2 exchange flux (NEP) per year andσi the pos-
terior uncertainty of parameteri obtained from the diago-
nal elementCi,i

d of the matrix Cd. For mean global NEP
for the Gaussian case this uncertainty correlation matrix is
shown in Fig. 5. There are a large number of negative correla-
tions, which is the reason for a relatively small overall uncer-
tainty for the global mean NEP over the whole period 1979
to 2003. However, the uncertainty for the global mean NEP
for a single year (as shown in Fig. 4) is substantially larger.
It is worthwhile to note that, between the different parame-
ter transformations, there is no difference in the uncertainty
correlation matrix and thus also in the posterior parameter
covariances.

It seems, in general, that a lower cost function value can be
achieved when the optimiser is allowed to search the whole
space. For example, in one of each of the parameter trans-
formation experiments the cost function at the minimum was
9515 but one of theβ parameters (parameter 9) was negative
(−0.057). It is possible that the global minimum is within the
non-physical space because the model is highly non-linear
with a complex, 19-dimensional parameter space and, from
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Figure 5. Uncertainty correlation matrix of global mean NEP.

a purely mathematical point of view, a smaller minimum can
be found outside the physically meaningful parameter space.
However, this does not constitute a solution for our optimi-
sation problem. Another possible reason for finding a mini-
mum outside the physically valid parameter space is that the
model, as it stands, is missing or does not fully describe a
relevant process and therefore the optimisation has to com-
pensate for this missing process by choosing non-physical
parameter values. The analysis of such non-physical param-
eter values can provide useful information for further model
development. However, this is not always feasible and there-
fore limiting the parameter space with parameter transforma-
tions seems to be the most effective way to ensure physically
meaningful parameter values.

4 Conclusions

We systematically investigated the effects of different meth-
ods of limiting the parameter space, which is an emerging
issue in parameter optimisation studies. In our simplified set-
up of CCDAS, we saw that two of the methods were not
successful; both the constrained and the penalty term opti-
misation had values outside of the physically meaningful pa-
rameter space and, in fact, the former did not converge to
a minimum at all. Parameter transformations however, were
successful in locating an optimal solution within the limits.
All of the physically meaningful ensembles converged to the
same minimum, so we can be confident that this is the global
minimum. We tested two parameter transformations against
standard scaling and found that these three experiments all
reached the same minimum, indicating that the transforma-
tion does not alter the optimisation problem. This is in con-
trast to the study of Koffi et al. (2012). However, we note
that Koffi et al. used a more complex system that involved
57 parameters compared to our 19. Furthermore, in Koffi et

al. (2012), the optimisations do not converge to a minimum
and have been stopped after a certain reduction in the cost
function value, without obtaining a near-zero gradient. In our
experiments, for this paper, all the optimisations with param-
eter transformations have converged to a minimum with a
final gradient approaching zero. A future experiment of inter-
est may involve systematically investigating parameter trans-
formations within the fully complex model.

In our experience, we would therefore recommend the
parameter transformations as the most suitable solution to
the problem of limiting parameter spaces. As the parame-
ter transformations are applied outside of the optimisation
routine this would be a good general method for any prob-
lem involving restricted parameter sets. As for CCDAS, the
quadratic transformation is slightly preferred to the log as it
may have a lower range for the number of iterations required
to achieve convergence.

Code availability

To obtain the code, please contact M. Scholze
(marko.scholze@nateko.lu.se).
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