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Abstract. This paper investigates the development of example, has been analysed extensivelyGmaham et al.
a model, called CranSLIK, to predict the transport and trans-{2011), members of the US National Commission on the BP
formations of a point mass oil spill via a stochastic approach.Deepwater Horizon Oil Spill and Offshore Drilling. There
Initially the various effects on destination are considered ands therefore much interest in being able to accurately predict
key parameters are chosen which are expected to dominatée destination, transport and transformation of an oil spill to
the displacement. The variables considered are: wind velocminimise the resultant cost, both financial and environmen-
ity, surface water velocity, spill size, and spill age. For a pointtal.
mass oil spill, it is found that the centre of mass can be de- There are many complex phenomena affecting an oil
termined by the wind and current data only, and the spillspill, creating an advection—diffusion—transformation pro-
size and age can then be used to reconstruct the surface oéss. These consist of a large number of effects: the ad-
the spill. These variables are sampled and simulations argection due to currents, wind and waves, the diffusion due
performed using an open-source Lagrangian approach-based the turbulence and the transformation processes, such as
code, MEDSLIK II. Regression modelling is applied to cre- evaporation, natural dispersion, spreading etc., which need
ate two sets of polynomials: one for the centre of mass, ando be considered for accurate fate and transport prediction.
one for the spill size. Simulations performed for a real oil A schematic illustration of these effects can be seen inFig.
spill case show that a minimum of approximately 80% of (MEDESS-4M$2013 ITOPF, 2013. Also, as the spill ages,
the oil is captured by CranSLIK. Finally, Monte Carlo simu- different effects become more important — a speculative mass
lation is implemented to allow for consideration of the most balance can be seen in FRy(Mackay and McAuliffe 1989.
likely destination for the oil spill, when the distributions for There are numerous equations created to model these effects,
the oceanographic conditions are known. based on both analytical and empirical approaches. However,
the complexity of the underlying physics is not yet fully un-
derstoodReed et al(1999 provide a very good summary of
early models. Since then significant progress has been made
1 Introduction in acquiring a deeper understanding of the involved complex
phenomena — for example biodegradation is studieby
Whilst the frequency of spills occurring has dropped signif- Genity et al(2012.
icantly in the last few decadeg&kin, 2003, it does not di- Difficulty also arises as the result of uncertainty since ex-
minish the inevitability of an oil spill occurring. Oil spills  act quantities are not necessarily known beforehand due to
can cause large-scale destruction of the environment, theyhe stochastic nature of certain variables, for example the sea
have significant economical effects, and can result in humaryrface velocity. The computational cost involved in running

nomic and human disaster. The Deepwater Horizon spill, for
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Figure 1. Weathering process, froffOPF(2013.
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il
Many models have been developed and used to predict th BEACHED [
transport and transformation of an oil spill. These are eithel inigmn
commercial, such aki et al. (2013, or open-source, such DISPERSED DISPERSED__DISPERSED,
asDe Dominicis et al(20133. Regardless of the software Il &
tools employed, these models are not without their limita-| water < @
tions. Often the computational cost involved in running a full coLmn e
simulation is too high. Alternatively, in order to be able to %
have a prediction in near real time, the model has to be sim| so1Youm
plified extensively, in terms of its physics, and therefore the| SECENTS SUNKEN O
simulation results are not of high accuracy. TIME ZERO 0.1 DAY  1DAY  10DAYS 100 DAYS 1000 DAYS
One such code is MEDSLIK 1I. This solves the advection—
diffusion processes using a Lagrangian particle formalism,Figure 2. Speculative mass balance, frdvtackay and McAuliffe
meaning that the oil slick is broken into a number of con- (198
stituent particles, while the transformation processes act on
the entire oil slick surface. It has been shown to provide ac-
curate results in a number of real scenaribe Qominicis  Of the prediction over a 36 h period. The accuracy was found
et al, 20133 Coppini et al, 2011). Results are produced rea- to be in good agreement with the observed resis Do-
sonably quickly which is desirable since many simulationsminicis et al, 20133. This model has also been validated for
are necessary to apply the regression model. the Lebanon crisis where the predicted oil slick at sea and
There are four main inputs required: oil spill data, wind coastal deposits were in agreement with observatiGop{
field, sea surface temperature, and structure of sea currentgini et al, 2011).
The frequency of the oceanographic data is an important fac- Additional details regarding the development and valida-
tor since these can change dramatically in a relatively shortion of MEDSLIK Il can be seen irDe Dominicis et al.
period of time. MEDSLIK Il applies a linear interpolation (2013ab).
in time between two subsequent current and wind fields to
calculate the current and wind at the model time step. 1.2 Aims
The test case included with the program is for an oil spill
in Algeria. This consisted of 680 tonnes of crude oil being This paper investigates the use of stochastic methods to map
spilled and validation was carried out to check the accuracythe response from different input variables to create a robust
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and efficient software tool capable of effective prediction. Pinardi et al.(2003 and Pinardi and Coppin{2010. The
This provides an estimation of the destination and spreadiFS system is composed of an Ocean General Circulation
of an oil spill subject to uncertain oceanographic conditions.Model (OGCM) at 6.5 km horizontal resolution and 72 ver-
Also the minimal computational time required for the devel- tical levels {Tonani et al. 2008 Oddo et al. 2009. Every
oped model allows for Monte Carlo simulation using non- day MFS produces forecasts of temperature, salinity, inten-
deterministic values for current and wind velocities. This cansity and direction of currents for the next 10 days. Once
then be used to calculate a region such that there is a high week, an assimilation scheme, as describeB®adbricic
probability that said region will contain the oil spill. This aids and Pinardi(2008, corrects the model’s initial guess with
significantly in reducing the resultant financial and environ- all the available in situ and satellite observations, produc-
mental cost of oil spills, predicting their likely development. ing analyses that are initial conditions for 10-day ocean cur-

Wind and current velocities are both continuous variables rent forecasts. The modelled currents and wind fields can be
and as such, it is impossible to investigate all possible val-affected by uncertainties that arise from model initial con-
ues. Therefore, it is necessary to sample these variables. Thditions, boundaries, forcing fields, parameterisations, etc. In
involves creating a discrete set of values which is representhis paper the hourly mean analyses have been used to elim-
tative of the continuous variable. The sampled values thennate the additional uncertainty connected with forecasts for
create the set of necessary simulations called a design hypeboth atmospheric and oceanographic input data.

cube Myers et al, 2009. Whilst many of these parameters may be measurable at
The key steps in developing our methodology can be outthe initial time, prediction of the oil spill destination requires
lined as follows: reasonable estimation of the conditions over the simulation

period. There are numerous methods for circumventing this
problem; usually the stochastic parameters are extrapolated
from previous values — however, this can frequently cause

2. sample the considered parameters to create a design h{f0Ss errors. This hinders the accuracy of real time predic-

percube; tion. . - .
In this problem, it is necessary to apply sampling to ensure

3. generate simulation data using the design hypercube; that the considered points are representative of the domain.
This problem cannot be approached deterministically due to

4. fit regression models to map the inputs to the r€SPONSEihe continuous nature of the parameters making the consider-

5. use the aforementioned regression model to create a preition of every possible quantity unfeasible. There are numer-
diction code; ous methods of sampling available. Monte Carlo simulation

is the simplest. However, the associated high computational

6. test the developed code against a real scenario and anatost is a constraint in the context of the model development.
yse the results. Another alternative could be importance sampling, which

In order to generate simulation data, we have used the MED‘-”ldOptS a Monte Carlo style simulation, but biases the out-

) : put to favour areas of greater interest, for example the tails of
SLIK Il model. Th.|s choice was.based on a number of rea the distribution. This, however, is also inappropriate since the
sons, but predominantly due to its robustness and because 1t ;.= "~ . " LT ] .
. . : . .~~~ entire distribution is of interest, and it is still relatively expen-

has been validated on multiple real spills as discuss&kin

Dominicis et al(2013a b) sive. Insteaq, a Lat_in hypercube (LI_—IC) method will be used,

' ’ where the distribution is separated into blocks of equal prob-
ability and then a random value is chosen from each block.
2 Uncertainties and stochastic modelling This has the advantage of requiring a smaller amount of nec-

essary simulations to create a good design and hence is rela-

Another complexity in modelling arises from the uncertainty tively inexpensive. The main disadvantage is that it does not
involved in prediction of oceanographic conditions and spill necessarily guarantee a well-stratified desilglydrs et al,
parameters. Many parameters, which are known to have ag009.
important role in the destination of an oil spill, are stochastic A simple third-order polynomial regression model is used
in nature and therefore difficult to accurately predict. to map the responses. It was found that lower-order models

Wind forcing, i.e. the wind velocity components at 10 m are too sensitive to the fluctuating component present in the
above the sea surface, is provided by meteorological modsimulation data. This is the same reason which prevents the
els, while currents and temperature are provided by oceanadse of radius basis functions in place of a polynomial.
graphic models. The atmospheric forcing is provided by It is also possible that the input variables will possess
the European Centre for Medium-Range Weather Forecastsross-correlation. Therefore mixed variable terms,xzep,
(ECMWEF), with 025° space, and 6-hour temporal resolu- have to be included in the model.
tion. The current velocities used in this work come from
the Mediterranean Forecasting System (MFS) described in

1. identify the key parameters and their relative distribu-
tions necessary for short-term oil spill prediction;

www.geosci-model-dev.net/7/1507/2014/ Geosci. Model Dev., 7, 19646 2014
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3 Methodology Table 1.Sampled values for centre of mass prediction.

As previously stated, the underlying physics of an oil spill is Wind m"i‘gn't”de _C“"e”} magnitude  Angle

very complex. Existing solvers require resolving many of the (inms™) (inms™) (in radians)

underlying phenomena. To perform direct simulations of all 0 0 0

possible conditions would be far too computationally expen- 2.0887 0.0505 /4

sive. For example, MEDSLIK Il requires several minutes per 5.7691 0.1497 /2

run; 1000 runs using different input parameters would there- 6.1600 0.2488 B/4

fore require many hours. Our approach avoids this problem 7.7913 0.3480 7w

by creating a polynomial which maps inputs to a response 10.1252 0.4472 -
15.2786 0.5464 -

resulting in 1000 runs being possible in approximately 1 sec-
ond. This allows for consideration of likely destinations of
the oil spill using non-deterministic inputs. Note that the phe-
nomena which can be accounted for in CranSLIK are |im_WiShed to consider a value outside of the Samp|9d range, ad-
ited to the phenomena modelled by MedSLIK II. The paperditional simulations would have to be performed.
uses a non-intrusive method, whereby the regression mode|
is developed using the results from the solver, and does not:
require being pr_ogrammed into the sqlver_lts_el_f. There %o develop the model, it is necessary to sample the chosen
numerous benefits of this approach. Primarily it is performed_ _ . o o

S . variables. In statistics and quantitative research methodol-
to simplify the problem. However, it also means that the de-

cloped methodoloay can easily be aoplied to data from an ogy, a data sample is a set of data collected and/or selected
\s/ouch):e ay 1y ppll ¥rom a statistical population by a defined procedure. This has

been done using the LHC technique, which involves splitting
the distribution into blocks of equal probability, then a ran-
3.1 Choice of variables dom value is chosen from each block. A brief experiment
was conducted and it was determined that a minimum of six

Three variables have been chosen: wind velocity, current veS@mples are required to capture a reasonably complex shape,
locity and spill size. the Weibull distribution. Note that it is not possible to predict

It is necessary to express each variable as a distributiorfhe shape of the resultant graph beforehand. However, it is
Spill size will simply be assumed uniform and various sizesXpected to be more simple than the test shape. A zero point
tested. However, velocities need to be separated into twdas also been considered for investigation of simulation noise
components: speed and angle. generated by MEDSLIK Il. The variables have also been de-

The angle can then be simplified by treating the current an£oupled by consideration of a point mass oil spill subject to
gle as an axis and only looking at the wind angle with respecloceanographic conditions. The result was that the destination
to this axis. Also, symmetry can be applied, meaning that itcan be determined by the current and wind velocities. It was
is only necessary to consider angles between Orgrgince also found that the size of the spill depends on the initial spill
other angles are a reflection in the current axis. A uniformSize€ as well as the spill age, that is time since initial spill.
distribution can then be assumed for this variable. The sampled values for wind and current velocities, and

The distribution for wind speed is widely accepted to the angles, can be seen in TafhleNote that to simplify the
be reasonably well represented by a Weibull distributioneduired number of simulations, the developed model will
with shape and scale parameterg®and 902 respectively ~ displace the spill depending on the angle between the cur-
(de Prada Gil et al2012). Morgan et al(2011) suggest that  rent and wind velocities, with the current velocity treated as
a log-normal distribution is better for extreme wind speeds.an axis, and then translated to meaningful coordinates. Data
We are not looking at extreme speeds though, so the Weibulnave been generated from the stated input values for a simu-
distribution is sufficient. It is somewhat more complicated to lation time of 36 h.
find a distribution for the current speed as this varies over the .
globe. Since the pattern is almost entirely that of Wind-driven?"3 Response mapping

circulation, it is likely the same underlying distribution with In order to map the responses, a third-order polynomial
varying coefficients based on location. Here, the current Ve'approximation was calculated L;sing the method of least
Ioci.ty forthe Fest case has peen analysed a.m.d a Weibull diStri'squares. It has been found that the zero-point fluctuations
bution superimposed, leading to the' coefﬂmen%ﬁ? and from the random walk procedure appear to skew the results
0.2132 for shape and scale respectively. The maximum Veaisproportionally with lower-order models.
locity is limited by the highest sampled value. Performing

the prediction for a value outside the sampled range is not

recommended due to extrapolation errors. Therefore, if one

2 Sampling the variables

Geosci. Model Dev., 7, 1507516 2014 www.geosci-model-dev.net/7/1507/2014/
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Figure 3. Flowchart of the developed model.

For the spill size, a slightly different approach was taken,

where the developed equation comes from g(0), i.e. ara-

3.4

1511

Developed methodology

Once the polynomials have been created, it is necessary
to outline the developed methodology for prediction of an
oil spill, using the calculated coefficients. The flow chart
of the developed model can be seen in RAgThe actual
code has been written in the commercial software package
MATLAB ® (2011 and the statistics toolbox is used for the
Monte Carlo simulation to generate the random numbers.
An overview of the methodology is as follows:

dial function is developed, as opposed to a Cartesian. This
assists in ensuring a periodic, or near-periodic model. Note

that both a polynomial and sinusoidal functions were inves-

tigated and the polynomial appears to produce less skewed

results in the central region and hence the polynomial func-

tion was chosen. But as outer rings are of greater interest,

either choice could be acceptable.

Seven values have been sampled for the wind and current
magnitudes, however only five angles have been considered.
This is because the angle refers to the angle between the wind
and current velocities, and since the current velocity is used
as an axis, symmetry can be applied to reduce the number of c55e study
necessary values in this parameter. Therefore five values over

a semi-circle are chosen, which corresponds to eight valuefn order to validate CranSLIK, it is necessary to investigate

over a circle.

Interpretation of oceanographic datdhe key parame-
ters in the prediction are the wind and current velocities.
MEDSLIK Il produces column-structured data for these
from the raw NetCDF files. The prediction code is capa-
ble of reading these and converting them to block struc-
ture and converting from latitude and longitude to me-
tres. A modified version of this code has also been writ-
ten for the purposes of Monte Carlo simulation, where
the user inputs a desired wind and current velocity di-
rectly.

Centre of massTo investigate the behaviour of the
centre of mass, the wind, current and angle variables
have been considered. A polynomial has been devel-
oped which links these variables to predict displacement
in thex andy planes. The oceanic data are interpolated
to find the parameters at the spill location and these are
fed into the regression model to predict a new centre.
Since the current direction is treated as an axis, the dis-
placement with respect to this is first calculated, and
then translated into more meaningful coordinates.

Reconstruction of surfac&low the centre of mass has
been predicted, the surface reconstruction of the oil spill
can be considered. Since this is not linked to the destina-
tion of the centre of mass, the rings are created around
the origin and then displaced by the calculated displace-
ment of the centre of mass. If desired, a contour can then
be fitted according to these concentration rings. These
are fourth-order polynomials and require the initial spill
size (tonnes) and the spill age (hours).

Set values for next iteratiofror the next time step, it is
necessary to set the new centre of mass for the oil spill.
At this stage, the centre of mass can be corrected based
on observation to produce more accurate results.

www.geosci-model-dev.net/7/1507/2014/

its performance when applied to oceanographic conditions.
The accuracy of CranSLIK is evaluated by the volume of oil
captured, where this is calculated as the volume of oil ex-
plained by the model, divided by the total oil volume. Note
that the model has been verified against the sampled points

Geosci. Model Dev., 7, 19064§ 2014
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1.005

and that over 99.5% of the oil was captured for each cast ]
after 1 h of simulation. It was also found that the prediction

becomes less accurate for extended periods. The wind ang
current velocities were both found to produce near-linear dis-% 0.99
placement with respect to time, when considered individu-z
ally. The developed model works by hourly prediction which §
causes cumulative errors in extended simulation. Hindcas§ os
modelling, updating the centre of mass every hour, is there% 0.975
fore recommended to minimise error. The spill size predic- &
tion remains very accurate, above 99 %, over a 36 h perioc

suggesting that hindcast modelling is not required to be ap- o965
plied to this part of the code.

0.995

0.985
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P
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4.1 Algeria test case Time (hours)

Figure 6. Proportion of oil captured by the spill size prediction only,
The case considered uses the oceanographic data for the Ay the Algeria scenario.
geria spill on 6 August 2008 and a point mass oil spill is
released from latitude 38.24@nd longitude 5.981 Current
velocities were updated every hour and wind velocities every Figure 5 shows the displacement error of the centre of
6 h. It is found that the proportion of oil captured becomesmass, when this value is updated at different intervals. It is
poor when a full 36 h prediction is performed — the accuracyclear that the error is far smaller when the simulation is only
rapidly drops after the 4 h mark as shown in FigHowever,  predicting for an hour and then updating.
under the application of hindcast modelling, where the cen- With regard to the spill size only, the accuracy appears to
tre of mass is updated every hour based on model data, thiee very good, as seen in Figj. Compared to the accuracy of
minimum accuracy is greatly improved. This is likely due to the centre of mass prediction, this appears to be far more ac-
cumulative errors during prediction. These errors could becurate, suggesting that the weakest component of this model
present in the developed model. However, since the modeis the centre of mass prediction; however, the overall accu-
has been verified, it may be an error due to the oceanographi@acy appears to be reasonably good — a minimum of 80 %
data. The model assumes that the oceanographic conditionshen hourly prediction is used as seen in FgThis also
at the start of the simulation period are representative of thgustifies the decoupling of variables.
conditions over the period. This however is not necessarily The supplementary animation shows the predicted oil spill
true and therefore the prediction is less accurate when thesgplack rings) and the MEDSLIK Il result (background con-
conditions change greatly over the simulation period. It istour) for a 36 h simulation period for this test case. The centre
possible in this case to apply an interpolation since the quanef mass for the prediction is updated every hour. The lowest
tities for the next time step are known. However, this would proportion of oil captured is approximately 80 % with the av-
not be possible in a real scenario. erage being about 91 %.

Geosci. Model Dev., 7, 1507516 2014 www.geosci-model-dev.net/7/1507/2014/
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Table 2. Sensitivity of variables for the first hour of the Algeria 4.4 Discussion
scenario. Upper and lower ranges for 90 % accuracy are given.

Whilst CranSLIK appears to perform well for the tested sce-

Variable Lower limit  Upper limit  Observed narios, it is necessary to identify the assumptions made while
Wind magnitude 20423 93860 43454 modelling. Firstly, the displacement of thg centre of mass is
Current magnitude 0.0065 0.1130 0.0653 correlated to the wind and current velocities only, while the
Wind angle _25844 _0.2280 —1.5202 spill area is determined by the quantity of oil spilled and the
Current angle —1.7279 —0.6605 —1.4048 age. Although these variables are considered dominant, in a
Spill size 163.2 NA 680 fully robust model further simulations considering different

variables should be performed. This would lead to an even
more accurate prediction. However, it would require more
complicated approximations to account for these variables
4.2 Sensitivity analysis and their correlations. Additional variables could be included
to account for more complicated flow physics such as non-

It is also of interest to consider the sensitivity of CranSLIK radial oil spill expansion. Secondly, rather than the MEDS-
with respect to the different input parameters. This is sum-|K || which was employed, other oil spill prediction codes
marised in Table. and softwares may be used and compared to identify their

The most sensitive variables appear to be the current magperformance in aspects of accuracy and computational ef-
nitude and angle. This is expected since the displacement duert and at the same time highlight efficiency of the proposed
to current velocity is far greater than that due to the wind ve-non-intrusive methodology. Finally, only one particular type
locity, and since the majority of the oil is contained close to of oil spill has been considered: point-mass. Since the devel-
the centre, the dispersed elements do not skew the results Sigped model moves a centre of mass, and then reconstructs the
nificantly and hence there is some leeway with the spill size surface, it is possible to mark several centres of masses and
This was expected since the current is more displacing thapredict their destinations. The problem then becomes surface
the wind, and it was concluded the wind is less importantreconstruction which would require additional simulations.
when the sensitivity of variables was investigated in MEDS- As with any stochastic problem, additional simulations could
LIK Il ( De Dominicis et al.20133. lead to a better regression fit and hence better prediction.

4.3 Monte Carlo simulation
5 Conclusions

CranSLIK assumes that the wind and current data at the start
of the hour are representative of the full hour. This, however,This paper describes the development of CranSLIK, a model
is not necessarily true since oceanographic conditions mayor the prediction of the destination and spread of an oil spill
change. Therefore, more accurate prediction may be possibleia a stochastic approach. The key parameters were identi-
if an interpolation is applied to the data and expected fieldsfied as wind velocity, current velocity, spill size and time,
are created. However, this is not relevant for prediction ofand a design square was created for the required samples.
real-time oil spills. In such scenarios it may be of interest to The simulations were then performed using MEDSLIK I
generate an expected region for the oil spill. and regression modelling was applied to create two equa-

Due to the incredibly low computational cost required by tions: one to predict the centre of mass, and one to predict
CranSLIK, a Monte Carlo simulation can be performed in the spill size. The developed code has been presented and
a very low time frame, approximately 1000 simulations per discussed. It was then validated against a real test case. Fi-
second on an AMD Phenom Il X4 3.6 GHz processor. Thisnally, the efficiency of the model is exploited using Monte
can be used to generate an expected region for the oil spilCarlo simulation for the purposes of generating maximum
and aid in clean-up and recovery operations. likelihood regions. This has limited use when applied to the

For the Algeria test case, the Monte Carlo simulation wasAlgeria test case due to insufficient current and wind velocity
performed using input distributions developed from the avail-data to more accurately fit a distribution. Note that CranSLIK
able data. However, due to the 60 h period of data, there exis limited to the same physical phenomena which are mod-
ists a bimodal peak in the simulation results representativeslled by MEDSLIK II.
of the alternating current forcing as shown in FigThis be- The developed model appears to perform well when ap-
comes clearer when the simulation is performed using 10 00®lied to the Algeria test case considered, with a minimum
and 100 000 samples, as shown in Fjand9 respectively.  of 80% of the oil captured when using hourly prediction.
This result is not too helpful because of the bimodal peak.The major strength of the developed model is the efficiency
However, it does demonstrate the versatility and robustnesand the minimal time required to perform Monte Carlo sim-
of CranSLIK. If the distribution for a location is known, more ulation and generate maximum likelihood regions. However,
meaningful results can be produced. for this to provide useful results, it is necessary to have

www.geosci-model-dev.net/7/1507/2014/ Geosci. Model Dev., 7, 19646 2014
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Figure 7. Monte Carlo simulation of the Algeria test case contoured by cell frequency, 1000 iterations, 1 h simulation.
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Figure 8. Monte Carlo simulation of the Algeria test case contoured by cell frequency, 10 000 iterations, 1 h simulation.

a distribution or a reasonable estimate of expected oceand/hilst the key variables were considered, it has been identi-
graphic conditions. This paper serves as a demonstration dfed that consideration of additional variables could result in
an alternative method for fast prediction of the advection—improved accuracy.

diffusion—transformation of an oil spill. The assumptions

have been discussed and areas for further work highlighted.
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Figure 9. Monte Carlo simulation of the Algeria test case contoured by cell frequency, 100 000 iterations, 1 h simulation.
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