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Abstract. Climate change may alter the spatial distribution,
composition, structure and functions of plant communities.
Transitional zones between biomes, or ecotones, are partic-
ularly sensitive to climate change. Ecotones are usually het-
erogeneous with sparse trees. The dynamics of ecotones are
mainly determined by the growth and competition of indi-
vidual plants in the communities. Therefore it is necessary
to calculate the solar radiation absorbed by individual plants
in order to understand and predict their responses to climate
change. In this study, we developed an individual plant radia-
tion model, IPR (version 1.0), to calculate solar radiation ab-
sorbed by individual plants in sparse heterogeneous woody
plant communities. The model is developed based on geo-
metrical optical relationships assuming that crowns of woody
plants are rectangular boxes with uniform leaf area density.
The model calculates the fractions of sunlit and shaded leaf
classes and the solar radiation absorbed by each class, in-
cluding direct radiation from the sun, diffuse radiation from
the sky, and scattered radiation from the plant community.
The solar radiation received on the ground is also calculated.
We tested the model by comparing with the results of ran-
dom distribution of plants. The tests show that the model re-
sults are very close to the averages of the random distribu-
tions. This model is efficient in computation, and can be in-
cluded in vegetation models to simulate long-term transient
responses of plant communities to climate change. The code
and a user’s manual are provided as Supplement of the paper.

1 Introduction

Climate change is expected to alter the composition (species
types and their density), structure (heights, leaf area, crown
size, etc.) and spatial distribution (locations and extents) of
terrestrial ecosystems (Cramer et al., 2001), which directly
affect animals’ habitats and human applications of the lands,
and have strong feedbacks on the climate system (Fischlin
et al., 2007). Transitional zones between biomes, or eco-
tones, are particularly sensitive to climate change and could
provide early signs of climate change impacts (Fankhauser
et al., 2001). Transitional zones are usually heterogeneous
with sparse trees, such as the treeline between boreal forest
and Arctic tundra (the width of the treeline usually ranges
about 100 km; Timoney et al., 1992), parklands and savan-
nah. Field observations and remote-sensing data (aerial pho-
tos and satellite images) have detected increases in green-
ness (Xu et al., 2013) and changes in density and height of
trees and shrubs in the transitional zones between boreal for-
est and Arctic tundra (Gamache and Payette, 2004; Sturm
et al., 2001; Tape et al., 2006). Relative changes in height,
crown size, and the density of trees, shrubs and herbs usually
occur before major shifts in biomes as projected by some
vegetation models (e.g. Gamache and Payette, 2004; Tape
et al., 2007; Callaghan et al., 2005). Novel ecosystem types
could appear as well since individual species independently
adjust to climate forcing (Overpeck et al., 2003; Walker et
al., 2006). To understand and predict these transient changes,
it is essential to consider light competition among different
species in plant communities (the words “light” and “radi-
ation” are used interchangeably in this paper). In sparsely
vegetated regions, the solar radiation received on the ground
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is important as well for soil thermal and hydrological condi-
tions, especially for permafrost conditions in cold regions.

Different methods have been developed to calculate so-
lar radiation absorbed by plants. The major approaches in-
clude the one-big-leaf method (considering the whole canopy
as one layer, e.g. Sellers et al., 1992), the two-big-leaf
method (dividing the canopy into sunlit and shaded leaves,
e.g. Norman, 1980; Wang and Leuning, 1998), using Beer’s
law to estimate radiation distribution in canopies assuming
canopies are uniform turbid media (Monsi and Saeki, 1953),
and two-stream approximation considering scattering and ab-
sorption of down-welling and up-welling light in canopies
(Dickinson, 1983). All these approaches assume that the
canopy is a uniform layer covering the entire study area.
More detailed numerical canopy radiation models have been
developed for energy balance and for remote-sensing appli-
cations (e.g. Cescatti, 1997; Gastellu-Etchegorry et al., 2004;
Kobayashi and Iwabuchi, 2008; Li et al., 1995; Prince, 1987;
Myneni et al., 1995; Wang et al., 2007). However, these
models are time consuming in computation and usually do
not pay much attention to light competition among different
plant types.

In the past decade, several models have considered the
composition of different plant types in plant communities
and their competition for light and other resources (e.g. Foley
et al., 1996; Sitch et al., 2003; Zhang et al., 2002). For ex-
ample, Sitch et al. (2003) considered the light competition
among plant functional types based on the leaf area index
of individual plants and their density, but did not consider
the effects of plant heights on light competition. Foley et
al. (1996) assumed that trees are always higher than grasses
for light competition. Zhang et al. (2002) used a similar ap-
proach but considered three strata (upper storey, under storey,
and ground growth). Ryel et al. (1990) simulated light com-
petition in multi-species crop communities based on the fo-
liage composition of the species in each canopy layer. These
studies considered the vertical structure of the canopies but
assumed that the canopy layers/strata are uniform and cover
the entire study area continuously. Several studies developed
three-dimensional models to simulated radiation distribution
in sparsely distributed trees, mainly for fruit orchards (de
Castro and Fetcher, 1998; Oyarzun et al., 2007; West and
Welles, 1992; Baldocchi and Collineau, 1994). However, the
plant communities considered are usually composed of only
one type of tree. Therefore there is no light competition
among plant species or types. Song and Band (2004) de-
velop a model to simulate the spatial patterns of solar radia-
tion under a forest of discrete crowns. The approach could be
improved to calculate solar radiation received by individual
plants.

Another issue in vegetation models is their complexity
and applicability. Stand-based vegetation models estimate
the competition of vegetation types based on average indi-
vidual plants, and the canopy of each vegetation type is as-
sumed to be continuously distributed (e.g. Foley et al., 1996;

Sitch et al., 2003; Zhang et al., 2002). Such simplification
significantly reduces the requirement of input data and com-
putation cost, and the models can be used for large areas spa-
tially explicitly. On the other hand, individual-based vege-
tation models consider the competition of individual plants
(e.g. Sato et al., 2007). Explicit ray tracing methods can also
be used to calculate the light interception of individual plants
(e.g. Kobayashi and Iwabuchi, 2008). Such models are useful
for process understanding. However, their input data require-
ment and computation cost are high and it is difficult to cover
large areas at high spatial resolution with these models.

In this study, we develop an individual plant radiation
model, IPR (version 1.0), based on geometrical optical rela-
tionships. It is an efficient method to calculate the solar radia-
tion absorbed by average individual plants of different types
in sparse heterogeneous woody plant communities (i.e. the
canopy is discontinuous and composed of different species
or one species but of different ages). Solar radiation under
the woody plants is calculated as well. This model may be
useful to improve the accuracy of light competition among
different vegetation types in stand-based vegetation models.
In the paper, we first describe the assumptions and the algo-
rithms of the model. Then we test the model by comparing
with the results of the random approach and the two-big-leaf
method, and by sensitivity analysis. Some important features
and limitations of the model are highlighted in the discussion
section.

2 Methodology

2.1 The assumptions of the model

Natural plant communities, especially in northern high lati-
tudes, are usually composed of trees, shrubs, herbs, mosses
and lichens. To simplify the calculation, the IPR model was
developed based on the following seven assumptions for
plant communities and three assumptions for radiation con-
ditions: (1) the plant community may include woody plants
(trees and shrubs), herbs, and mosses/lichens in a large flat
area (the area is so large that the margin effects can be ig-
nored); (2) woody plants are higher than herbs, and herbs are
higher than mosses/lichens; (3) woody plants can be cate-
gorized into several strata based on their heights and crown
sizes, which can be different species or one species but of
different ages; (4) the plants of each woody stratum are dis-
tributed somewhat regularly (equivalent to the average of
random distributions), mixed with plants of other woody
strata and are trying to avoid overlapping with one another
(Ward et al., 1996); (5) the herb stratum is distributed uni-
formly, and is treated collectively without considering indi-
vidual plants; (6) mosses/lichens cover the entire ground or
cover part of the ground randomly; (7) the crowns of woody
plants are treated as rectangular boxes, and the leaf area den-
sity is distributed uniformly within a box; (8) the sky diffuse
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radiation is from the whole hemisphere and is in isotropic
distribution (Goudriaan, 1977); (9) scattered radiation gen-
erated from reflection and transmission in canopies is in all
directions, and the recollision probability remains constant in
successive scattering (Panferov et al., 2001; Smolander and
Stenberg, 2005); and (10) both the sky diffuse radiation and
the scattered radiation are uniformly distributed in a crown.

There are several reasons for the treatment of crowns as
somewhat regularly distributed but not exactly regular (as-
sumption 4). First, plants tend to be distributed somewhat
regularly because of the competition (Ward et al., 1996); sec-
ond, although plants of one stratum can be distributed regu-
larly based on geometry assuming equal spacing among near-
est plants (e.g. at centres and nodes of hexagons), it is diffi-
cult to distribute plants of two or more strata without overlap-
ping among plants of different strata; and third, the fractions
of sunlit leaf area can be different between the average of
random distribution and exact regular distribution. Crowns
of woody plants can be in different shapes depending on the
genetic features of the species and the environment. To sim-
plify the calculation, we treated crowns as rectangular boxes.
Oyarzun et al. (2007) also treated fruit-tree crowns as prisms
in orchards. However, their prism-shaped crowns are always
aligned with the rows of the plants in an orchard, while we
assumed that a crown looks like a rectangular box (or looks
like a rectangle with the same optical length) in all azimuth
directions and there is always a side facing the sun consider-
ing that crowns are usually symmetrical. Crowns, especially
when they are large and dense, usually have much less leaves
in the centre of the crown, thus the horizontal optical length
of the crown is not proportional to its geometric length. More
importantly, this simplified treatment of the crowns allows
quasi-analytical solutions and greatly improves the efficiency
and precision of the calculation.

Based on this rectangular box assumption, the leaf area
density of a crown can be expressed as

ρ = L0

/[
D2 (H − h)

]
, (1)

whereρ is the leaf area density of the crown (m2 leaf m−3

space) andL0 is the leaf area of the crown (m2 leaf plant−1),
expressed asL0 = LAI p · D2. The LAIp is the local leaf area
index of the individual crown, defined as the ratio between
the leaf area of the crown and the ground area directly pro-
jected under the crown (m2 leaf m−2 land).D is the width of
the crown (m),H andh are the heights (m) of the top and
bottom of the crown, respectively.

2.2 The algorithms of the model

Solar radiation absorbed by leaves includes direct solar ra-
diation (or solar beam), diffuse radiation from the sky (or
simply called diffuse radiation), and scattered radiation gen-
erated by reflection and transmission of direct and diffuse
radiation intercepted by leaves. Because the solar radiation

Figure 1. A general scheme and the related variables for intercep-
tion of a light beam by a small column of canopy.

intercepted by sunlit leaves is much higher than that of the
shaded leaves, an efficient way to up-scale photosynthesis
from leaves to canopy is to divide the canopy into sunlit and
shaded leaf classes (Norman, 1993). Therefore, we calcu-
lated the fractions of sunlit and shaded leaf classes of indi-
vidual plants and the solar radiation absorbed for each class
based on geometric optical relationships. Sunlit leaves and
sunlit ground receive solar beam, diffuse radiation and scat-
tered radiation, while shaded leaves and shaded ground re-
ceive only diffuse radiation and scattered radiation. The ra-
diation on the ground is considered as the radiation available
for mosses and lichens.

The following sections describe the detailed algorithms of
the IPR model. In Sect. 2.2.1 we calculate the fractions of
sunlit leaf area for the woody strata. This is the core of the
IPR model. Diffuse radiation can be considered as isotropic
beams from all the directions of the hemisphere, therefore
the relative diffuse radiation can be calculated by integration
of the sunlit fractions from different directions of the hemi-
sphere. In Sect. 2.2.2 we calculate the fraction of sunlit leaf
area and the relative diffuse radiation for the herb stratum.
Since the herb stratum is assumed to be a uniform layer, the
two-big-leaf method (Norman, 1982) can be used. After the
interception of the woody and the herb strata, the fraction of
sunlit area and the relative diffuse radiation on the ground
can be determined (Sect. 2.2.3). In Sect. 2.2.4 we calculate
the intensity of the direct and diffuse radiation intercepted
by the woody and herb strata and the ground. In Sect. 2.2.5
we estimate the scattered radiation absorbed by the woody
and the herb strata and the ground, and in Sect. 2.2.6 we sum
up the direct, diffuse and scattered radiation for sunlit and
shaded leaves of the woody and herb strata and the ground.

www.geosci-model-dev.net/7/1357/2014/ Geosci. Model Dev., 7, 1357–1376, 2014



1360 Y. Zhang et al.: Radiation of individual plants

2.2.1 The fractions of sunlit leaf area and the relative
diffuse radiation of the woody strata

When a solar beam passes through a small column of plant
canopy (Fig. 1), the sunlit leaf area can be estimated based
on Norman (1982)

dLb = F1
/
K

[
1− exp(−K · ρ · l)

]
dA, (2)

where dLb is the sunlit leaf area of the column (m2 leaf),
dA (in m2) is the area of the column directly facing the
beam, andF1 is the solar beam before entering the col-
umn, expressed as the fraction of sunlit area on a surface.
l is the length of the column or the path length of light
(m), andρ is the density of the leaf area of the column
(m2 leaf m−3 space), which can be calculated by Eq. (1).K is
the effective light extinction coefficient including the clump-
ing effects:

K = K0 · �, (3)

where K0 is the light extinction coefficient when leaves
are randomly distributed, and is a constant of 0.5 (Norman,
1982).� is the clumping index of the leaves in the crown
(Chen and Black, 1992). The solar beam after the intercep-
tion of the canopy can be determined based on the Beer–
Lambert law

F2 = F1 · exp(−K · ρ · l), (4)

where F2 is the solar beam after the interception of the
canopy, expressed as the fraction of sunlit area on a surface.
The solar beam intercepted by the column of canopy is

dF = F1 − F2 = F1
[
1− exp(−K · ρ · l)

]
, (5)

where dF is the solar beam intercepted by the column of
canopy (in the same unit asF1 andF2). The shading effects
of this column on subsequent objects can be expressed as

f = F2
/
F1 = exp(−K · ρ · l), (6)

wheref is the shading effect of the column on subsequent
objects (in fractions ranged from 0 to 1:f = 1 for no shad-
ing, andf = 0 for completely shaded).

For a plant at any moment, the total sunlit leaf area of the
crown is the integration of dLb for the entire crown. For rect-
angular box-shaped crowns, we can integrate numerically by
dividing the crown into small slices parallel to the solar beam
(Fig. 2a). The length of a slice or the light path length (equiv-
alent tol in Eq. 2) can be calculated analytically based on the
height of the slice when the beam enters it (Fig. 2). There are
two cases: when tanθ ≤ (Hi − hi)/Di (Fig. 2b),

lzi
=


0 (zi ≤ hi or zi ≥ Hi + Di · tanθ)

(zi − hi )/sinθ (Di · tanθ + hi ≥ zi > hi )

Di/cosθ (Hi ≥ zi > Di · tanθ + hi )

Di/cosθ − (zi − Hi )/sinθ (Hi + Di · tanθ > zi > Hi )

(7a)

and when tanθ > (Hi − hi)/Di (Fig. 2c),

lzi
=


0 (zi ≤ hi or zi ≥ Hi + Di · tanθ)

(zi − hi )/sinθ (Hi ≥ zi > hi )

(Hi − hi )/sinθ (hi + Di · tanθ ≥ zi > Hi )

Di/cosθ − (zi − Hi )/sinθ (Hi + Di · tanθ > zi > hi + Di · tanθ)

(7b)

wherelzi is the path length of light going through a slice of
crown of a plant of stratumi, with zi the height when the
solar beam enters the crown slice, and dzi the thickness of
the crown slice in the vertical direction (m) (Fig. 2a). The
cross-sectional area of the crown slice directly facing the so-
lar beam can be expressed as

dAi = Di · cosθ · dzi, (8)

where dAi is the area of the crown slice directly facing the
solar beam (equivalent to dA in Eq. 2). θ is the elevation
angle of the sun,Di is the width of the crown (m), andHi

andhi are the heights of the top and bottom of the crown,
respectively (m) (the subscripti is for a plant of stratumi, or
sometimes simply called planti).

Some of the solar beam may be blocked by its neighbour-
ing plants. For a stratumj , only the plants growing in a strip
Di + Dj wide in the direction of the sun can shade plant
i (Fig. 3). Their shading effects can be estimated by divid-
ing the land strip intoDj by Di + Dj rectangles (except for
the first rectangle close to planti, whose width is defined by
Eq. 14) to calculate the shading effects of the plants of stra-
tum j in each rectangle (Fig. 3):

fi,jk =
(
1− pj

)
+ pj · f0i,jk, (9)

wherefi,jk is the average shading effect on a slice of crown
of plant i by the plants of stratumj in rectanglek shown in
Fig. 3. It is the weighted sum of the solar beam from the gaps
(no shading) and the solar beam going through the crowns of
plants of stratumj . Thef0i,jk is the shading effect on a slice
of crown of planti by a crown of plantj in rectanglek. The
pj is the probability of solar beam going through crowns of
stratumj in the rectangle. It is equal to the fraction of the
land area covered by the crowns of the plants of the stratum
(therefore it does not change withi andk), and can be calcu-
lated as

pj = D2
j · dj , (10)

wheredj is the density of plants of stratumj (plants m−2).
Since the width of the rectangle isDj , there is only one row
of plants of stratumj in a rectangle (i.e. the solar beam goes
through no more than one crown of stratumj in a rectangle).
Thereforef0i,jk can be calculated based on Eq. (6) for a slice
of crown:

f0i,jk = exp(−Kj · ρj · lzj,k), (11)
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Figure 2. (a)Three-dimensional show for a light beam going through a slice of crown and the related variables. (b andc) Two-dimensional
shows for the two cases when a light beam going through a crown.

Figure 3. The scheme to calculate the shading effects of neighbour-
ing plants in the model.

whereKj is the effective light extinction coefficient for plant
j , and lzj,k is calculated by Eq. (7) but for plants of stra-
tum j in rectanglek corresponding to the height zj,k, which
depends on the distance between the planti and plants of
stratumj in rectanglek (Fig. 3):

zj,k = zi + Xi,jk · tanθ, (12)

where

Xi,jk = Xi,j1 + (k − 1)Dj , (13)

and

Xi,j1 =
[
0.5

(
1− ETj

)
+ Eij

]
Dj , (14)

whereXi,jk is the distance between the edge of the crown of
plant i and the farther edge of the crown of plantj in rect-
anglek, andXi,j1 is the distance whenk equals 1 (the first
rectangle near planti, Fig. 3).Eij is the fraction of crown of

plant i overlapping vertically with the crown of plantj , and
ETj is the total fraction of the crowns of all the plant strata
overlapping with a crown of stratumj on average, calculated
as

ETj =

N∑
m=1

pm · Ejm, (15)

whereN is the total number of woody strata of the plant com-
munity. Ejm is the fraction of crown of plantj overlapping
vertically with the crown of plantm, defined as

Ejm =

 0 (hm ≥ Hj or Hm ≤ hj )

[min(Hj ,Hm) − hm]/(Hj − hj ) (Hj ≥ hm ≥ hj )

[Hm − max(hj ,hm)]/(Hj − hj ) (Hj ≥ Hm ≥ hj )

(16)

where min() and max() are operations to get the minimum
and the maximum of the variables in the brackets, respec-
tively. SinceEjm is calculated relative to the crown height
of plantj , it can be different fromEmj . Similar toEmj , the
Eij is the fraction of crown of planti overlapping vertically
with the crown of plantj . Equation (14) was designed so that
Xi,j1 approximately equalsDj (plantj is very close to plant
i) when the woody plants are dense (ETj ≈ 1); theXi,j1 is
about 1.5Dj when the woody plants are sparse (ETj ≈ 0);
and theXi,j1 can be less than 0.5Dj when stratumj is com-
pletely above or below stratumi (Eij = 0), especially when
the woody plants are dense (ETj ≈ 1).

The shading effects on a slice of crown by all the neigh-
bouring plants of stratumj can be expressed as

F1,ij =

Mj∏
k=1

fi,jk, (17)

where5 is for multiplying all the terms fork ranging from
1 to Mj . The shading effect on a slice of crown by all the
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neighbouring plants of all the strata can be expressed as

F1,i =

N∏
j=1

F1,ij =

N∏
j=1

Mj∏
k=1

fi,jk, (18)

whereF1,i is the shading effect on a slice of crowni by all
the neighbouring plants of all the strata, or the fraction of di-
rection radiation available for entering the slice of the crown
of planti after the interception of all its neighbouring plants.
Mj is the total number of rectangles considered in calculating
the shading effects of stratumj on planti. It can be estimated
by

Mj = 1+
(
Xmax− Xi,j1 − Di

)/
Dj , (19)

where Xmax is a predefined maximum distance for shad-
ing effects (e.g. 100 m) beyond which the shading effects of
neighbouring plants are negligible. The total sunlit leaf area
of the crowni is the integration of Eq. (2) for all the slices
of the crown (using Eq. 8) for dA and Eq. (18) forF1 and
integrating dzi from hi to Hi + Di · tanθ):

Lbi =Di · cosθ
/
Ki

Hi+Di ·tanθ∫
hi

[
1− exp(−Ki · ρi · lzi)

]

·

N∏
j=1

Mj∏
k=1

fi,jk · dzi, (20)

where Lbi is the total sunlit leaf area of the planti
(m2 leaf plant−1) when the elevation of the sun isθ . TheKi is
the effective light extinction coefficient of planti. The frac-
tion of sunlit leaf area is

fsunlit,i = Lbi

/
L0i, (21)

wherefsunlit,i is the fraction of sunlit leaf area of a plant of
stratumi. TheL0i (m2 leaf plant−1) is the total leaf area of a
plant of stratumi.

The fraction of the sunlit area on a horizontal surface after
the interception of all the woody strata,F2w, can be estimated
by

F2w = 1−

N∑
i=1

Lbi · di · Ki

/
sinθ. (22)

F2w is the solar beam available for the herb stratum under
the woody strata, expressed as the fraction of the sunlit area.

We assume that diffuse radiation is from the entire hemi-
sphere and is in isotropic distribution, and that it is uni-
formly distributed within a crown. Thus, diffuse radiation in-
tercepted by a crown can be calculated by integration of the
sunlit fractions from different directions of the hemisphere.
Since we assume that the intensity of diffuse radiation is the

same in all directions, the integration will be the average of
the sunlit fractions for the elevation angles from 0 toπ/2:

Fd,i = 2
/
π

π/2∫
0

fsunlit,i (β)dβ, (23)

where Fd,i is the relative diffuse radiation intercepted by
the leaves of stratumi, expressed as the ratio to the dif-
fuse radiation above the canopy of the plant community. The
fsunlit,i(β) is the fraction of sunlit leaf area of the crowni
when the elevation angle of the beam isβ, calculated by
Eq. (21).

2.2.2 The fraction of sunlit leaf area and the relative
diffuse radiation of the herb stratum

We assume that the herb stratum is distributed uniformly;
therefore its fraction of sunlit leaf area can be calculated us-
ing the two-big-leaf method (Norman, 1982):

fsunlit,h= F2w·sinθ
/
(Kh · LAI h)[

1− exp
(
−Kh · LAI h

/
sinθ

)]
, (24)

wherefsunlit,h is the fraction of the sunlit leaf area of the
herb stratum, LAIh is the leaf area index of the herb stratum
(m2 leaf m−2 ground),Kh is the effective light extinction co-
efficient of the herb canopy, andF2w is the solar beam avail-
able after the interception of the woody strata, calculated by
Eq. (22).

Similar to Eq. (23), the relative diffuse radiation inter-
cepted by the herb stratum can be calculated as the average
of the sunlit fractions for all the elevation angles from 0 to
π/2:

Fd,h = 2
/
π

π/2∫
0

fsunlit,h(β)dβ, (25)

where Fd,h is the relative diffuse radiation intercepted by
leaves of the herb stratum, expressed as the ratio to the dif-
fuse radiation above the canopy of the plant community.

2.2.3 The fraction of sunlit area and the relative diffuse
radiation on the ground

Since the herb stratum is assumed a uniform canopy, its ef-
fects on the fraction of sunlit area on the ground can be ex-
pressed based on Beer’s law (Monsi and Saeki, 1953):

fsunlit,g= F2wexp
(
−Kh · LAI h

/
sinθ

)
, (26)

wherefsunlit,g is the fraction of sunlit area on the ground be-
low the herb stratum. The exponential multiplier is the frac-
tion intercepted by the herb stratum.
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Similar to Eq. (23), the relative diffuse radiation on the
ground can be estimated by the average offsunlit,g for all the
elevation angles from 0 toπ/2:

Fd,g = 2
/
π

π/2∫
0

fsunlit,g(β)dβ, (27)

whereFd,g is the relative diffuse radiation on the ground, ex-
pressed as the ratio to the diffuse radiation above the canopy
of the plant community.

2.2.4 Direct and diffuse radiation intercepted by plants
and the ground

The direct radiation intercepted by sunlit leaves can be ex-
pressed as

Ib,i = Ib0 · Ki

/
sinθ, (28)

Ib,h = Ib0 · Kh
/

sinθ, (29)

where Ib,i and Ib,h are the direct radiation intercepted by
sunlit leaves of the woody planti and the herb stratum, re-
spectively (W m−2 leaf), andIb0 is the direct radiation on a
horizontal surface above the canopy of the plant community
(W m−2 ground). The diffuse radiation intercepted by leaves
can be calculated by

Id,i = Id0 · Fd,i, (30)

Id,h = Id0 · Fd,h, (31)

where Id,i and Id,h are diffuse radiation intercepted by
leaves of woody planti and the herb stratum, respectively
(W m−2 leaf), and Id0 is the diffuse radiation above the
canopy of the plant community (W m−2 ground).

The direct radiation in the sunlit area on the ground equals
Ib0, and the diffuse radiation on the ground,Id,g, is Id0 · Fd,g
(Fd,g is calculated by Eq. 27).

2.2.5 Scattered radiation absorbed by the woody and
herb strata and the ground

The scattered radiation received by a woody plant includes
scattered radiation generated by its own crown and the scat-
tered radiation from surrounding plants – the latter part usu-
ally is very small so we omitted it in the model. The scattered
radiation absorbed by a unit leaf area can be estimated based
on Smolander and Stenberg (2005):

Is1,i = Is0,i · αi · ri
/

[1− (1− αi)ri ], (32)

whereIs1,i is the average scattered radiation absorbed by a
unit leaf area of planti (W m−2 leaf),αi is the light absorp-
tion coefficient of the leaves of planti, the Is0,i is the av-
erage scattered radiation (W m−2 leaf, averaged for all the
leaves in the crown) generated by reflection and transmis-
sion when direct and diffuse radiation are first intercepted

by leaves of planti (zero-order scattering), andri is the rec-
ollision probability of scattered radiation, which is assumed
to remain constant in successive scattering (Smolander and
Stenberg, 2005).Is0,i andri can be estimated by

Is0,i = (1− αi)
[
Ib,i · fsunlit,i + Id,i

]
, (33)

ri = 1− exp(−Ki · ρi · lai) , (34)

wherelai is the average path length from a light source within
the crown to outside of the crown, approximated as the aver-
age length from the centre of the crown to the six sides of the
rectangular box:

lai = (Hi − hi)
/

6+ Di

/
3. (35)

The scattered radiation received by the herb stratum in-
cludes the scattered radiation from the above woody strata
and the scattered radiation generated within the herb canopy.
On the top of the herb stratum, the scattered radiation from
the above woody plants can be estimated as the difference be-
tween the scattered radiation generated by the woody plants
and the amount of scattered radiation absorbed by the woody
plants:

Is1,h= 0.5
M∑
i=1

(
Is0,i − Is1,i

)
· L0i · di, (36)

where Is1,h is the average scattered radiation from the
woody plants on a horizontal surface above the herb stratum
(W m−2 ground). A factor of 0.5 was used in the equation
because a horizontal surface below the woody crowns can
only receive the downward scattered radiation (half of the to-
tal scattered radiation) from the woody strata. The average
scattered radiation generated within the herb canopy can be
estimated by

Is0,h= (1− αh)
[
Ib,h · fsunlit,h+ Id,h

]
, (37)

whereIs0,h is the average scattered radiation generated by
reflection and transmission when direct and diffuse radi-
ation are first intercepted by leaves of the herb stratum
(W m−2 leaf), andαh is the light absorption coefficient of the
herb stratum. The scattered radiation received by the herb
leaves are the sum of the scattered radiation from above
woody plants and the scattered radiation generated within the
herb canopy. The former can be estimated similar to the esti-
mation for diffuse radiation, while the latter can be estimated
similarly to Eq. (32):

Is,h= αh · Is1,h· Fd0,h+ Is0,h· αh · rh
/

[1− (1− αh)rh], (38)

where Is,h is the average scattered radiation absorbed by
leaves of the herb stratum (W m−2 leaf), andFd0,h is the rela-
tive diffuse radiation for herb stratum when there is no woody
stratum, calculated by Eq. (25) but withF2w = 1 for fsunlit,h
estimation in Eq. (24). Therh is the recollision probability of
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scattering radiation in the herb canopy, and can be estimated
based on Smolander and Stenberg (2005):

rh = 0.88
[
1− exp

(
−0.7 · LAI 0.75

h

)]
. (39)

Similarly, the scattered radiation received on the ground,
Is,g, can be estimated by

Is,g= Is1,h· Fd0,g+ 0.5Is0,h· exp(−0.5Kh · LAI h) , (40)

whereFd0,g is the relative diffuse radiation on the ground
when there is no woody stratum, calculated by Eq. (27) but
with F2w = 1 for fsunlit,g estimation in Eq. (26). The fac-
tor 0.5 is used because only half of the scattered radiation
reaches the ground (the other half scatters to the sky from the
top of the herb stratum).

2.2.6 Solar radiation absorbed by sunlit and shaded
leaves and the ground

The sunlit leaves receive direct radiation from the sun, dif-
fuse radiation from the sky, and scattered radiation, while
the shaded leaves receive only diffuse radiation from the sky
and scattered radiation. Therefore, the total solar radiation
absorbed by sunlit and shaded leaves is

Isunlit,i = αi

(
Ib,i + Id,i

)
+ Is1,i, (41)

Ishaded,i = αi · Id,i + Is1,i, (42)

Isunlit,h= αh
(
Ib,h + Id,h

)
+ Is,h, (43)

Ishaded,h= αh · Id,h+ Is,h, (44)

where Isunlit,i and Ishaded,i are the total solar radiation
(W m−2 leaf) absorbed by sunlit and shaded leaves of the
woody stratumi, respectively, andIsunlit,h and Ishaded,hare
the total solar radiation (W m−2 leaf) absorbed by sunlit
and shaded leaves of the herb stratum, respectively. For the
ground, the total radiation absorbed on sunlit and shaded ar-
eas can be expressed as

Isunlit,g= αg
(
Ib0 + Id,g+ Is,g

)
, (45)

Ishaded,g= αg
(
Id,g+ Is,g

)
, (46)

where Isunlit,g and Ishaded,g are the total solar radiation
(W m−2 ground) absorbed by sunlit and shaded areas of the
ground, respectively.αg is the light absorption coefficient of
the ground (the albedo of the ground would be 1− αg). The
average solar radiation absorbed on the ground is

Iavg,g= Isunlit,g· fsunlit,g+ Ishaded,g·
(
1− fsunlit,g

)
= αg

(
Ib0 · fsunlit,g+ Id,g+ Is,g

)
, (47)

whereIavg,g is the average solar radiation absorbed on the
ground (W m−2 ground). Part of the solar radiation received
on the ground will be reflected. In this study we did not con-
sider the contribution of this reflected radiation to the leaves.

2.3 Inputs and outputs of the model and calculation
procedure

The inputs for the IPR model include plant community fea-
tures and the radiation conditions above the plant commu-
nity. The plant community features include the number of
woody plant strata (N), the features of each woody stratum
(plant density (di), heights of the top and the bottom of the
crown (Hi , andhi , respectively), crown width (Di), leaf area
of the crown (L0i), light absorption coefficient (αi), and the
clumping index of the leaves (�i), and the features of the
herb stratum (leaf area index (LAIh), light absorption coeffi-
cient (αh), and the clumping index (�h)). The radiation con-
ditions above the plant canopy include the elevation angle of
the sun (θ), and direct and diffuse radiation on a horizontal
surface above the plant community at the time (Ib0 andId0,
respectively). There are two computing parameters: the max-
imum distance for shading effects (Xmax) and the integration
interval (dzi). One hundred metres forXmax is large enough,
and dzi can be defined as 0.01(Hi − hi).

The outputs of the model include the fractions of the sunlit
leaf area for each woody stratum and the herb stratum, and
the fraction of sunlit area on the ground, the radiation of the
sunlit and shaded leaf classes of each woody stratum and the
herb stratum, the radiation on sunlit and shaded areas on the
ground, and the average radiation on the ground. The code
for calculating the diurnal variations of the radiation condi-
tions and a user’s manual of the model can be found in the
Supplement.

The IPR model first calculates the fraction of the sunlit
leaf area for each elevation angle from 0 toπ/2 with a small
step (e.g.π/36, or 18 steps). The relative diffuse radiation for
each stratum and on the ground can be calculated by numer-
ically integrating the above results with the elevation angle.
The fraction of sunlit leaf area of each stratum at any time
can be interpolated from the above calculation based on the
elevation of the sun at the time. Then the solar radiation ab-
sorbed by a plant of each stratum and on the ground can be
calculated based on the direct and diffuse radiation above the
plant community at the time.

2.4 Testing of the model

2.4.1 Comparing with the fraction of sunlit leaf area
calculated by the random approach

In IPR, the calculation of solar radiation for herb stratum is
based on Norman (1982), which has been tested and used
widely. Diffuse radiation is calculated in a similar way as
for direct radiation but the beams are from the entire hemi-
sphere. Therefore the core of the IPR model is the calcula-
tion of the fraction of sunlit leaf area of individual plants
of woody strata. Detailed field measurements are not avail-
able for model test. However, we can test the model by nu-
merically tracing light beams to calculate sunlit leaf area
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Figure 4. The scheme of the random approach for numerically cal-
culating sunlit leaf area and the shading effects of the neighbouring
plants. max(Di ,Dj , . . .) is for the maximum of the crown width of
all the plant strata in the plant community.

assuming that plants are randomly distributed (abbreviated
as the random approach). The following is the description of
the random approach.

1. Defining an area. This is the area in which neighbouring
plants can cast shadows onto a plant of stratumi located
at the middle of one end of the area or the strip shown in
light grey in Fig. 4. The width of the strip is the crown
width Di plus the maximum of crown width of all the
strata in the plant community. The length of the strip
(Xmax) was set as 100 m (the shading effect on planti is
ignorable for plants beyond this distance).

2. Determining the number of woody plants in the strip.
The number of woody plants for each stratum in the
strip can be determined based on the area of the strip
and the density of each woody stratum.

3. Putting the woody plants randomly in the strip. First we
generate a pair of random numbers as the possible loca-
tion of a plant in the strip. Then we check its distance
from the existing plants in the strip to make sure that
the crown of this plant does not overlap with the exist-
ing plants. If the distance was less than the minimum
distance to one of the existing plants, we re-generated a
pair of random numbers for a new location and checked
again until the distance requirement was satisfied. Plants
of two woody strata can distribute independently if one
stratum is completely over or below the other stratum.

4. Calculating sunlit leaf area numerically. We divide the
crown of planti into small cells (Fig. 4). A light beam
going through a cell may go through crowns of its
neighbouring plants. Based on the locations and crown
sizes of the plants, we can geometrically determine
whether a neighbouring plant can intercept the light
beam (Fig. 4). If so, its shading effects can be calcu-
lated based on Eq. (7) (the heightzi in Eq. (7) can
be determined according to the height of the cell, the

Figure 5.Comparisons of the calculated fractions of sunlit leaf area
between the IPR model (curves) and the average of the random
approach (circles) for one-stratum plant communities of different
heights (H), crown width (D), local leaf area indices (LAIp) and
plant densities (d). Different colours correspond to different plant
densities shown in the legend. The top height of crown, crown width
and local leaf area indices are shown in the panels. The bottom
height of the crown (h) is 0 m. The circles ford = 0.1 plants m−2

were calculated assuming that plants are distributed regularly be-
cause plants cannot be distributed randomly without overlapping in
such a dense plant community.

distance between the two plants, and the elevation an-
gle of the beam). The size of the cell was defined as
1z = 0.01(Hi − hi) and1y = 0.01Di . The sunlit leaf
area of the crown is the total of the sunlit area of all the
cells.

5. Repeating steps 2–4 until the average fraction of sun-
lit leaf area is stable. The calculated fraction of sunlit
leaf area under each case of the random distribution of
neighbouring plants is different. But their average be-
comes very stable after 300 random cases (the variation
is less than 0.001 for the fraction of sunlit leaf area).
Therefore, we ran 300 random distribution cases for
each test and then used the average to compare with the
result of the IPR model.

2.4.2 Sensitivity tests

When a plant community has two or more strata and plant
density is high, the random approach cannot distribute the
plants randomly without overlapping. Thus we cannot use
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Figure 6. Comparisons of the calculated fractions of sunlit leaf area between the IPR model (curves) and the random approach (circles) for
two-stratum plant communities of different heights (stratum-1 is shifted higher and higher). Blue and red colours are for stratum-1 (S1) and
stratum-2 (S2), respectively. The top and bottom heights of the crowns (h andH) were shown in each panel. Other parameters are the same
(crown widthD = 1 m, local leaf area index LAIp = 3, plant densityd = 0.2 plants m−2).

the random approach to test the IPR model in such cases. In-
stead we tested the sensitivity of the model to plant densities
to show its consistency under different plant densities. We
also compared the IPR results with that of the two-big-leaf
method with different plant densities for one-stratum com-
munities and for two-stratum plant communities when the
crowns are of the same height and when the crowns of one
stratum are completely above the other. Such comparisons
not only can test the IPR model when the canopy almost
completely covers the ground, they also show the errors of
the two-big-leaf method when the crowns are sparse.

3 Results and analyses

3.1 Comparing with the fractions of sunlit leaf area
calculated using the random approach

3.1.1 One-stratum plant communities

Figure 5 shows comparisons of the fraction of sunlit leaf area
(fsunlit) calculated by IPR and the average of the random ap-
proach under different plant density, local leaf area index of
the individual crown (LAIp), and the elevation angle of the
sun (θ). fsunlit calculated by the IPR model is very close to
the average of the random approach in all the cases.fsunlit in-
creases with the decrease in plant density because of the de-
crease in shading effects by surrounding plants. For the same
reason, the effects of plant density are stronger whenθ is low.
Thefsunlit of different plant density converges with increase
in θ , and reaches the same value when the light is straight
down, asfsunlit in that case only depends on LAIp. Thefsunlit

decreases with the increase in LAIp for a givenθ (Fig. 5a–c).
If we reduce the plant height by half without changing LAIp,
thenfsunlit decreases significantly (almost equal to doubling
LAI p) whenθ is low (compare Fig. 5b and d). This is because
reducing crown height without changing LAIp increases the
leaf area density or increases optical thickness whenθ is low.
The effect of height is not significant whenθ is high.

3.1.2 Two-stratum plant communities

For two-stratum plant communities, the fractions of sunlit
leaf area calculated by IPR are very close to the averages of
the random approach as well for different heights (Fig. 6).
When the heights of the two strata are the same, the frac-
tions of the sunlit leaf area for the two strata are the same
(Fig. 6a), and are almost the same as the results using one-
stratum but double the plant density (the curve is not shown
since it overlaps other curves in Fig. 6a). When one stratum
becomes higher, thefsunlit of the upper stratum increases and
the fsunlit of the lower stratum decreases because of the in-
creased shading effects of the upper stratum on the lower one
(see gradual changes from Fig. 6a to e). Thefsunlit of the
lower stratum is close to that of the upper stratum whenθ is
near 90◦ as the upper stratum has little shading effect on the
low stratum in that case.

Figure 7 shows comparisons under different combinations
of crown heights, plant density, crown width and leaf area.
fsunlit calculated by the IPR model is very close to the av-
erage of the random approach in the different cases. Reduc-
ing the density of the lower stratum does not much affect
the taller stratum. However, reducing the density of the taller
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Figure 7. Comparisons of the calculated fractions of sunlit leaf area between the IPR model (curves) and the random approach (circles) for
two-stratum plant communities. Red and blue are for stratum-1 (S1) and stratum-2 (S2), respectively. Their crown parameters are listed in
each panel:H andh are the heights of the top and bottom of the crown, respectively (m),D is the width of the crown (m),d is the density
of plants (plants m−2), and LAIp is the local leaf area index (m2 leaf m−2 ground).

Figure 8. Comparisons of the calculated fractions of sunlit leaf area between the IPR model (curves) and the random approach (circles)
for (a–c) three-stratum plant communities and for(d) four-stratum plant communities. Different colours are for different strata. The crown
parameters are listed within or beside each panel:H andh are the heights of the top and bottom of the crown, respectively (m),D is the
width of the crown (m),d is the density of plants (plants m−2), and LAIp is the local leaf area index (m2 leaf m−2 ground).

stratum increasesfsunlit for both strata (Fig. 7a and b). In-
creasing LAIp (no change in crown width) of the taller stra-
tum reduces itsfsunlit, especially whenθ is high, but that
does not much affect thefsunlit of the lower stratum, because

its light mainly comes from the gaps of the taller stratum
(Fig. 7b and c). Reducing crown width (no change in LAIp)

can slightly increasefsunlit whenθ is low, because the path
length of light going through the crown becomes shorter
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Figure 9. The sensitivity of the fractions of sunlit area on the leaves and on the ground to plant density and the local leaf area index of the
plant. Plant density is expressed as the fraction of land covered by crowns, calculated byD2d (D is the width of the crown andd is the
number of plants per square metre). The relative diffuse light is the ratio to the diffuse light on a horizontal surface above the canopy. The
plant communities are composed of only one stratum (h = 0 m,H = 10 m,D = 1 m).

(Fig. 7d). Figure 7d–f show again that the relative heights
of the plants have a significant impact on light competition
among plant strata.

3.1.3 Plant communities with three or more strata

The fraction of sunlit leaf area calculated by the IPR model is
very similar to the average of the random approach for plant
communities with three and four strata as well (Fig. 8). The
relative heights are the major factor affectingfsunlit for each
stratum (the three strata are overlapped vertically in Fig. 8a
and c while they are not overlapped in Fig. 8b).fsunlit of the
low stratum also depends on its own crown features and its
plant density (compare stratum 3 in Fig. 8a with c).

3.2 Sensitivity analyses

3.2.1 One-stratum plant communities

The fractions of sunlit leaf area and sunlit area on the ground
are very sensitive to plant density and local leaf area index
of the plants (Fig. 9).fsunlit decreases with increase in plant
density (all curves show declining patterns in Fig. 9a to c),
but the decrease becomes smaller whenθ is higher (compare

curves with the same colour from Fig. 9a to c), because the
shading effect of neighbouring plants is less severe whenθ

is higher (fsunlit is independent of plant density when light
is straight down since there is no shading among plants at
all in that case). The fraction of sunlit area on the ground
decreases quickly with increase in plant density. Similarly to
the changes infsunlit, the fraction of sunlit area on the ground
increases with increase inθ due to decrease of the shading ef-
fects (compare curves with the same colour from Fig. 9d to
f). Increase in LAIp reducesfsunlit, and also significantly re-
duces the fraction of sunlit area on the ground. Since the rela-
tive diffuse radiation (intercepted by leaves or on the ground,
see Fig. 9g and h) is an integration of all the elevation angles,
its sensitivity to plant density is similar to that of the sunlit
fraction (intercepted by leaves or on the ground) whenθ is
around 45◦.

Crown width affectsfsunlit mainly when plants are sparse
and the elevation angle of the sun is low (LAIp was kept con-
stant in the tests) (Fig. 10). This is because the solar beam
goes through a longer path in a crown when the crown is
wider andθ is lower. This effect becomes relatively small
when plants are dense. The fraction of sunlit area on the
ground is more dependent on the fraction of ground covered

Geosci. Model Dev., 7, 1357–1376, 2014 www.geosci-model-dev.net/7/1357/2014/



Y. Zhang et al.: Radiation of individual plants 1369

Figure 10. The sensitivity of the fractions of sunlit area (on the leaves and on the ground) and relative diffuse radiation to plant density
and crown width. Plant density is expressed as crown cover fractions, calculated byD2d (D is the width of the crown andd is the number
of plants per square metre). The relative diffuse light is the ratio to the diffuse light on a horizontal surface above the canopy. The plant
communities are composed of only one stratum (h = 0 m,H = 10 m, LAIp = 3).

by crowns (calculated byD2
· d) rather than crown width.

The effect of crown height on the fraction of sunlit area
on the ground is very small (assuming no changes in LAIp,
plant density or crown width. Figures are not shown). How-
ever, crown heights are very important for light competition
among plant strata, as discussed in the previous section and
as will be emphasized in the following section as well.

3.2.2 Two-stratum plant communities

Figure 11 shows the sensitivity of the fractions of sunlit
area and relative diffuse radiation (on the leaves and on the
ground) to plant density for two-stratum plant communities.
Increasing the density of the taller stratum has stronger im-
pacts than increasing the density of the lower stratum, es-
pecially whenθ is low (comparing the black curve with the
blue curve in each panel in Fig. 11a to f). Even when the to-
tal fractions of land covered by the two strata do not change,
increasing the density of the taller stratum (decreasing the
density of the lower stratum at the same time) always results
in a decrease offsunlit for both strata (green curves in Fig. 11a
to f). Thefsunlit of the lower stratum is more sensitive than
that of the taller stratum to changes in plant density of either

one or both strata whenθ is not very high (comparing the
curves of the same colour (excepting the green curves) be-
tween Fig. 11a and d, b and e, c and f, respectively). The
fsunlit of the lower stratum increases with the increase inθ ,
because more light can reach the lower stratum through the
gaps of the taller stratum (compare curves of the same colour
from Fig. 11d to f).

The fraction of sunlit area on the ground decreases with the
increase in the density of either stratum, and is more related
with the total plant density of the two strata (Fig. 11g to i).
The fraction of sunlit area on the ground is higher whenθ

is higher, since more light can reach the ground from gaps
among plants. Similar tofsunlit, the relative diffuse radiation
intercepted by the lower stratum is more sensitive than that of
the taller stratum to plant density of either stratum (Fig. 11j
and k). The relative diffuse radiation on the ground depends
on the total plant density of the two strata (Fig. 11l).

These sensitivity tests show that the IPR model can calcu-
late the solar radiation intercepted by leaves and the ground
consistently from very sparse to continuous plant communi-
ties.
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Figure 11. The sensitivity of the fractions of sunlit area (on the leaves and on the ground) and relative diffuse radiation to plant density
for two-stratum plant communities (the taller stratum (S1):h1 = 2 m,H1 = 10 m,D1 = 1 m, LAIp1 = 3; the lower stratum (S2):h2 = 0 m,

H2 = 5 m,D2 = 1 m, LAIp2 = 3). Plant density is expressed as crown cover fractions for both strata (C1 andC2), calculated byD2
1d1 and

D2
2d2, respectively (D1 andD2 is the widths of the crowns of the two strata, respectively, andd1 andd2 are the numbers of plants per square

metre for the two strata, respectively). The relative diffuse light is the ratio to the diffuse light on a horizontal surface above the canopy.

3.2.3 Comparing with results of the two-big-leaf
method

Figure 12 shows comparisons of the calculated fractions of
sunlit leaf area between the IPR model and the two-big-leaf
method (the two-big-leaf method assumes that the canopy
covers the ground uniformly; the leaf area index was calcu-
lated asD2

·d ·LAI p). The two-big-leaf method significantly
overestimatesfsunlit when plants are sparse andθ is high.
Another difference is their variation patterns:fsunlit calcu-
lated by the two-big-leaf method always increases with the
increase inθ , whereasfsunlit calculated by IPR usually in-
creases at the beginning, and then decreases gradually with
the increase inθ , especially when plants are sparse. When
θ is very low, increasingθ significantly reduces the shading
of neighbouring plants, thusfsunlit increases rapidly. When
θ is high, however, increasingθ results in more light reach-
ing the ground from the gaps among the crowns, thusfsunlit
decreases withθ . The two-big-leaf method cannot capture

this variation pattern. The difference between IPR and the
two-big-leaf method becomes smaller when the plant com-
munity is denser (or the gaps among crowns are smaller), es-
pecially whenθ is low. When the canopy completely covers
the ground,fsunlit calculated by the IPR model is almost the
same as that of the two-big-leaf method. The differences are
less than 0.002 for one-stratum plant communities and for
two-stratum communities with crowns of one stratum com-
pletely above the other; and the differences are less than 0.02
for two-stratum communities when the heights of the crowns
are the same (figures are not shown since the difference is too
small).

4 Discussion and conclusions

Motivated to understand and predict the dynamics of vege-
tation in northern high latitudes under climate warming, we
developed an approach to calculate solar radiation absorbed
by individual plants in sparse heterogeneous woody plant
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Figure 12.Comparisons of the calculated sunlit leaf area fractions between the IPR model (solid curves) and the two-big-leaf method (dashed
curves). Panels(a) and(b) are for one-stratum plant communities with different local leaf area index (LAIp) and plant densities (d) (shown
in each panel and the legend). The other parameters are the same: the bottom height of the crownh = 0 m, the top height of the crown
H = 10 m, and crown widthD = 3 m. The fraction of crown covered area (CCA) was calculated byD2

· d and is also shown in the legend.
Panels(c) and(d) are for two-stratum plant communities with the same crown heights and one crown above the other, respectively (crown
heights and CCA are shown in the legend). The other crown parameters are the same: crown widthD = 1 m, local leaf area index LAIp = 3,
and plant densityd = 0.2 plants m−2. For the two-big-leaf method, the leaf area index of a stratum was calculated asD2

· d · LAI p.

communities based on geometrical optical relationships. The
core of the calculation is to determine the fraction of sun-
lit leaf area of sparse woody plants. We tested the model by
comparing with the numerical simulations assuming plants
are distributed randomly. The results show that the IPR cal-
culated fractions of sunlit leaf area of the individual plants
are very close to the averages of random distributions of the
plants, and the results are consistent for different heights,
crown width, leaf area, plant density, and under different el-
evation angles of the sun.

Comparing to the two-big-leaf method (e.g. Sellers et al.,
1992; Norman, 1980; Wang and Leuning, 1998), the IPR
model can be used for continuous and discontinuous plant
canopies. IPR gives almost the same results as the two-big-
leaf method when the canopy is continuous. When crowns
are sparse, the IPR model can consider the light directly
reaching the ground from the gaps of the crowns, and there-
fore is more accurate than the two-big-leaf method. In addi-
tion, the IPR model can be used for plant communities com-
posed of several different woody strata, and each plant stra-
tum does not need to be continuous. Thus, IPR can calculate
the competition of light among woody plant types.

Unlike individual-based radiation and vegetation models
(e.g. Sato et al., 2007; Kobayashi and Iwabuchi, 2008), IPR
calculates the solar radiation conditions of average individ-
ual woody crowns. IPR only calculates the solar radiation of
one average individual plant for each woody stratum in the
plant community rather than every individual woody plant.
Thus it represents the conditions of typical plants of differ-
ent strata. This is similar to the treatment of plant functional
types in stand-based vegetation dynamic models (e.g. Sitch et
al., 2003); therefore IPR could be used to improve the accu-
racy of light competition in these models. On the other hand,
IPR focuses on solar radiation intercepted by crowns without
considering directional reflectance to the sky (as some mod-
els for remote-sensing purposes, e.g. Li et al., 1995; Myneni
et al., 1995; Kobayashi and Iwabuchi, 2008), thus it greatly
simplifies the calculation and increases the computation effi-
ciency.

Although the fraction of sunlit leaf area can be calculated
numerically if we know the locations of all the plants in a
community, the calculation is very time consuming – as we
found in the random approach for the model testing, which
needs to run about 300 random cases to get the average sta-
bilized since the results are different for different random
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cases. Furthermore, the average of the random distribution
calculated by the IPR is more ecologically meaningful than
the individual random cases because the daily average light
conditions of a plant is somewhat equivalent to the average
of many random cases corresponding to different azimuth di-
rections with the changes of time in a day. That is why the
light conditions and the related ecological functions of one
plant (e.g. photosynthesis, energy and water fluxes) averaged
for a day or longer are similar to other plants of the same
stratum although at any moment the light conditions can be
very different from plant to plant. In addition to the solar ra-
diation intercepted by individual woody plants and the herb
strata, the IPR model also calculates the radiation condition
on the ground, which is important for the growth of mosses
and lichens, and for the whole ecosystems as well by directly
affecting soil thermal and hydrological conditions, such as
permafrost and active-layer thickness (Zhang et al., 2008).
Since the IPR model is efficient in computation, it can be
used for long-term, transient, spatial modelling for climate
change impact assessment and predictions.

The crowns of woody plants in IPR are represented by
rectangular boxes with uniform leaf area densities. Such a
treatment allows for a quasi-analytical solution and greatly
reduced computation time. For example, the interception of a
light beam going through a slice of a crown can be expressed
by Eq. (7). However, crowns can be of very different shapes,
and non-foliage objects (the trunk and branches) also inter-
cept light. The leaf area density is usually not uniform within
a crown, and the radiative transfer process can be very com-
plex. Therefore some modifications and improvements are
needed in the future to make the model better reflecting the
field conditions.

We developed the IPR model using Microsoft Visual
C++. The Supplement of the paper provides the code of the
model to calculate the diurnal variations of solar radiation of
different plant strata and on the ground in a day. It can be
easily included as a module in vegetation models. A user’s
manual of the model is also included in the Supplement.
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Table A1. Notation.

D Crown width of a plant (m).Di andDj are for plants of woody stratumi andj , respectively.
d Plant density of a stratum (plants m−2). di anddj are for the densities of woody stratumi andj , respectively.
dA Area (m2) of a small column of canopy (perpendicular to the direction of the light beam). dAi is the area of a crown slice of a planti.
dF Light intercepted by a small column of canopy. Its unit is the same as the unit of the beam of light entering the column.
dLb Sunlit leaf area (m2 leaf) of a small column of canopy or a crown slice.
dzi Thickness (m) of a crown slice in the vertical direction for a plant of stratumi.
Ejm Fraction of the crown of plantj overlapped vertically with crown of plantm, calculated by Eq. (16). Similarly,Eij is the fraction of the crown

of planti overlapped vertically with the crown of plantj .
ETj Total fraction of the crowns of all the plant strata overlapped with a crown of stratumj on average, calculated by Eq. (15).
Fd,g Relative diffuse radiation received on the ground, expressed as the ratio to the diffuse radiation on a horizontal surface above the plant commu-

nity.
Fd,h Relative diffuse radiation intercepted by the herb stratum, expressed as the ratio to the diffuse radiation on a horizontal surface above the plant

community.
Fd0,h Relative diffuse radiation intercepted by the herb stratum when there is no woody strata, calculated by Eq. (25) but withF2w = 1 in Eq. (24)

for fsunlit,h estimation.
Fd,i Relative diffuse radiation intercepted by woody stratumi, expressed as the ratio to the diffuse radiation on a horizontal surface above the plant

community.
Fd0,g Relative diffuse radiation received on the ground when there is no woody strata, calculated by Eq. (27) but withF2w = 1 in Eq. (26)forfsunlit,g

estimation.
F1 Solar beam before it enters a column of canopy, expressed as the fraction of sunlit area on a surface.
F2 Solar beam after passing through a column of canopy, expressed as the fraction of sunlit area on a surface.
F2w Solar beam available for the herb stratum after interception of the woody strata, expressed as the fraction of the sunlit area on a horizontal

surface.
f Shading effect of a small column of canopy on subsequent objects (Eq. 6.f = 1 for no shading, andf = 0 for completely shaded).
fi,jk Average shading effect on a slice of crown of planti by plants of stratumj in rectanglek as shown in Fig. 3.
fsunlit,i Fraction of sunlit leaf area of woody stratumi.
fsunlit,h Fraction of sunlit leaf area of the herb stratum.
fsunlit,g Fraction of sunlit area on the ground, which is the fraction of sunlit area available for mosses and lichens.
f0i,jk Shading effect on a slice of crown of planti by a crown of plantj in rectanglek as shown in Fig. 3.
H Height of the top of the crown (m).Hi andHj are for plants of woody stratumi andj , respectively.
h Height of the bottom of the crown (m).hi andhj are for plants of woody stratumi and plantj , respectively.
Iavg,g Average solar radiation absorbed on the ground (W m−2 ground).
Ib,h Direct solar radiation intercepted by sunlit leaves of the herb stratum (W m−2 leaf).
Ib,i Direct solar radiation intercepted by sunlit leaves of woody stratumi (W m−2 leaf).
Ib0 Direct solar radiation on a horizontal surface above the plant community (W m−2 ground).
Id,g Diffuse radiation received on the ground (W m−2 ground).
Id,h Diffuse radiation intercepted by leaves of the herb stratum (W m−2 leaf).
Id,i Diffuse radiation intercepted by leaves of woody stratumi (W m−2 leaf).
Id0 Diffuse radiation on a horizontal surface above the plant community (W /m−2 ground).
Is,g Scattered radiation received on the ground (W m−2 ground).
Is,h Average scattered radiation absorbed by the herb stratum (W m−2 leaf).
Ishaded,g Solar radiation absorbed by shaded area on the ground (W m−2 ground).
Ishaded,h Solar radiation absorbed by shaded leaves of the herb stratum (W m−2 leaf).
Ishaded,i Solar radiation absorbed by shaded leaves of the woody stratumi (W m−2 leaf).
Isunlit,g Solar radiation absorbed by sunlit area on the ground (W m−2 ground).
Isunlit,h Solar radiation absorbed by sunlit leaves of the herb stratum (W m−2 leaf).
Isunlit,i Solar radiation absorbed by sunlit leaves of the woody stratumi (W m−2 leaf).
Is0,h Average scattered radiation generated by reflection and transmission when direct and diffuse radiation is first intercepted by leaves of the herb

stratum (W m−2 leaf).
Is0,i Average scattered radiation (W m−2 leaf) generated by reflection and transmission when direct and diffuse radiation is first intercepted by

leaves of woody planti (W m−2 leaf).
Is1,h Average scattered radiation on the top of the herb stratum generated by the woody plants (W m−2 ground).
Is1,i Average scattered radiation absorbed by a unit leaf area of planti (W m−2 leaf).
i Subscript for a plant of a woody stratum.
j Subscript for a plant of a woody stratum.
K Effective extinction coefficient for a beam of light.Ki andKj are for plants of woody stratumi andj , respectively.
K0 Extinction coefficient when leaves are distributed randomly. It equals 0.5.
Kh Effective extinction coefficient of the herb stratum.
k Sequence number for a rectangle in Fig. 3 for calculating the shading effect of neighbouring plants.
L0 Total leaf area of a crown (m2 leaf plant−1). L0i is for a plant of stratumi.
LAI p Local leaf area index of an individual plant, defined as the ratio between the leaf area of the plant and the land area directly below the crown

(m2 leaf m−2 ground).
LAI h Leaf area index of the herb stratum (m2 leaf ground−1).
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Table A1. Continued.

Lbi Total sunlit leaf area of the woody planti (m2 leaf plant−1).
l Path length (m) of light for a small column of crown.
lai Average path length (m) of light from a light source in the crown of planti to outside of the crown.
lzi Path length (m) of the light going through a crown slice of a planti with zi as the height of the light entering the crown slice.lzj is similar to

lzi but for a plant of stratumj .
lzj,k Path length (m) of light calculated by Eq. (7) but for plants of stratumj in rectanglek corresponding to the heightzj,k .
Mj Total number of rectangles considered for calculating the shading effects of plants of stratumj , estimated by Eq. (19).
m Subscript for a plant of a woody stratum.
N Total number of woody strata of the plant community.
pj Probability of light going through the crowns of stratumj in a rectangle area. It equals to the fraction of the land area covered by the crowns of

the plants of the stratum.p1, p2 andpm are for plants of stratum 1, 2, andm, respectively.
ri Recollision probability of scattered radiation in the crown of planti.
rh Recollision probability of scattered radiation in the herb canopy.
Xi,jk Distance between the edge of the crown of planti and the farther edge of the crown of plantj in rectanglek (Fig. 3)
Xi,j1 DistanceXi,jk whenkequals 1 (the first rectangle near planti shown in Fig. 3).
Xmax Predefined maximum distance (e.g. 100 m) for shading effects calculation. Beyond that distance, the shading effects of plants are negligible.
zi Height (m) when light beam enters a crown slice for a plant of stratumi.
zj,k Height (m) when light beam enters a crown slice for plants of stratumj in rectanglek, calculated by Eq. (12).
αg Absorption coefficient of the ground (the albedo of the ground would be 1− αg).
αh Absorption coefficient of the leaves of the herb stratum.
αi Absorption coefficient of the leaves of the woody stratumi.
β Elevation angle of the light beam (radians).
ρ Density of the leaf area of a crown (m2 leaves m−3 space). It can be calculated by Eq. (1).ρi and ρj are for plants of stratumi and j ,

respectively.
θ Elevation angle of the sun (its unit is in radians in equations, but in degrees in figures).
� Clumping index of the leaves.�i is for woody stratumi.
�h Clumping index of the herb stratum.
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The Supplement related to this article is available online
at doi:10.5194/gmd-7-1357-2014-supplement.
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