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Abstract. Accurate estimates of soil organic carbon (SOC)
stocks are required to quantify carbon sources and sinks
caused by land use change at national scale. This study
presents a novel robust kriging method to precisely estimate
regional and national mean SOC stocks, along with truthful
standard errors. We used this new approach to estimate mean
forest SOC stock for Switzerland and for its five main ecore-
gions.

Using data of 1033 forest soil profiles, we modelled stocks
of two compartments (0–30, 0–100 cm depth) of mineral
soils. Log-normal regression models that accounted for cor-
relation between SOC stocks and environmental covariates
and residual (spatial) auto-correlation were fitted by a newly
developed robust restricted maximum likelihood method,
which is insensitive to outliers in the data.

Precipitation, near-infrared reflectance, topographic and
aggregated information of a soil and a geotechnical map were
retained in the models. Both models showed weak but signif-
icant residual autocorrelation. The predictive power of the
fitted models, evaluated by comparing predictions with in-
dependent data of 175 soil profiles, was moderate (robust
R2

= 0.34 for SOC stock in 0–30 cm andR2
= 0.40 in 0–

100 cm). Prediction standard errors (SE), validated by com-
paring point prediction intervals with data, proved to be con-
servative.

Using the fitted models, we mapped forest SOC stock
by robust external-drift point kriging at high resolution
across Switzerland. Predicted mean stocks in 0–30 and 0–
100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2)
and 12.58 kg m−2 (SE 0.24 kg m−2), respectively. Hence,
topsoils store about 64 % of SOC stocks down to 100 cm

depth. Previous studies underestimated SOC stocks of top-
soil slightly and those of subsoils strongly. The comparison
further revealed that our estimates have substantially smaller
SE than previous estimates.

1 Introduction

Greenhouse gas (GHG) reporting for the sector “LULUCF –
Land Use, Land-Use Change and Forestry” of the United Na-
tions Framework Convention on Climate Change and the Ky-
oto Protocol requires national estimates of soil organic car-
bon (SOC) stock. SOC stock estimates are needed as baseline
and for quantifying carbon (C) sources and sinks caused by
land use change. Switzerland, as an example, uses a Tier-2
approach (IPCC, 2003) for SOC stock changes due to con-
version between settlements, wetlands, forest-, crop-, grass-
land and other land cover types (FOEN, 2012a). Respective
estimates are reported for the five ecoregions Jura, Central
Plateau, Pre-Alps, Alps and Southern Alps and for the entire
country (Fig.1, Brassel and Lischke, 2001).

Mean SOC stocks were estimated by various approaches
in previous studies: the simplest is to use the arithmetic mean
of the available SOC stock data as a national estimate (Weiss
et al., 2000). “Class-matching” (CM) estimates mean stocks
for bioclimatic (Chiti et al., 2012), land use or soil map
strata (Xu et al., 2011; Krogh et al., 2003) or intersections
thereof (Arrouays et al., 2001; Lettens et al., 2004, 2005a;
Meersmans et al., 2009) and combines them for a national
estimate by formulae for stratified random sampling (STR).
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Figure 1. Ecoregions of Switzerland, stratified by altitudinal class.

Hence, CM capitalises on benefits of spatial stratification, but
Perruchoud et al.(2000) demonstrated that respective gains
may be small.

Perruchoud et al.(2000) and other authors (e.g.Leifeld
et al., 2005; Meersmans et al., 2008, 2011, 2012a) used lin-
ear models (LM) to relate SOC to covariates characterising
soil formation by climate, vegetation, topography, geology
and land management. More recently,Grimm et al.(2008),
Martin et al.(2011) andWiesmeier et al.(2011) used non-
linear machine learning (ML) methods to the same end. Such
statistical modelling of SOC needs covariates that are avail-
able contiguously in space because mean stocks are esti-
mated by averaging point predictions done by LM or ML
for the nodes of a fine-meshed grid over a region of interest,
which is equivalent to a discrete approximation of the geo-
statistical block kriging approach (e.g.Gotway and Young,
2002). The restriction to contiguous spatial covariates as only
predictors generally limits the predictive power of fitted mod-
els seriously. Accurate spatial information on important, soil-
related, SOC controlling covariates (pH, clay content, reac-
tive aluminium and iron, mineral surface charge density, soil
temperature and moisture;Schmidt et al., 2011) is com-
monly unavailable.

If linear and ML models fit SOC data only poorly then
spatially structured variation in data becomes likely apparent
as residual spatial autocorrelation. Besides ordinary kriging
(Mishra et al., 2009), regression kriging (RK,Hengl et al.,
2004), a variant of external-drift kriging (EDK), was used
by Mishra et al.(2010, 2012) and Kumar et al.(2012) to

map SOC stock at regional scale.Mishra et al.(2010, 2012)
demonstrated that RK indeed improves on LM and CM by
exploiting autocorrelation when computing SOC predictions;
considering autocorrelation is also essential for unbiased sig-
nificance testing of hypotheses on relations between SOC
and environmental covariates. Many studies that built statis-
tical SOC models based on significance testing (e.g.Leifeld
et al., 2005; Meersmans et al., 2008, 2012a; Wiesmeier et al.,
2013) neglected autocorrelation. The studies byPerruchoud
et al. (2000) and Wiesmeier et al.(2012) are here notable
exceptions.

Besides precise SOC estimates, standard errors of national
SOC stocks are needed for GHG inventories, for example,
to test the statistical significance of estimated stock changes
(Lettens et al., 2005a, b; Meersmans et al., 2009, 2011).
Quantification of uncertainties of spatial mean stock esti-
mates (and changes) is straightforward for CM, where STR
formulae can be employed. However, care is needed when
mean stock estimates are obtained by averaging LM, EDK
or ML point predictions: the point prediction errors for the
nodes of the prediction grid are then mutually correlated.
This is true even if there is no residual autocorrelation be-
cause predictions are computed from the same set of fitted
parameters. Thus, ignoring the correlation of fitted regres-
sion coefficients of LM as inMeersmans et al.(2008, 2011,
2012b, J. Meersmans, personal communication, 2013) likely
biases the standard errors (SE) of estimated mean stocks.
If there is residual autocorrelation then the correlation of
prediction errors at adjacent nodes of the prediction grid is
stronger. Neglecting residual autocorrelation biases SE of es-
timated mean SOC stocks even more.

The truthfulness of reported SE is best checked with in-
dependent validation data, along with the actual precision
of mean stock estimates. We are currently not aware of
any study that validated modelled SE of stock estimates.
As pointed out byMinasny et al.(2013) only few studies
(Mishra et al., 2009, 2010, 2012; Wiesmeier et al., 2011)
tested the precision of the estimates with independent data.
Grimm et al.(2008), Martin et al. (2011) and Meersmans
et al. (2012b) used cross-validation to the same purpose,
which is clearly better than merely reporting notoriously
over-optimistic goodness-of-fitR2 values as done in most
studies.

The choice of transformations for SOC data is a further is-
sue that requires some care. Statistical inference for CM, LM
and EDK relies on the assumption of normally distributed er-
rors with constant variance. Frequently, this assumption is
violated by SOC data as empirical distributions are often
positively skewed (Minasny et al., 2013) and their disper-
sion increases with the mean (e.g.Mishra et al., 2009, 2010;
Chiti et al., 2012; Kumar et al., 2012; Wiesmeier et al., 2012,
2013). SOC data should then be log-transformed for statisti-
cal analyses as inMishra et al.(2010), Kumar et al.(2012)
andWiesmeier et al.(2012). Neglecting data transformations
(Meersmans et al., 2009; Chiti et al., 2012) will likely affect
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stock estimates only mildly but will invalidate reported SE.
Another error is to fit LM to untransformed SOC stocks, but
at the same time to assume that the prediction errors have
constant relative dispersion (Meersmans et al., 2011).

Last but not least, outliers are a common nuisance in
SOC data sets (Meersmans et al., 2008; Mishra et al., 2009;
Martin et al., 2011; Chiti et al., 2012; Wiesmeier et al., 2012,
2013). In most instances, they are genuine observations that
do not follow the “majority pattern” of a data set. A com-
mon but suboptimal recipe is to exclude such observations
(Chiti et al., 2012) from the analyses. Outlier deletion bi-
ases statistical inference if not properly taken into account
(Maronna et al., 2006, Chap. 1). A better approach is there-
fore to use robust methods that are insensitive to outliers.
Apart fromMartin et al.(2011) andWiesmeier et al.(2011),
who used non-parametric tree-based methods, no robust pro-
cedures were used so far to estimate mean SOC stocks.

This review shows that there is scope to improve on previ-
ously used statistical methodology for estimating SOC stocks
at the regional and national scales. When estimating SOC
stocks stored in the mineral soil of Swiss forests, our objec-
tives were, therefore,

i. to employ a statistically sound, robust log-normal EDK
approach that accounts for dependence of SOC stock on
environmental covariates and autocorrelation;

ii. to fit such models for mapping SOC stocks of two com-
partments (0–30 and 0–100 cm depth) of the mineral
soil with 100 m spatial resolution across Switzerland;

iii. to rigorously validate both precision of predictions and
truthfulness of modelled SE with independent valida-
tion data; and

iv. to compute reliable estimates and associated SE of mean
stocks for the whole of Switzerland and its ecoregions –
stratified further by altitude into the groups≤ 600, 600–
1200,> 1200 m above sea level – by robust log-normal
block EDK.

The present study is confined to mineral soils under forests.
Comprehensive, harmonised and georeferenced SOC data is
for the time being available only for this land use. Data on
SOC stock stored in organic layers of Swiss forest soils is at
present too scarce to allow for a similar analyses, and com-
prehensive legacy data on SOC stocks of Swiss crop- and
grasslands will become available in the future only, as this
data is currently being digitised and geo-referenced (NABO,
2014). Nonetheless, mineral forest soil stocks are important
for GHG reporting because forest cover 45.5 % of the veg-
etated area of Switzerland (Hotz et al., 2005). Furthermore,
the currently available stock estimates for topsoils suggest
that forest soils store 1.5 times more organic carbon (OC)
than cropland and still 1.2 times more SOC than grassland
soils (FOEN, 2012a). Lastly,Martin et al.(2011) showed for
France that forest SOC stocks are more variable than stocks

on cultivated land. These figures underpin the importance
of forest SOC stock, which, in our view, justifies a separate
analysis of the respective data.

2 Materials and methods

2.1 Study area

As our study focused on forest soils, we had to delimit the
forest area of Switzerland (Fig.2). We used the same criteria
asGiamboni(2008): six categories rendered by VECTOR25
(Swisstopo, 2011b) as forest plus former forest areas, dev-
astated in 1990 and 1999 by two hurricanes (Bundesamt für
Umwelt BAFU, 2010) and currently not classified as forest
by VECTOR25. Areas shared with the National Mire Inven-
tory (FOEN, 2012b) were excluded. This removed some but
not all organic soils because the inventory does not cover all
bogs and fens under forest, in particular, if these had been
drained in the past.

According to this definition, forests cover 11 800 km2

(29 % of total area of Switzerland). Forests extend over
altitudes from 190 to 2390 m above sea level (Swisstopo,
2011a). Climatic conditions therefore vary notably within
this area: mean annual precipitation ranges from 600 to
2900 mm and mean annual temperature from−1 to 13◦C
(MeteoSwiss, 2011). Two thirds of the forested area is dom-
inated by coniferous trees, deciduous forests prevail only at
lower altitudes in the regions Jura, Central Plateau, Pre-Alps
and Southern Alps (Swiss Federal Statistical Office, 2000b).
Considerable variation is also found in geologic parent ma-
terial for soil formation: predominantly limestones in Jura
and in parts of the Pre-Alps, fluvioglacial sediments of sev-
eral Quaternary glaciations and of the Tertiary on the Central
Plateau, and igneous and metamorphic rocks in the Alps and
Southern Alps. This large variation of pedogenetic factors is
reflected in the development of very diverse soils (Walthert
et al., 2004) with variable conditions for mineralisation and
accumulation of SOC.

2.2 Data

2.2.1 Soil data

Soil profiles

We used data of 1033 forest soil profiles (Fig.2), studied by
the Swiss Federal Institute for Forest, Snow and Landscape
Research (WSL) in various surveys over the past 30 years
(mostly 1990–2000). Use of legacy soil data is typical for
many SOC inventories (e.g.Krogh et al., 2003; Lettens et al.,
2004, 2005b; Kumar et al., 2012; Minasny et al., 2013).
Two WSL surveys chose 269 sites on square grids with 1 km
and 8 km spacing, respectively. The remaining sites were se-
lected purposively by field surveyors to best represent soils
typical for given vegetation types. The position of the soil
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Figure 2. Locations of the 1033 soil profiles and Swiss forest area
(subdivided into calibration and validation sets).

profiles was recorded in the field on topographic maps (scale
1 : 25000), hence the error in the coordinates is about±25 m.

We assigned 175 out of the 1033 soil profiles to the valida-
tion set, which was used to check the predictive power of the
fitted statistical models, and the remaining 858 soil profiles
were used as a calibration set, used to build and fit these mod-
els. All except three sites of the validation set with organic
soils lay on the 1 km (38 sites) and 8 km grid (134 sites).
This selection resulted in a fairly even and spatially repre-
sentative distribution of the validation sites across Switzer-
land (Fig.2). When splitting the data, we strived for a bal-
anced representation of soil map units and vegetation types
between calibration and validation set.

The thickness of all soil horizons was recorded in the field
on the faces of soil pits and subsequent soil sampling and
laboratory analyses were all done by pedogenetic horizons.

Stone content

The volumetric content of stones (particles with size>

2 mm) was estimated visually on the face of soil profiles,
which is a common procedure (Baritz et al., 2010). These
estimates are bound to some error that is very difficult to
quantify because surveys were done by different staff. How-
ever, neglecting stone content as in many other studies (e.g.
Krogh et al., 2003; Meersmans et al., 2008; Xu et al., 2011)
would lead to overestimation of SOC stocks as stone content
is large for many Swiss forest soils.

Soil density

The density of the soil fraction with particle size≤ 2 mm was
measured for 440 out of about 5000 mineral soil horizons

with soil samples of fixed volume (Walthert et al., 2004,
p. 702) collected from the soil profiles. In addition, a field
estimate (penetration resistance of blade) of soil density was
available for all soil horizons (ordinal variable with 5 cate-
gories,Walthert et al., 2004, p. 695).

We computed the median of the measured densities for
each category of this variable and assigned these medi-
ans to all soil horizons without density measurements. The
accuracy of this pedotransfer function (PTF) was evalu-
ated by tenfold cross-validation (by re-estimating and re-
assigning the median densities computed from nine cross-
validation subsets to the 10th subset). The median of the
cross-validation errors was equal to 0.002 g cm−3 and the
median absolute deviation (MAD, see below) was equal to
0.256 g cm−3. For comparison, we used also the PTF by
Adams(1973) andHoneysett and Ratkowsky(1989), which
performed best for forest soils in the evaluations ofDe Vos
et al. (2005) andBaritz et al.(2010). Bias and MAD of the
cross-validation errors ranged between 0.33–0.34 and 0.50–
0.52 g cm−3 without re-calibration and if the coefficients of
the PTF were re-estimated with our own data these measures
were 0.06 and 0.30 g cm−3. Hence, our PTF had better pre-
dictive power than the PTF byAdams, but it was worse than
the one byJalabert et al.(2010) who recalibrated their PTF
by ML methods.

SOC content

SOC content was measured for all mineral soil samples by
an elemental C/N analyser (combustion at 1000◦C,Walthert
et al., 2010). When pH of a soil sample was larger than
6.0 then carbonates were removed by fumigation with hy-
drochloric acid prior to measuring C. Below this pH car-
bonates were assumed to be absent, and the OC content of
the sample was assumed to be equal to its total C content
(Walthert et al., 2010).

SOC stock

The SOC stockSi stored in horizoni per unit area [kg m−2]
was calculated from the thicknessDi of the horizon [m],
its volumetric stone contentGi [m3 m−3], soil densityρi

[kg m−3] and its SOC contentCi [kg kg−1] by

Si = Di(1− Gi)ρiCi, (1)

and the stockS in a given depth compartment was summed
by

S =

h∑
i=1

wiSi, (2)

whereh is the number of horizons fully or partly included
in the compartment andwi is the fraction of the thickness of
horizoni within the compartment.

Geosci. Model Dev., 7, 1197–1210, 2014 www.geosci-model-dev.net/7/1197/2014/
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2.2.2 Covariates for statistical modelling

Parent material and soil

Detailed information on soils and parent material is not avail-
able for the whole of Switzerland. Therefore, an overview
soil map discriminating 25 units (map scale 1: 200000,
Swiss Federal Statistical Office, 2000a) was used as a coarse
representation of geologic and pedogenetic conditions. Be-
ing mainly designed for agricultural usage, certain map units
did not well reflect contrasting conditions of forest soil devel-
opment. To lessen this drawbacks five additional units were
created by intersecting the soil map with selected polygons
of the Geological Map of Switzerland (map scale 1: 500000,
Swisstopo, 2005) and the maps of the Last Glacial Maximum
(map scale 1: 500000,Swisstopo, 2009) and of the biogeo-
graphic regions of Switzerland (see Table S2 in Supplement,
Gonseth et al., 2001). Besides, we used the geotechnical map
(map scale 1: 200000,BFS, 2001) to extrapolate soil infor-
mation available only at the 1033 soil profile sites (for de-
tails on sampling see Appendix 2,Walthert et al., 2004) to
the whole of Switzerland. Median values of soil properties
measured at those sites that lay within a given geotechni-
cal map unit were assigned to the respective unit. Then we
checked whether these newly generated covariates correlated
with SOC stocks. This was true for cation exchange capacity,
iron and calcium stocks and mass of soil particles< 2 mm
that we consequently retained for the statistical analyses.

Climate

Three climate data sets were available to us with spatial in-
formation on mean annual/monthly temperature and precipi-
tation, cloud cover, sunshine duration, radiation, degree days,
continentality index (Gams, 1935), temperature variation, ra-
tio of actual to potential evapotranspiration and site water
balance (Grier and Running, 1977). Two data sets contained
spatial information (resolution 25 m and 2 km, respectively)
on climatic means for period 1961–1990 (Zimmermann and
Kienast, 1999; MeteoSwiss, 2011) and the third for 1975–
2010 (spatial resolution 250 m). Since it was not a priori clear
which data set would be best, we used them all as covariates
in the statistical analyses.

Vegetation

The percentage of coniferous trees was derived from spec-
tral imagery (Swiss Federal Statistical Office, 2000a) and
species composition data of the National Forest Inventory
(NFI, Brassel and Lischke, 2001, both covariates rasterised
with 25 m resolution). The SPOT5 mosaic of Switzerland
(Mathys and Kellenberger, 2009) with spectral reflectance in
green, red and near-infrared bands, band ratios, IHS colour
space transformations and the normalised difference vege-
tation index (NDVI, Kriegler et al., 1969) were available.
Moreover, canopy height (difference of digital surface to

digital elevation model of 2 m resolution,Swisstopo, 2011a)
was included in the set of covariates.

Topography

Two digital elevation models (DEM, resolution 2 and 25 m,
Swisstopo, 2011a) allowed to compute a broad range of ter-
rain attributes covering multiple scales: elevation, slope an-
gle, aspect, north and east directions, planar, profile and com-
bined curvatures and smoothed versions of these attributes.
Furthermore, topographic position indices were calculated
based onZimmermann(2000) andJenness(2006) with radii
ranging from 6 m to 2 km. Flow accumulation area and topo-
graphic wetness indices were computed by single and multi-
flow algorithms (Tarboton, 1997).

Accounting for errors in locations of soil profiles

We mentioned above that coordinates of soil profiles had
been recorded with a likely error of about±25 m, which
clearly exceeds the resolution of the highly resolved DEM.
Therefore, the values of all covariates were averaged for cir-
cular neighbourhoods, centred on the recorded profile loca-
tions and having radii equal to 13, 19 or 26 m. Depending on
the type of data, different summary statistics were computed:
arithmetic means for real numbers, medians for integers and
the most frequent category for nominal or ordinal variables.
However, values of covariates aggregated with the different
radii were highly correlated, Therefore, for statistical analy-
ses we only used summaries computed with a radius of 26 m.

2.3 Statistical analyses

2.3.1 Model

Given past experiences (Mishra et al., 2010; Kumar et al.,
2012; Wiesmeier et al., 2012) and exploratory analyses
(Fig. 3), we decided to use a log-normal model for the SOC
stockS(s) at locations:

Y (s) = log(S(s)) = x(s)Tβ + Z(s) + ε(s), (3)

wherex(s)Tβ is the external drift that accounts for depen-
dence ofS on environmental covariatesx, (with β the re-
gression coefficients), T denotes transpose andZ(s) is a sta-
tionary autocorrelated Gaussian random field with zero mean
and isotropic exponential variogram with sillσ 2 and rangeα

γ (h) = σ 2 (1− exp(−h/α)) . (4)

ε(s) is a zero mean, spatially uncorrelated variable with
nugget varianceτ2. In our robust geostatistical approach
ε(s) need not be Gaussian, allowing thereby for outliers in
the data. The coefficientsβ, the variogram parametersθT

=

(τ2,σ 2,α) and the valuesZT
= (Z(s1),Z(s2), . . . ,Z(sn)) at

then soil profile locationssi are unknown and must be esti-
mated from the data.

www.geosci-model-dev.net/7/1197/2014/ Geosci. Model Dev., 7, 1197–1210, 2014



1202 M. Nussbaum et al.: SOC estimation by robust external-drift kriging

Figure 3. Boxplots of calculated soil organic carbon (SOC) stocks
in 0–100 cm depth by ecoregion and altitudinal class (n: number of
sites).

2.3.2 Model building

We used only the calibration set for model building, which
involved the following steps:

1. Positively skewed covariates (e.g. some terrain at-
tributes) were transformed by square root or natural log-
arithm.

2. Strongly correlated and therefore redundant covariates
were eliminated based on correlation biplots (Gabriel,
1981).

3. The least absolute shrinkage and selection operator
(LASSO,Hastie et al., 2009, Sect. 3.4) – an algorithm
that likely excludes non-relevant covariates – was used
with various sets of covariates, partly enriched by first-
order interactions between pairs of covariates, to find
an external drift that minimised the mean squared error
(MSE) in tenfold cross-validation.

4. The parameters of the geostatistical model (Eq.3) were
then estimated by a novel robust restricted maximum
method (REML,Künsch et al., 2011, 2014) for the ex-
ternal drift selected by LASSO.

5. Still using the external drift of the optimal LASSO fit,
an optimal value of the tuning constantc that controls
the robustness of REML was chosen by tenfold cross-
validation. We used the continuous ranked probability
score (CRPS, see below andGneiting et al., 2007) as
main criterion for choosing the tuning constant (and for
selecting covariates in step 6). We further tested whether
other variogram functions (spherical, Whittle–Matérn,
etc., e.g.Diggle and Ribeiro Jr., 2007) improved the fit
but this was not the case.

6. Non-relevant covariates were then removed step by step
by tenfold cross-validating the robust REML fit (and
added back along with interaction terms at later stages
if cross-validation results justified this).

7. The levels of categorical covariates (in particular of the
soil map) were merged based on partial residual plots
(e.g. Faraway, 2005) and cross-validation CRPS to ob-
tain a final parsimonious geostatistical model.

The improvement of the cross-validation MSE from step 3 to
7 is shown in Fig. S1 of the Supplement.

2.3.3 Evaluating predictive performance of
statistical models

The predictive power of the fitted geostatistical models was
tested by comparing predicted (Eq.15) with calculated SOC
stocks (Eq.2). The same criteria were used in model build-
ing by cross-validation (see above). Marginal bias and overall
precision were assessed by

BIAS = −
1

n

n∑
i=1

(S(si) − S̃(si))

S(si)
, (5)

robBIAS= −median1≤i≤n

(
S(si) − S̃(si)

S(si)

)
, (6)

RMSE=

1

n

n∑
i=1

(
S(si) − S̃(si)

S(si)

)2
1/2

, (7)

robRMSE= MAD1≤i≤n

(
S(si) − S̃(si)

S(si)

)
, (8)

whereS(si) stands for calculated,̃S(si) for predicted SOC
stocks and MAD for median absolute deviation. We com-
puted summaries of the relative prediction errors because the
log-normal model implies constant relative dispersion (i.e.
constant coefficient of variation). We standardised the pre-
diction errors byS instead ofS̃ to have a common standardi-
sation when comparing different models.

We also computed a standard and robustR2 by

R2
=

Cov[S(si), S̃(si)]
2

Var[S(si)]Var[S̃(si)]
, (9)

robR2
=

1−

( ∑n
i=1 |S(si) − S̃(si) |∑n

i=1 |S(si) − median1≤i≤n(S(si)) |

)2

. (10)

Although the latter is tailored for robust L1 regression (Croux
and Dehon, 2003), we found it useful for our approach.

In addition, we computed the strictly proper scoring cri-
terion CRPS (Gneiting et al., 2007), which is equal to the
integral over the Brier score (BS):

CRPS=

∞∫
−∞

BS(u)du

≈

n∑
i=1

BS(S(i)) · (S(i+1) − S(i−1))
2/2, (11)
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where S(i) is the ith largest calculated stock,S(0) = S(1),
S(n+1) = S(n) and

BS(u) =
1

n

n∑
i=1

{F̃i(u) − I (S(si) ≤ u)}2, (12)

whereF̃i(u) is the (estimated) log-normal predictive distri-
bution function of theith datum andI (A) is an indicator
equal to one ifA is true and zero otherwise. CRPS mea-
sures thesharpnessof predictive distributions (smaller val-
ues signal sharper̃Fi), hence depends both on prediction pre-
cision and quality how prediction uncertainty is modelled.
Modelling of prediction uncertainty was further tested by
counting how many observations fall into two-sided 95 %-
prediction intervals and by checking the empirical distribu-
tion of the probability integral transform (PIT,Gneiting et al.,
2007)

PITi = F̃i(S(si)), (13)

which should be uniformly distributed.

2.3.4 Mapping SOC forest soil stocks across
Switzerland

To get better parameter estimates for finally mapping SOC
stocks by EDK we fitted the model to the merged calibration
and validation data. This was done after computing valida-
tion statistics (see above). SOC stocks were then predicted
by robust log-normal kriging (Cressie, 2006; Künsch et al.,
2014) for the nodes of a 100 m grid by

S̃(s) = exp(Ỹ (s) + 1/2{τ̂2
+ σ̂ 2

− Var[Ỹ (s)]}), (14)

with

Ỹ (s) = x(s)Tβ̂
θ̂
+ γ

θ̂
(s)T0−1

θ̂
Ẑ

θ̂
, (15)

whereˆ denotes robust REML estimates,γ
θ̂
(s) is the vector

with the estimated covariances betweenZ andZ(s), 0
θ̂

is
the estimated covariance matrix ofZ and

Var[Ỹ (s)] =

(
γ

θ̂
(s)T0−1

θ̂
,x(s)T

)
(16)

· Cov

[(
Ẑ

θ̂

β̂
θ̂

)
,
(
ẐT

θ̂
, β̂T

θ̂

)](0−1
θ̂

γ
θ̂
(s)

x(s)

)
.

Künsch et al.(2011) give in their Eq. (19) an approxima-
tion for the covariance matrix of(ẐT

θ̂
, β̂T

θ̂
). Approximate, log-

normal kriging variances were obtained from

Var[S(s) − S̃(s)] = exp
(
2x(s)Tβ̂

θ̂
+ τ̂2

+ σ̂ 2
)

(17)

· {exp(τ̂2
+ σ̂ 2) − 2exp(Cov[Ỹ (s),Y (s)])

+ exp(Var[Ỹ (s)])},

where

Cov[Ỹ (s),Y (s)] = b
(
γ

θ̂
(s)T 0−1

θ̂
,x(s)T

)
(18)

· M−1
(

γ
θ̂
(s)

XTγ
θ̂
(s)

)

andb, X, M as in Künsch et al.(2011). Since outliers re-
ceive small weight when computinĝβ

θ̂
andẐ

θ̂
by the robust

REML algorithm, the prediction of SOC stock by Eqs. (14)
and (15) is also insensitive to outlying observations.

2.3.5 Predicting regional and national mean SOC stocks

The mean SOC stocks in the five ecoregions (and for the
whole of Switzerland), stratified by altitude, were computed
from the robust log-normal point kriging predictions at the
nodes of the 100 m grid by

S̃(Bk) = 1/Nk

∑
si ∈Bk

S̃(si), (19)

where the notation
∑

si ∈Bk
means summation over theNk

nodes of the grid falling into regionBk. Equation (19) is
a discrete approximation to the log-normal block kriging pre-
dictor (e.g.Cressie, 2006, Eq. 14). The block kriging vari-
ance (i.e. the variance of the prediction error,S(Bk)− S̃(Bk))
for regionBk can similarly be approximated by the covari-
ance (Eq. S2 in Supplement)

Var[S(Bk) − S̃(Bk)] =

1

N2
k

∑
si ∈Bk

∑
sj ∈Bk

Cov[S(si) − S̃(si),S(sj ) − S̃(sj )]. (20)

However,Nk is usually too large (in our case: 104–105) to
evaluate the double sum of Eq. (20) in acceptable comput-
ing time. We used therefore a Monte Carlo approximation
for Eq. (20), where the covariances were repeatedly com-
puted and averaged for randomly selected subsets of nodes
in Bk. Full details can be found in the respective appendix of
the Supplement. Of course, this approximation can also be
used if there is no residual autocorrelation, and it is straight-
forward to derive analogous expression for untransformed
data. For sufficiently large regions, one can safely assume
– due to the central limit theorem – that the prediction errors
S(Bk) − S̃(Bk) are normally distributed, in spite of the fact
that point prediction errors follow log-normal laws.

All statistical computations were done inR (R Core Team,
2013), using several add-on packages, in particulargeorob
(Papritz, 2013) for robustly fitting geostatistical models and
for robust kriging. Processing and mapping of spatial data
was done in ArcGIS 10.0 (ESRI, 2010).
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3 Results

3.1 Calculated SOC stocks

SOC stock stored in the top 30 cm of the mineral soil at the
1033 sites varied considerably from 0.8 to 36.1 kg m−2 (me-
dian 6.3 kg m−2), and to 100 cm depth stocks ranged from 1.0
to 96.4 kg m−2 (median 9.2 kg m−2). Stocks in both depths
were strongly correlated (Spearman correlation 0.91). On av-
erage, calculated stocks were slightly larger for the validation
set (Table S1 of Supplement). Except for the Central Plateau
and the Southern Alps, mean stocks down to 1 m depth in-
creased with altitude (Fig.3). For most strata, the frequency
distribution of stocks was positively skewed and dispersion
increased with the mean, calling for log-transformation for
the statistical analyses.

3.2 Models for SOC stocks in 0–30 and 0–100 cm depth

Not surprisingly, given the strong correlation of stocks in the
two depths, the structure of the external drifts did not differ
much. Both drifts were parsimonious, with 10 and 12 fitted
coefficients, respectively, and included covariates character-
ising soils, vegetation, climate and topography (see Table1
as well as Tables S3 and S4 of Supplement).

Tenfold cross-validation resulted for both depths in simi-
lar robR2 (0.31). However, based on CRPS, the fit was better
for topsoil stocks (0.238 vs. 0.252). Residuals of both mod-
els were spatially autocorrelated, but spatial dependence was
rather weak with nugget/total-sill ratios and effective ranges
of 0.37 and 600 m for 0–30 cm and 0.41 and 660 m for 0–
100 cm depth (see Table S5 of Supplement).

The optimal tuning constant was equal toc = 2 for both
models, and robustly estimated parameters fitted the data
slightly better than customary Gaussian REML estimates
(cross-validation CRPS of 0.239 for non-robust model fit for
0–30 cm and of 0.253 for 0–100 cm depth).

3.3 Validation of SOC stock predictions with
independent data

Figure4 shows calculated SOC stocks in 0–30 and 0–100 cm
of the mineral soil, plotted against respective predictions for
the independent validation set. The solid lines of the loess
scatterplot smoothers (Cleveland, 1979) are close to the 1: 1
lines, indicating absence of conditional bias. This is con-
firmed by the BIAS and robBIAS statistics (Table2). Irre-
spective how the statistics were computed, relative marginal
bias was less than 15 %. However, variation of the data
around the 1: 1 line was quite large, which was reflected
in large root mean squared relative errors. robRMSEs were
about 40 % and non-robust RMSE 49 % for topsoils and 56 %
for stocks down to 100 cm. As seen from the robustR2,
the models explained about 34 % of the variation of calcu-
lated SOC stock in 0–30 cm and 40 % of calculated SOC
stock in 0–100 cm. The kriging variances overestimated the
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Figure 4. Scatter plots of measured against predicted soil organic
carbon (SOC) stocks in 0–30 cm(a) and 0–100 cm(b) of the min-
eral soil, computed with the calibration data for the sites of the val-
idation set (solid line: loess scatter plot smoothers,n: number of
sites).

prediction errors somewhat: only 3.4 % of the validation ob-
servations (both models) were outside of 95 %-prediction in-
tervals (Fig. S5 in Supplement). Overestimation of predic-
tion uncertainty was also indicated by convex-shaped PIT
histograms (Fig. S6 in Supplement), which had more proba-
bility mass in the centre than in the tails.
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Table 1. Covariates of external drift selected by model building procedure for soil organic carbon (SOC) stocks in 0–30 cm and 0–100 cm
depth.

SOC stock 0–30 cm SOC stock 0–100 cm

Soil categorical covariate with 5 aggregated soil map units categorical covariate with 9 aggregated soil
map units

mass of soil particles< 2 mm assigned to geotechnical
map units

Climate mean annual precipitation (square root) mean March precipitation (square root)

Vegetation near-infrared band (SPOT5 mosaic) near-infrared band (SPOT5 mosaic)

Topography topographic position index with radius 500 m (Jeness,
2006) for soil map units rich and poor in clay

slope (resolution 2 m)

3.4 Prediction of SOC stocks for Swiss forest soils

For computing the predictions, the parameters of the final
models (Table1) were estimated with data of 1022 sites
(combined calibration and validation sets, excluding 11 sites
with missing covariate information). Robust log-normal krig-
ing predictions of stocks stored to 100 cm depth are mapped
in Fig. 5 for the nodes of the 100 m grid. The map with the
predicted topsoil SOC was very similar and is therefore not
shown. Block kriging predictions of the mean stocks for the
five ecoregions and for the entire Swiss forest area are shown
in Fig. 6.

The largest SOC stocks were predicted for higher altitudes
and for the Southern Alps in general. Predicted stocks were
smallest for the Central Plateau and for lower altitudes of the
Pre-Alps, where stocks down to a depth of 100 cm remained
below 10 kg m−2. For the whole of Switzerland, predicted
mean SOC stocks in 0–30 cm were equal to 7.99 kg m−2 (SE
0.15 kg m−2, 95 %-prediction interval [7.69, 8.29] kg m−2).
Down to 100 cm a SOC stock of 12.58 kg m−2 SOC was pre-
dicted (SE 0.24 kg m−2) resulting in a 95 %-prediction inter-
val of [12.11, 13.05] kg m−2. Thus, about 4.5 kg m−2 SOC
are stored in subsoils (30–100 cm) of Swiss forests.

Our estimates do not include carbon stored in forest floor
horizons. Spatially explicit estimation was not possible for
this compartment because we largely lacked C and soil
density measurements. Based on the available data,Nuss-
baum et al.(2012) estimated that about 1.7 kg m−2 (SE
0.08 kg m−2) of C are stored in forest floors of Swiss forests.

4 Discussion

4.1 Model building and covariate selection

The model building procedure effectively reduced the 360
potential covariates and their first-order interactions to
a small and meaningful set. Precipitation was a covariate of
both models (with positive coefficients, Figs. S2 and S3 in

Supplement).Perruchoud et al.(2000), Martin et al.(2011),
Meersmans et al.(2012b), Kumar et al.(2012), Chiti et al.
(2012) andWiesmeier et al.(2013) previously reported that
wet climate favours SOC accumulation. Near-infrared re-
flectance of the forest canopy was also selected for both mod-
els: smaller reflectance of conifers for wavelength of 750
to 1300 nm (Cipar et al., 2004) and negative regression co-
efficients imply larger SOC stocks under conifers than de-
ciduous trees. Additionally, information on parent material
was important for SOC prediction: aggregated units of the
overview soil map were meaningful covariates despite repre-
senting the heterogeneous pedogenetic conditions typical for
Switzerland only coarsely (see Figs. S2 and S3 in Supple-
ment).

4.2 Residual spatial autocorrelation

Spatial autocorrelation of residuals remained weak in both
models, suggesting that spatial patterns in calculated SOC
stocks were reasonably well modelled by the external drifts.
Due to short-ranged spatial dependence, only 5 % of the
nodes of the prediction grid were within a distance equal
to the effective variogram ranges of the soil profile sites.
From the validation set only 14 of 175 sites were within these
zones. Neglecting spatial autocorrelation but using the same
set of covariates would slightly lower the precision of SOC
stock estimates for the 0–30 cm and increase precision for
the 0–100 cm depth compartment (Table S6 in Supplement).
Although kriging predictions differ only within the estimated
range of spatial dependence from predictions obtained by the
regression models, consideration of autocorrelation was im-
portant for accurate modelling of prediction uncertainty.

4.3 Robust parameter estimation

Moderate robustification of the parameter estimation proce-
dure (tuning constantc = 2) increased the predictive power
of the fitted models in cross-validation slightly compared to
customary REML and kriging. This is reflected in the slight

www.geosci-model-dev.net/7/1197/2014/ Geosci. Model Dev., 7, 1197–1210, 2014
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Table 2. Statistics of relative prediction errors of soil organic carbon (SOC) stocks in two depth compartments (0–30, 0–100 cm) for the
validation set.

BIAS RMSE R2 robBIAS robRMSE robR2 CRPS

0–30 cm 0.135 0.488 0.346 0.070 0.388 0.337 0.221
0–100 cm 0.152 0.556 0.477 0.066 0.420 0.403 0.247

Data Source:
  Lakes: Vector 200 © 2007 swisstopo (DV033492.2)

  Relief 1:1'000'000  © 2012 swisstopo
  Swiss Boundary: BFS GEOSTAT, swisstopo

0 5025 km

±
1:2'200'000

 SOC stock 0-100 cm  [kg m-2]
0 3 6 9 12 15 18 21 24 40

Figure 5. Robust log-normal kriging prediction of the soil organic carbon (SOC) stock in 0–100 cm of the mineral soil of Swiss forests
(computed with best-fit model with covariates according to Table1 and tuning constantc = 2, smoothed with focal mean with a radius of 1
pixel= 100 m).

increase of robRMSE (0.6 % for SOC stock predictions in
0–30 cm and 0.5 % for stocks in 0–100 cm) compared to a
non-robust fit of the model with the same covariates (Ta-
ble S6 in Supplement). A further advantage of robust esti-
mation is clear labelling of data that are fitted only poorly by
the models. Scrutinising environmental conditions for those
observations revealed that these were: (i) sites on calcare-
ous bedrock in inner Alpine valleys where recurring drought
hinders OC mineralisation, resulting in thick forest floor and
SOC rich A horizons (Walthert et al., 2004); and (ii) sites in
the Southern Alps with acid podsolic soils that show pro-
nounced humus translocation down the profile. Moreover,
these sites are influenced by forest fires (leading to accu-
mulation of black carbon) and stabilise SOC effectively by
large content of aluminium and iron weathered from silicate
rich bedrock (Blaser et al., 1997). Using robust procedures
ensured that SOC data resulting from sites subject to such
special conditions did not confound statistical analyses.

4.4 Predictive performance of fitted models

Random dispersion of the prediction errors remained large
as our robRMSEs of 39 and 42 % demonstrated. This was
also reflected in rather modestR2 of 0.35 and 0.48 (Table2).
Further validation data from Swiss soil monitoring networks
were predicted with somewhat larger errors (Nussbaum et al.,
2012, cf. Sect. 3.4). Other studies found (cross-)validation
R2 (all non-robust) of similar magnitude:Martin et al.(2011)
obtained by cross-validationR2

= 0.36 for predicting top-
soil SOC stocks of forests in France.Mishra et al.(2009)
found R2

= 0.46 for stocks in 0–50 cm andR2
= 0.56 for

0–100 cm, andKumar et al.(2012) reportedR2
= 0.36 for

stocks down to 100 cm depth. The latter two studies validated
with independent data predictions of OC stocks in soils under
various land uses in the US states of Indiana and Pennsylva-
nia.

Geosci. Model Dev., 7, 1197–1210, 2014 www.geosci-model-dev.net/7/1197/2014/
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Figure 6. Block kriging predictions of the soil organic carbon
(SOC) stocks in 0–30 cm and 0–100 cm soil depth in the five ecore-
gions stratified by altitude a.s.l. (m) into three classes (vertical lines:
prediction intervals).

On the one hand, incompleteness and partly insufficient
quality of covariates is likely responsible for the modest pre-
dictive power of the fitted models. In particular, spatial in-
formation on soil or vegetation parameters controlling SOC
turnover was completely lacking in our set of potential co-
variates. Also, data on forest management and land use his-
tory (e.g. stand age), found to be relevant bySchroeder et al.
(2009) andSchulp et al.(2013), was missing.

On the other hand, causes for the moderate precision of
our predictions lie in the missing soil density measurements
(Schrumpf et al., 2011). For most horizons soil density was
derived from a PTF, which proved to be unbiased, but never-
theless added additional variation to the data.

4.5 Spatial structure of SOC stock predictions

So far, no maps of SOC stocks have been published for Swiss
forests that could be used for verification of Fig.5. Never-
theless, several patterns in our SOC stock map matched our
expectations: small SOC stock was predicted for acid soils
at lower altitude on the Central Plateau. Very small total
SOC stock was estimated for areas in the eastern Pre-Alps
and Alps where Permian Verrucano sand stones form the
bedrock. On these sites, SOC accumulates in the forest floor.
The map shows large stocks up to 40 kg m−2 in parts of the
eastern Pre-Alps where large annual precipitation and water-
logged soils prevail, and also in the Jura region, where large
stocks are likely related to organic matter stabilisation by cal-
cium (Walthert et al., 2004). Very large SOC stock was pre-
dicted for the Southern Alps, where a combination of forest
fires and Al-rich soil on metamorphic parent material led to
an accumulation of organic matter, even in deeper soil hori-
zons. Excepting the special conditions in the Southern Alps,
predictions of the mean stocks by ecoregions and altitudinal
class (Fig.6) reflected the increase of SOC stock with alti-
tude described byHagedorn et al.(2010).

4.6 Comparison with SOC stock estimates of
previous studies

Perruchoud et al.(2000) estimated for the whole of Switzer-
land a mean SOC stock of 7.59 kg m−2 (SE 0.30 kg m−2)
for the top 30 cm of the mineral soil and 9.82 kg m−2 (SE
0.53 kg m−2) for mineral soils down to bedrock, which are
both significantly smaller than our current estimates (p val-
ues of one-sidedz tests: 0.004 and< 10−12, respectively).
The estimate of 11.86 kg m−2 (SE 0.54 kg m−2) by Bolliger
et al. (2008) for total SOC stock (forest floor plus mineral
soil down to bedrock) of Swiss forests is also smaller than
our estimate for 0–100 cm. Our standard errors (0–30 cm:
0.15 kg m−2; 0–100 cm: 0.24 kg m−2) are smaller (by a fac-
tor of about two) than those ofPerruchoud et al.(2000) and
Bolliger et al.(2008). Since we validated uncertainty mod-
elling for point predictions and used a coherent framework
to quantify the uncertainty of our regional and national mean
estimates, one can trust that these figures accurately represent
the uncertainty of our estimates.

Perruchoud et al.(2000) estimated that about 77 % of SOC
stock of Swiss forests is stored in the mineral topsoil (0–
30 cm), whereas we predicted a proportion of only 64 %,
which matches the proportion of 64.3 %, computed directly
from the observed SOC data (n = 1033) very well.

5 Summary and conclusion

Greenhouse gas reporting requires estimates of regional or
national mean SOC stocks that are computed from observa-
tions with quasi point support. The geostatistical block krig-
ing approach is the method of choice for such change-of-
support problems as it guarantees that estimates are unbi-
ased and precise and prediction standard errors correctly ac-
count for the spatial averaging. Rather surprisingly, our study
seems to be the first to employ such an approach in the con-
text of GHG reporting.

Based on spatially referenced data about 1033 soil profiles,
we built parsimonious, pedologically interpretable, geosta-
tistical models for SOC stocks in two depth compartments
(0–30, 0–100 cm) of mineral soils of Swiss forests. The mod-
els relate calculated stocks to environmental covariates that
characterise the pedogenetic conditions at the profile sites
and account for residual spatial auto-correlation. The fitted
models were rigorously validated by comparing predictions
with independent data. Using the models, we mapped forest
SOC stock across Switzerland by robust external-drift krig-
ing at high spatial resolution and aggregated the kriging re-
sults coherently to come-up with reliable block kriging esti-
mates (and standard errors) of national mean SOC stocks in
Swiss forests.

A comparison with earlier studies on SOC in Swiss forest
revealed that previous estimates of SOC stock down to 1 m
depth were distinctly smaller than our estimate. Moreover,

www.geosci-model-dev.net/7/1197/2014/ Geosci. Model Dev., 7, 1197–1210, 2014
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our (independently validated) standard errors were only half
as large as the previously reported SE. As we used a sub-
stantially larger database and sound geostatistical methods,
we trust our estimate more and conclude that SOC stocks of
Swiss forests have been considerably underestimated in the
past.

The Supplement related to this article is available online
at doi:10.5194/gmd-7-1197-2014-supplement.
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