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Abstract. An improved version of the PDAC (Pyroclastic
Dispersal Analysis Code, Esposti Ongaro et al., 2007) nu-
merical model for the simulation of multiphase volcanic
flows is presented and validated for the simulation of multi-
phase volcanic jets in supersonic regimes. The present ver-
sion of PDAC includes second-order time- and space dis-
cretizations and fully multidimensional advection discretiza-
tions in order to reduce numerical diffusion and enhance the
accuracy of the original model. The model is tested on the
problem of jet decompression in both two and three dimen-
sions. For homogeneous jets, numerical results are consis-
tent with experimental results at the laboratory scale (Lewis
and Carlson, 1964). For nonequilibrium gas–particle jets,
we consider monodisperse and bidisperse mixtures, and we
quantify nonequilibrium effects in terms of the ratio between
the particle relaxation time and a characteristic jet timescale.
For coarse particles and low particle load, numerical simu-
lations well reproduce laboratory experiments and numer-
ical simulations carried out with an Eulerian–Lagrangian
model (Sommerfeld, 1993). At the volcanic scale, we con-
sider steady-state conditions associated with the develop-
ment of Vulcanian and sub-Plinian eruptions. For the finest
particles produced in these regimes, we demonstrate that the
solid phase is in mechanical and thermal equilibrium with the
gas phase and that the jet decompression structure is well de-
scribed by a pseudogas model (Ogden et al., 2008). Coarse
particles, on the other hand, display significant nonequilib-
rium effects, which associated with their larger relaxation
time. Deviations from the equilibrium regime, with maxi-
mum velocity and temperature differences on the order of

150 ms−1 and 80 K across shock waves, occur especially
during the rapid acceleration phases, and are able to modify
substantially the jet dynamics with respect to the homoge-
neous case.

1 Introduction

During explosive volcanic eruptions, a mixture of gases,
magma fragments, crystals and eroded rocks is injected into
the atmosphere at high velocity, pressure and temperature.
The diverse and unpredictable variability of eruptive styles
depends mostly on the complex rheology of magma and the
nonlinear processes leading to the fragmentation of the vis-
cous melt into a polydisperse mixture of gases and parti-
cles (Gonnermann and Manga, 2007). Nonetheless, the ex-
plosive character of an eruption is always associated with the
rapid decompression and the consequent abrupt expansion of
gases in the magma (the exsolved magmatic volatiles in mag-
matic eruptions, vaporized free water or hydrothermal fluids
in hydromagmatic and phreatomagmatic eruptions) (Parfitt
and Wilson, 2008). Under such conditions, in the proximity
of the volcanic vent, the erupted underexpanded multiphase
mixture can manifest the features of supersonic flows (Kief-
fer, 1984; Woods and Bower, 1995; Esposti Ongaro et al.,
2008; Ogden et al., 2008b; Orescanin et al., 2010), which, in
turn, directly affect the plume source conditions. After de-
compression, column behavior is controlled by the balance
between its negative buoyancy, associated with the load of
solid particles, and the positive buoyancy due to air heating

Published by Copernicus Publications on behalf of the European Geosciences Union.



1906 S. Carcano et al.: A numerical model for volcanic jets

and expansion. Plume dynamics are therefore mainly influ-
enced by (subsonic) turbulent mixing and mass and thermal
exchange between the eruptive mixture and the atmosphere.
Depending upon the efficiency of the turbulent entrainment,
the gas–particle mixture can form a buoyant plume in the
atmosphere or collapse under its particle load forming pyro-
clastic density currents (Valentine, 1998).

A general understanding of the transport dynamics of py-
roclasts in the atmosphere was first achieved by describing
the eruptive mixture as homogeneous, i.e., by assuming ki-
netic and thermal equilibrium between gas and particles and
by solving the resulting transport equations under simpli-
fied conditions (e.g., one-dimensional and steady-state ap-
proximations) (Wilson, 1976; Woods, 1988; Sparks et al.,
1997). Such an approach has also been extended to two and
three dimensions and a transient regime (Oberhuber et al.,
1998; Suzuki et al., 2005; Ogden et al., 2008a) in order to
carry out numerical simulations of volcanic processes at the
large scale, highlighting the key roles of environmental at-
mospheric conditions (Graf et al., 1999), large-eddy turbu-
lence (Suzuki and Koyaguchi, 2010), vent overpressure (Og-
den et al., 2008b) and boundary-layer processes (Doronzo
et al., 2012).

However, the detailed reconstruction of well-documented
eruptions and the growing need to quantify and map the
hazards associated with future explosive events require the
simulation of full eruptive scenarios. To this aim, eruption
models able to incorporate the main dynamic processes and
more realistic input conditions are needed. The problem, in
its general multidimensional and unsteady formulation, is ex-
tremely challenging due to the multiphase nature of the flow
as well as its multiscale features.

Mathematical models based on multiphase flow formula-
tion have been proposed starting from the late 1980s (Valen-
tine and Wohletz, 1989; Dobran et al., 1993), but have be-
come more popular in the last decade (Dartevelle et al., 2004;
Pelanti and LeVeque, 2006; Dufek and Bergantz, 2007; Es-
posti Ongaro et al., 2007) also thanks to the impressive de-
velopment of computational techniques that allow for the so-
lution of the complicated set of transport equations on mod-
ern high-performance parallel computers. However, further
work is still necessary to achieve their systematic validation
and to test their adequacy in simulating volcanic multiphase
flows, especially as far as complex phenomena such as un-
derexpanded jets are concerned.

This work is focused on the enhancement and vali-
dation of the PDAC model (Pyroclastic Dispersal Anal-
ysis Code), which is described in Sect.2 and in more
detail in Neri et al.(2003) andEsposti Ongaro et al.(2007).
This model is able to solve the multiphase flow equations for
a mixture of volcanic gases and pyroclasts in nonequilibrium
conditions and exchanging momentum and heat. The PDAC
numerical solution procedure is based on the original algo-
rithm by Harlow and Amsden(1975), in which a first-order
semi-implicit treatment for multiphase flows was combined

with simple, donor-cell-based finite-volume conservative ad-
vection schemes. Typically, such first-order techniques intro-
duce large amounts of numerical diffusion.Esposti Ongaro
et al.(2007) extended the first-order spatial discretization to
second order in each separate spatial direction by adopting
the one-dimensional MUSCL scheme (Sweby, 1984), as is
common practice in other multiphase flow codes (e.g., MFIX
in Syamlal et al., 1993; Syamlal, 1998), but did not mod-
ify the semi-implicit time-advancement scheme based on the
backward Euler discretization of time derivatives. The re-
sulting numerical method was effective, but its results still
display significant numerical diffusion, especially in multidi-
mensional simulations, which implies the need for very high
spatial resolution and small time steps to achieve an accurate
simulation.

The first objective of this work is to modify the numeri-
cal algorithm in order to increase the accuracy in the sim-
ulation of the near-vent decompression dynamics, poten-
tially involving supersonic regimes and shock waves, and
the three-dimensional, transient dynamics of turbulent eddies
that control, for example, the atmospheric air entrainment.
We propose an improvement of the original PDAC numeri-
cal model to achieve higher accuracy and robustness in the
resolution of compressible regimes, while reducing the nu-
merical diffusion that may significantly damp turbulent ed-
dies in subsonic regimes. More specifically, a second-order
Crank–Nicolson-type time discretization (Crank and Nicol-
son, 1947) and a more accurate and fully multidimensional
advection scheme (LeVeque, 1996) are introduced in the
framework of the semi-implicit approach proposed byHar-
low and Amsden(1975).

The resulting model is applied to the simulation of the
decompression structures that form in the lower portion of
volcanic columns, and is validated for the first time against
laboratory experiments and by comparison with other model
results. Although in the context of volcanic eruption simula-
tions a rigorous model verification or validation is not possi-
ble (Oreskes et al., 1994), in recent years, three-dimensional
multiphase flow models have demonstrated the potential for
providing a good representation of the actual processes oc-
curring in the real system (Dufek and Bergantz, 2007; Es-
posti Ongaro et al., 2012). The validation of numerical results
against empirical observations of well-documented eruptions
together with the congruence of numerical benchmarks with
experimental and theoretical results are at present the only
available instruments to assess the “empirical adequacy”
(Oreskes et al., 1994) of models to simulate eruptive sce-
narios. As will be shown below, the results of the present
model are in good qualitative and quantitative agreement
with a number of experimental and numerical results avail-
able in the literature.

Finally, we investigate the capability of the enhanced mul-
tiphase model to catch nonequilibrium dynamics between
gas-phase and solid particles in transonic regimes. Indeed,
the assessment of the interactions between shock waves and
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solid particles with different sizes is still an almost unex-
plored subject in the multiphase flow literature, and its deep
understanding could also have further impact beyond vol-
canological applications.

In Sect. 2, we describe briefly the PDAC model and
the simplifying assumption adopted in the present work. In
Sects.3 and4, the present, improved version of the PDAC
numerical method is described. Numerical benchmarks and
comparison with analogous results obtained with other mod-
els are presented in Sect.5. Finally, some conclusions and
perspectives for future work are presented in Sect.6.

2 Multiphase flow equations

In this work we employ the same model equations as in the
original PDAC model proposed byNeri et al.(2003). They
are appropriate to describe the injection and dispersal of a hot
and high-velocity gas–pyroclast mixture in a standard refer-
ence atmosphere. The model is based on the following main
hypotheses:

– the solid particles and the gas are considered as inter-
penetrating continua, following an Eulerian–Eulerian
approach;

– the gas phase is compressible and obeys the ideal gas
law;

– mass transfer processes due to phase changes and
chemical reactions are neglected;

– solid particles are assumed to be spherical, and each
class is assumed to consist of particles of equal radius
and density;

– particles are assumed to maintain their original size,
thus neglecting the effect of any secondary fragmenta-
tion or aggregation process on the large-scale dispersal
dynamics; and

– the heat transfer between different solid phases, as well
as the viscous dissipation effects, are neglected due
to their second-order effect in comparison with advec-
tion, conduction and gas–particle heat exchange.

While in general turbulence and other dissipative effects
cannot be neglected, in this study, for the sake of simplic-
ity, we only focus on inviscid equations and regimes. As
reported in detail inCarcano et al.(2012), a scaling anal-
ysis of the model equations shows that the typical values
of the Reynolds numberRe =

ρUL
µ

and the Péclet number

Pe =
cpρUL

k
(based on diameter and velocity at the vent and

on average mixture properties) in a volcanic jet vary from 106

to 1011 in the regimes of interest. Consequently, the only dis-
sipative terms retained in the following are those represent-
ing interphase exchange processes between the gas and the

solid phase. However, all the physical processes neglected in
this study are actually accounted for in the complete PDAC
model in the same way as in the original model proposed in
Neri et al.(2003), to which we refer for a more complete de-
scription of these terms. Numerical results, not shown here,
confirm the validity of our approximation in the explosive
regimes.

The gas phase is composed of different chemical com-
ponents leaving the crater, such as water vapor and carbon
dioxide, and atmospheric air, considered as a single chem-
ical component. The pyroclasts are described byN classes
of solid particles, each one characterized by a diameter, den-
sity, specific heat and thermal conductivity. In the following
sections, we will denote with the subscripts = 1. . .N the
classes of solid particles and withl = 1. . .M the chemical
components of the gas phaseg. The model variables can be
defined as follows:

– εg, εs = volumetric fractions of gas and solid particles;
if V is the representative volume andVg andVs are the
volumes occupied by gas and particles, respectively,
then the gas and solid volume fractions are defined by
εg = Vg/V , εs = Vs/V ;

– ρg, ρs = microscopic densities of gas and solid parti-
cles;

– yl = mass fractions of the gas components;

– vg, vs = velocities of gas and solid particles;

– pg = gas pressure;

– hg, hs = enthalpies of gas and solid particles; and

– Tg, Ts = temperatures of gas and solid particles.

The model consists of 5(N + 1) + M coupled partial dif-
ferential equations for the independent variablespg, ρg, εs ,
vs , hs (or Ts), yl , with s = g, 1. . .N and l = 1. . .M. The
mass conservation equations for the gas phaseg, the s-th
solid phase and thel-th gas chemical component are

∂(εgρg)

∂t
+ ∇ · (εgρgvg) = 0, (1)

∂(εsρs)

∂t
+ ∇ · (εsρsvs) = 0, s = 1. . .N, (2)

∂(εlρlyl)

∂t
+ ∇ · (εlρlylvg) = 0, l = 1. . .M. (3)
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The momentum balance equations for the gas phase and
thes-th solid phase, for alls = 1. . .N are written as

∂(εgρgvg)

∂t
+ ∇ · (εgρgvgvg) = −εg∇pg + εgρgg

+

N∑
s=1

Ds,g(vs − vg), (4)

∂(εsρsvs)

∂t
+ ∇ · (εsρsvsvs) = −εs∇pg + εsρsg

+

N∑
p=1

Dp,s(vp − vs) + Dg,s(vg − vs). (5)

(with p 6= s). Here,Dp,s represents the drag coefficient de-
scribing the interaction between the phasep and the phase
s, and g denotes the gravitational acceleration vector. In
the present formulation, we adopted model A byGidaspow
(1994), in which the gas pressure gradient is present in both
the gas and particle momentum equations. Numerical ex-
periments assuming a pressureless particulate phase (model
B) do not show significant differences, at least in the dilute
regime under investigation. The energy balance equations for
the gas phase and the solid phasess = 1. . .N are written in
terms of their enthalpies:

∂(εgρghg)

∂t
+ ∇ · (εgρghgvg) = εg

(
∂pg

∂t
+ vg · ∇pg

)
+

N∑
s=1

Qs(Ts − Tg), (6)

∂(εsρshs)

∂t
+ ∇ · (εsρshsvs) = Qs(Tg − Ts). (7)

Here,Qs is the volumetric heat transfer rate between the gas
and thes-th solid phase. For the gas phase, we have con-
sidered the reversible rate of enthalpy change due to com-
pression or expansion, which is important in transient, com-
pressible flows. Heat transfer between different solid phases
is negligible, and also radiative heat transfer has not been
considered. As remarked before, viscous dissipation has been
neglected for the applications considered in this paper based
on the results of the scale analysis.

By definition of the volumetric and mass fractions, one
also has the relations

εg +

N∑
s=1

εs = 1, 0 ≤ εg ≤ 1, 0 ≤ εs ≤ 1,

M∑
l=1

yl = 1, 0 ≤ yl ≤ 1.

(8)

The gas phase is compressible, and we suppose that thermo-
dynamic quantities are related by the ideal gas law:

pg = R̃ρgTg, (9)

whereR̃ is the gas constant of the mixture of gaseous com-
ponents. Particulate solid phases are considered incompress-
ible. Consequently, their microscopic density is assumed to
be constant and denoted byρs , s = 1. . .N . The temperature
of each phase is derived from its enthalpy as

Ts =
hs

cp,s

, s = g,1. . .N, (10)

where particle specific heatscp,s are assumed to be constant
and to correspond to average values due to their minor sensi-
tivity on temperature. The specific heat of the gas phasecp,g

depends on temperature, and it is computed as a weighted
average of the specific heats of theM chemical components:

cp,g =

M∑
l=1

ylcp,l . (11)

Interphase drag coefficients and heat transfer rates are de-
rived from semi-empirical correlations for dilute and dense
regimes.

The initial values of all field variables must be specified for
the entire computational domain. Usually, a standard atmo-
sphere, vertically stratified in pressure, temperature and den-
sity, is considered throughout the domain. The atmosphere
is composed of dry air at rest, and no particle of any size is
considered present in the computational domain. Appropriate
boundary conditions will be described later for each specific
test case.

3 The numerical method: semi-implicit time discretiza-
tion

The model equations described in the previous section are
discretized in time by a second-order extension of the orig-
inal first-order implicit multifield (IMF) algorithm proposed
in Harlow and Amsden(1975). We will describe the time
discretization method in the simpler case of a single solid
phases. We employ a semi-implicit time discretization based
on a Crank–Nicolson-type time averaging (also known as
the θ method) with averaging parameterθ ∈ [0,1] (Crank
and Nicolson, 1947). It is well known (see, e.g.,Quarteroni
et al., 2002) that, for unconditional linear stability, one has
to chooseθ ≥ 1/2, while full second-order accuracy is only
granted for the limit valueθ = 1/2. In general, the value
θ = 0.55 is employed in most numerical simulations in or-
der to guarantee stability also in the nonlinear case.

The continuity equation for the phases is discretized as

(εsρs)
n+1

+ θ1t [∇ · (εsρsvs)]
n+1

= (εsρs)
n

− (1− θ)1t [∇ · (εsρsvs)]
n . (12)
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The momentum equation for the phases, with p 6= s is
discretized as

(εsρsvs)
n+1

+ θ1t
[
εs∇pg − Dn

p,s(vp − vs) − εsρsg
]n+1

= (εsρsvs)
n
− 1t [∇ · (εsρsvsvs)]

n

+ (1− θ)1t
[
−εs∇pg + Dn

p,s(vp − vs) + εsρsg
]n

. (13)

Notice that the pressure, the gravity and the drag terms are
discretized in time by theθ method, while flux terms are
treated explicitly. The enthalpy equations for the gas phase
g and the solid phases are solved after continuity and mo-
mentum equations. Only the interphase exchange terms are
treated semi-implicitly by theθ method, while convective
terms are treated explicitly by using the updated densities and
velocities.(
εgρghg

)n+1
− θ1t Qn

s

[
Ts − Tg

]n+1
=
(
εgρg

)n+1
hn

g

+ (1− θ)1t Qn
s

[
Ts − Tg

]n
− 1t

[
∇ ·

(
εn+1
g ρn+1

g hn
gv

n+1
g

)]
+ 1t

[
εn+1
g

(
pn+1

g − pn
g

1t
+ vn+1

g · ∇pn+1
g

)]
, (14)

(εsρshs)
n+1

− θ1t Qn
s

[
Tg − Ts

]n+1

= (εsρs)
n+1hn

s + (1− θ)1t Qn
s

[
Tg − Ts

]n
− 1t

[
∇ ·

(
εn+1
s ρn+1

s hn
s v

n+1
s

)]
. (15)

The whole set of equations can be reformulated as

(εgρg)
n+1

+ θ1t
[
∇ · (εgρgvg)

]n+1
= En

ρg
,

(εsρs)
n+1

+ θ1t [∇ · (εsρsvs)]
n+1

= En
ρs

,

(εgρgvg)
n+1

+ θ1t[
εg∇pg − Dn

g,s

(
vs − vg

)
− εgρgg

]n+1
= En

vg
,

(εsρsvs)
n+1

+ θ1t[
εs∇pg − Dn

g,s

(
vg − vs

)
− εsρsg

]n+1
= En

vs
,

(εgρghg)
n+1

− θ1t Qn
s

[
Ts − Tg

]n+1
= En

hg
,

(εsρshs)
n+1

− θ1t Qn
s

[
Tg − Ts

]n+1
= En

hs
,

(16)

where theE terms include all the explicit terms.
For each time steptn+1, Eq. (16) is solved by this second-

order extension of the IMF algorithm as follows:

– temperature-dependent coefficients of the gas phase
are computed;

– the interphase coefficientsDg,sandQs and the explicit
E terms are computed;

– the coupled continuity and momentum equations are
solved iteratively by the approximate Newton method
to update velocity fields, pressure and volumetric frac-
tions;

– gas mass fractionsyl are computed by solving the lin-
ear transport equations; and

– the energy equations are linear in the temperatures and
decoupled from the continuity and momentum equa-
tions and can finally be solved directly.

We observe that, since the enthalpy equations are solved
explicitly after the solution of the momentum and continuity
equations, the temperature is kept constant during the solu-
tion procedure. The effect of the temperature variation on the
gas pressure and density are deferred to the next time-step
computation.

4 The numerical method: space discretization

The model equations are discretized by a finite-volume ap-
proach on an orthogonal, nonuniform mesh. A staggered dis-
cretization grid withNx × Ny × Nz Cartesian cells is intro-
duced, along the lines of popular discretization methods such
as the MAC (marker and cell) approach, introduced inHar-
low and Welch(1965), or the Arakawa C grid (see, e.g.,
Arakawa and Lamb, 1981). The mesh is composed by rectan-
gular control volumes obtained from the cartesian product of
three 1-D discretization intervals along each axis. Each cell
is numbered at its center with indicesi, j andk, for thex,
y andz directions, respectively. If we denote byi = 1. . .Nx ,
j = 1. . .Ny andk = 1. . .Nz the intervals along thex, y and
z axis, respectively, the center of each cell can be identified
by a triplet of indices(i,j,k). The length of the cell sides in
each directions are denoted by1xi, 1yj and1zk, and they
are assumed to vary in their respective direction only. The
cell volume is given byVi,j,k = 1xi1yj1zk, and staggered
spacings1x

i+ 1
2

are defined as the arithmetic average of the
neighboring integer index values.

The discreteu velocity is defined at half-integeri and in-
tegersj andk; v is defined at integersi, k and half-integer
j ; and w is defined at integersi,j and half integerk. Fi-
nally, p and all other three-dimensional scalar variables (i.e.,
pressure, densities, volumetric fractions and enthalpies) are
defined at integersi, j andk. Therefore mass and enthalpy
equations are solved on the cell centers, whereas the momen-
tum equations are solved at the staggered locations. At points
where they are not defined, the discrete variables are gener-
ally computed by linear interpolation of the nearest values.
Averaged quantities will usually be denoted by an overbar.
On a uniform grid, for example,

ūi,j,k =

u
i+ 1

2 ,j,k
+ u

i− 1
2 ,j,k

2
,

ū
i,j+

1
2 ,k

=

u
i+ 1

2 ,j,k
+ u

i− 1
2 ,j,k

+ u
i+ 1

2 ,j+1,k
+ u

i− 1
2 ,j+1,k

4
.

(17)

www.geosci-model-dev.net/6/1905/2013/ Geosci. Model Dev., 6, 1905–1924, 2013



1910 S. Carcano et al.: A numerical model for volcanic jets

If we denote with brackets〈. . .〉 the discretization of the
advective fluxes and we adopt the staggered approach de-
scribed above, we obtain, for both the gas phase and the solid
phase, for each cell(i,j,k) of the mesh, the following system
of discretized equations:

(εsρs)
n+1
ijk + θ

[
1t

1x
〈εsρs ūs〉

n+1
ijk +

1t

1y
〈εsρs v̄s〉

n+1
ijk (18)

+
1t

1z
〈εsρsw̄s〉

n+1
ijk ] = En

ρs ,ijk,

(ε̄s ρ̄sus)
n+1
i+ 1

2jk
+ θ

1t

1x
ε̄n+1
s,i+ 1

2jk

(
pn+1

g,i+1jk − pn+1
g,ijk

)
(19)

−θ1t Dn

ps,i+ 1
2jk

(
un+1

p,i+ 1
2jk

− un+1
s,i+ 1

2jk

)
−θ1t

[
ε̄s ρ̄sgx

]n+1
i+ 1

2jk
= En

us ,i+
1
2jk

,

(ε̄s ρ̄svs)
n+1
ij+

1
2k

+ θ
1t

1y
ε̄n+1
s,ij+

1
2k

(
pn+1

g,ij+1k − pn+1
g,ijk

)
(20)

−θ1t Dn

ps,ij+
1
2k

(
vn+1
p,ij+

1
2k

− vn+1
s,ij+

1
2k

)
−θ1t

[
ε̄s ρ̄sgy

]n+1
ij+

1
2k

= En

vs ,ij+
1
2k

,

(ε̄s ρ̄sws)
n+1
ijk+

1
2
+ θ

1t

1z
ε̄n+1
s,ijk+

1
2

(
pn+1

g,ijk+1 − pn+1
g,ijk

)
(21)

−θ1t Dn

ps,ijk+
1
2

(
wn+1

p,ijk+
1
2
− wn+1

s,ijk+
1
2

)
−θ1t

[
ε̄s ρ̄sgz

]n+1
ijk+

1
2

= En

ws ,ijk+
1
2
,

(εsρshs)
n+1
ijk − θ1t Qn

s,ijk

[
Tp − Ts

]n+1
ijk

= En
hs ,ijk, (22)

for all s,p = g,1. . .N andp 6= s, where the discretization
of theE terms is specified in AppendixB. TheE terms are
computed explicitly before the resolution of the system.

Finally, we introduce an appropriate discretization tech-
nique for the advective fluxes. From the nondimensional
analysis (Carcano et al., 2012), we know that advection is
one of the dominating phenomena in the process, so we ex-
pect that a proper numerical treatment of the advection terms
should be necessary in order to obtain an accurate numer-
ical solution. Therefore, one of the first possible modifica-
tions of the donor-cell scheme is to introduce in the upwind
discretization the so-called transverse fluxes (Colella, 1990;
Saltzman, 1993; LeVeque, 1996). In the standard donor-cell
upwind method, the advective flux through one single cell
boundary is split into independent fluxes along thex, y and
z directions by using the velocitiesu, v andw in the direc-
tions normal to each interface. More accurate methods can
be obtained by considering the flux with the proper speed
v = (u,v,w) without splitting it along the three space direc-
tions. Unsplit upwind schemes are more accurate (in partic-

ular, less diffusive) and more stable than the original donor-
cell upwind method.

This improved version of the upwind method is called the
corner transport upwind (CTU) method (Colella, 1990). A hi-
erarchy of methods for the numerical solution of advective
transport in conservation equations in several space dimen-
sions based on CTU was proposed byLeVeque(1996). In
the present model, we employ one of the second-order ver-
sions of the algorithm described inLeVeque(1996), includ-
ing minmodflux limiting (Roe, 1986) to avoid the creation of
spurious extrema in the solution.

As an example, in the simpler two-dimensional case, the
advective flux〈Qu〉ik of the scalar quantityQ along thex

direction in the computational cell(i,k) is computed as

〈Qu〉ik = (Qu)
i+ 1

2k
− (Qu)

i− 1
2k

. (23)
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1
2

> 0 andw
ik−

1
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)
(Qi+1k − Qik) · lim,

(24)

where lim represents the flux limiter. Analogous expressions
are written foru

ik−
1
2

< 0 and/orw
ik−

1
2

< 0. The first term
on the right-hand side represents the donor-cell upwind flux,
the second term represents the CTU correction and the last
term represents its second-order extension.

5 Model validation: axisymmetric underexpanded jet

The proposed numerical method was tested on two- and
three-dimensional simulations of underexpanded jets, and
the numerical results obtained were compared with both ex-
perimental and numerical results available in the literature.
In order to simulate a cylindrical underexpanded jet, we as-
sume that each phase enters the domain through a fixed inlet
where the volume fraction, velocity and temperature of each
phase and the gas pressure are imposed. Mechanical and ther-
mal equilibrium between the phases at the vent are assumed.
In two-dimensional tests, we solve the model equations in
cylindrical coordinates, and we impose symmetry conditions
at the left lateral boundary. At the bottom boundary, no mass
and heat transfer are allowed, and free-slip conditions are as-
sumed for the velocity of each phase. At the upper boundary,
free-outflow/inflow conditions are assumed, whereas at the
lateral boundaries it is possible to assume either free-slip or
free-outflow/inflow conditions. In particular, at the outflow
boundaries, the mass and momentum equations of the mix-
ture are solved for pressure, assuming a null velocity gradient
along the boundary. At the lateral inflow boundaries, incom-
ing air is assumed to be free of particles and to have pressure
and temperature characteristics corresponding to those of the
standard reference atmosphere.
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Table 1. Inlet conditions for a homogeneous underexpanded jet at
the laboratory scale.

Dv (m) 0.01
K = pv/patm 2, 5, 10, 20
wv (ms−1) 346
Tv (K) 298
Mav 1.0

Here and in the following sections, the chosen time step is
such that the maximum Courant number based on the gas ve-
locity (CFLmax

u = max(|vg|1t/1x)) reached in the domain
is equal to 0.2 in order to guarantee the stability of the explicit
part of the numerical scheme. All the computations were car-
ried out with a parallel version of the improved PDAC model
based on parallel implementation described and tested ex-
tensively inEsposti Ongaro et al.(2007). The most intensive
computations for the three-dimensional tests reported in sec-
tion 5.3 were carried out in parallel on 32 processors on a
Linux cluster with 128 CPUs at 2.4 GHz, with total peak per-
formance of 580 Gflops s−1, and required about 44 h to reach
the final time (T = 2 s).

5.1 Comparison with laboratory results and empirical
laws

We present here a set of numerical tests aimed at the simula-
tion of pure gas and gas–particle jets at the laboratory scale. It
has been proven theoretically and experimentally that vents
with supersonic or sonic vertical velocity and gas pressure
greater than the atmospheric one result in a rapid expansion
and acceleration of the fluid to a high Mach number (Lewis
and Carlson, 1964). A series of expansion waves form at the
vent exit (Prandtl–Meyer expansion), which are reflected as
compression waves at the jet flow boundary. The compres-
sion waves coalesce to form a barrel shock and a standing
normal shock wave (Mach disk), across which the vertical
velocity is reduced and the pressure in the core of the jet
increases. The fluid that crosses the Mack disk is rapidly
compressed and decelerated to subsonic speeds. Above the
Mach disk, the fluid moves slowly in the core of the jet and
is surrounded by a supersonic moving shell, with a slip line
or a shear layer dividing these regions, as shown in Fig.1.

One of the important parameters describing these super-
sonic jets is the distance between the vent and the nor-
mal shock wave. Experimental results reported inLewis and
Carlson(1964) show that the height of the Mach diskhd in
a pure gas jet depends on the vent diameterDv, the exit Mach
numberMav and the ratio of specific heatsγ as well as the
ratio K of the exit static pressurePv and the atmospheric
pressurePatm. The empirical relationship is

hd = 0.69DvMav
√

γK. (25)

Fig. 1.Decompression structure in underexpanded supersonic jets.

In the case of multiphase gas–particle underexpanded jets,
the location of the Mach disk depends also on the particle
loadingη =

εsρs

εgρg
at the inlet. Even if different empirical re-

lationships between Mach disk height and particle loading
are proposed in the literature (e.g.,Lewis and Carlson, 1964;
Jarvinen and Draper, 1967; Sommerfeld, 1994), all of them
predict an upstream movement of the Mach disk and a reduc-
tion of the Mach disk distance from the inlet.

In this section, the aim is to verify whether the proposed
multiphase model is able to reproduce correctly the wave pat-
tern that forms above an overpressured vent by evaluating the
Mach disk location – first in the case of a homogeneous gas,
and then for a gas–particle mixture.

5.1.1 Homogeneous jet

We consider a homogeneous fluid (dry air with standard
chemical components), and we impose underexpanded sonic
or supersonic conditions at the inlet (Table1); that is, the
gas pressure at the inlet is larger than the atmospheric and
the Mach numberMa = |v|/cs ≥ 1, wherecs is the speed of
sound.

The computational domain is a box of size 0.1× 0.2 m2,
whose left side coincides with the axis of the vent. The
side and the bottom boundaries of the axisymmetric do-
main are impermeable and stress-free. Two uniform meshes
of 160× 320 (1x = 1z = 6.25× 10−4 m) and 500× 1000
(1x = 1z = 2× 10−4 m) cells have been employed, with
time steps of1t = 10−7 s and1t = 5×10−8 s, respectively.

We consider different values of overpressure levelsK, and
we evaluate the height of the Mach diskhd. We obtain a good
agreement between experimental results and numerical sim-
ulations, as shown in Fig.2. In Figs. 3 and 4, the results
obtained in terms of vertical velocity and temperature are
shown. The improved version of the PDAC code has a bet-
ter fit with experimental results and is able to describe the
shear layer instability above the Mach disk. In general, the
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Fig. 2. Comparison between experimental and numerical results in
terms of Mach disk height for different values of the vent over-
pressureK. The results inLewis and Carlson(1964) are compared
with numerical simulation applying the first-order donor-cell up-
wind method (FOU), upwind method with second-order MUSCL
fluxes (MUSCL) and second-order corner transport upwind method
with θ method time discretization (CNCTU).

Fig. 3.Vertical velocity att = 10−3 s. Isolines [0: 100: 700] ms−1.
Comparison between(a) first-order upwind method FOU and(b)
second-order method CNCTU withK = 5 on a 500× 1000 mesh.

first-order version of the model tends to underestimate the
Mach disk height. Moreover, for small values of overpressure
K, using first-order methods we do not see the formation of
the Mach disk. Second-order methods are able to capture the
sharp discontinuity in the flow, as shown in Fig.5, and al-
lows for a better estimate of the empirical law in Eq. (25) to
be obtained.

The numerical simulation with the improved numerical
scheme have been repeated with different meshes in order
to check the dependence of the results on the grid resolution.
Results in Figs.6 and7 show the axial profiles of gas pres-
sure obtained with1x = 1,0.625,0.5,0.25,0.2 mm and the
estimates of the Mach disk height, respectively. We observe
that the Mach disk height estimate improves with grid reso-

Fig. 4. Temperature att = 10−3 s. Isolines [50: 25 : 350] K. Com-
parison between(a) first-order upwind method FOU and(b)
second-order method CNCTU withK = 5 on a 500× 1000 mesh.

lution and that the second-order method is able to provide a
reliable estimate of the Mach disk position even with coarse
meshes.

5.1.2 Nonhomogeneous gas–particle jet

When solid particles are added to the gas flow, new phenom-
ena associated with kinetic and thermal nonequilibrium be-
tween the gas and particulate phases arise. Such effects are
controlled by drag and energy exchange terms in the momen-
tum and energy equations, which are recalled in AppendixA.

To quantify the importance of nonequilibrium regimes, di-
lute gas–particle flow can be characterized by a timescale
(theparticle relaxation time) determined by the balance be-
tween particle inertia and gas–particle viscous drag (Marble
(1970) and Burgisser(2002)). Its expression for monodis-
perse mixtures can be derived from the momentum balance
equation for the solid particles (Eq.5) by neglecting all the
terms except the drag and inertial terms:

∂(εsρsws)

∂t
' Dg,s(wg − ws), (26)

where we considered only the component alongz, since it
is much greater than the horizontal components in the de-
compression region. The relaxation time is thus defined from
Eq. (26) as

τs =
εsρs

Dg,s

. (27)

A simple analysis, e.g., that inMarble (1970), suggests that
the timescale for thermal relaxation has the same order of
magnitude.
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Fig. 5.Gas pressure att = 2×10−3 s. Axial profile for different values of the vent overpressureK computed on a coarse mesh. Comparison
between first-order (FOU) and second-order methods (MUSCL and CNCTU) on a 160× 320 mesh.
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Fig. 6.Axial profiles of gas pressure att = 2×10−3 s obtained with
second-order methods and different grid resolutions.

For dilute mixtures (εg ≈ 1) and low gas–particle
Reynolds number, the particle relaxation time approximates
that of a single particle in a laminar flow (Stokes’ regime):

τs '
ρsd

2
s

18µg

. (28)

However, in general, the drag coefficient in Eq. (27) is a com-
plex function of the particle concentration and the gas–
particle Reynolds number, which is defined as

Res =
εgρgds |vg − vs |

µg

, (29)
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Fig. 7. Estimates of the Mach disk height obtained with second-
order methods with different grid resolution. Comparison with the
theoretical estimate.

whereds is the particle diameter andµg is the dynamic vis-
cosity of the gas phase. In the underexpanded jet under inves-
tigation, the flow is always in a dilute regime, withεg > 0.8.
In these conditions, Eq. (A1) for the drag coefficient (Wen
and Yu, 1966) can be adopted, and the relaxation time be-
comes

τs '
εsρs

Dg,s

=
εsρs

3
4Cd,s

εgεsρg |wg−ws |

ds
ε−2.7
g

, (30)
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where the coefficientCd,s depends on the gas–particle
Reynolds numberRes , as reported in Eq. (A2).

The relaxation timeτs gives an order of magnitude of
the time delay with which a particle equilibrates to a time-
varying gas flow. In a supersonic jet, such delay may occur
in the rapid expansion region above the vent, where a differ-
ence between gas and particle velocity1w may be expected.
We should then compare the particle relaxation time with the
formation time of the Mach disk (Orescanin et al., 2010), es-
timated as

τMa =
Dv/2

cs,mix
, (31)

wherecs,mix is the mixture speed of sound, as defined, e.g.,
by Pelanti and LeVeque(2006):

cs,mix =

√
R̃T

ρg

εg(εgρg + εsρs)
. (32)

In this section, we consider a mixture of dry air and fine
solid particles with diameter equal to 10 µm and density
equal to 2500 kgm−3. Inlet flow parameters correspond to
experimental and simulation conditions investigated bySom-
merfeld (1994). Gas and particle velocities are both equal
to the speed of sound in the pure gas, whereas the over-
pressure of the gas phase isK = 31, producing supersonic
underexpanded conditions at the inlet (Table2). According
to the simple scaling analysis discussed above, the ratio be-
tween the particle relaxation time and jet timescale is about
τs/τMa > 102. Therefore, we expect that particles will be
loosely coupled to the gas phase and that they will not have
the time to equilibrate to the expanding gas flow near the
vent.

The computational domain is a box of size 0.15× 0.225
m2 and, as in the previous test cases, the left side coincides
with the axis of the vent, whereas the side and the bottom
boundaries of the axisymmetric domain are impermeable and
stress-free. A nonuniform mesh of 500× 750 computational
cells have been employed, with time step of1t = 2×10−8 s.
The maximum resolution is imposed above the inlet, where
1x = 1z = 10−4 m. We consider different values of particle
volume fractionsεs at the inlet, and we evaluate the height of
the Mach diskhd.

In Fig. 8 we report the results of four different simula-
tions of particle-laden underexpanded jets with different par-
ticle concentrations. The gas phase expands radially as in the
homogeneous case, thus increasing the final jet radius up to
three times in correspondence to the Mach disk location.

On the other hand, as expected from the scaling anal-
ysis and also observed in laboratory (Sommerfeld, 1994),
particles are almost unaffected by the rapid gas expansion.
Particle trajectories remain nearly vertical, with some radial
spreading that is almost independent of particle concentra-
tion. In the expansion region, particles are only slightly and
gradually accelerated by the gas phase (at most by 20 ms−1,

up to 368 ms−1) where the Mach disk is located, and then
slowly decelerated in the subsonic region, but they never
reach an equilibrium condition with the gas phase. However,
solid particles tend to deform the Mach disk, moving it to-
wards the vent and causing it to become more concave as the
particle loading increases. For initial particle volume frac-
tion equal to 0.0005, the normal shock is located 14.5 mm
from the inlet, and the distance is reduced to 12.2 mm when
εs = 0.004. Moreover, when the particle loading is increased,
the expansion, the acceleration and the cooling of the gas
phase are reduced, as shown in Fig.9. As regards particle
distribution, the mixture density profile along the jet axis is
not affected by the presence of the shock wave but remains
almost constant and displays only a small reduction due to
the radial spreading, which tends to increase with increasing
particle loading, as observed also bySommerfeld(1994).

Fig. 8. Isolines [0: 50 : 700] ms−1 of gas vertical velocity and loga-
rithm to the base 10 of particle volume fraction att = 3×10−4 s for
different values of initial particle volume fraction(a) εs = 0.0005,
(b) εs = 0.001,(c) εs = 0.002 and(d) εs = 0.004.

5.2 Pseudogas regime

When particle relaxation time is much lower than the jet
timescale, particles are tightly coupled to the gas phase.

Under such assumption,Ogden et al.(2008b) assumed
perfect kinematic and thermal equilibrium between the
phases and described the eruptive mixture as a homogeneous
pseudogascharacterized by average thermodynamic and rhe-
ologic properties. Two-dimensional numerical simulations of
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Fig. 9. Axial profiles of gas pressure, mixture density, gas vertical velocity and gas temperature att = 3× 10−4 s. Comparison between the
homogeneous jet’s profile and results obtained for different values of initial particle volume fractionεs = 0.0005,0.001,0.002,0.004.

Table 2. Inlet conditions for a inhomogeneous underexpanded jet at
the laboratory scale.

Dv (m) 0.003
K 31
w (ms−1) 347
T (K) 300
εs 0.0005, 0.001, 0.002, 0.004
ds (µm) 10
ρs (kgm−3) 2500

underexpanded volcanic jets were performed with CFDLib,
a computational fluid dynamics library developed at Los
Alamos National Laboratory that uses a finite-volume com-
putational scheme with cell-centered state variables. CFDLib
applies a variation of the implicit continuous-fluid Eule-
rian (ICE) method, proposed inHarlow and Amsden(1968)
and Harlow and Amsden(1975), and a modified Godunov
method (Godunov, 1999) to solve shock waves.

Following Ogden et al.(2008b), numerical simulations
presented in this section are performed in absence of grav-
ity in order to focus on compressibility and nonequilibrium
multiphase effects. We assume choked flow conditions at the
vent; that is, the inflow velocity is equal to the speed of sound
of the mixture, defined by Eq. (32).

Inlet conditions for numerical simulations are specified in
Table3. The mixture is composed by water vapor and solid

particles that are injected in a standard atmosphere composed
by dry air. We first consider a single solid dispersed phase
with particle diameter equal to 10 µm. Two different inlet
pressure ratios ofK = 20 (case A) andK = 5 (case B) were
adopted. A third run (case C) is performed withK = 5 and
a mixture of two particle phases of 10 and 1000 µm equally
distributed in weight.

In case A, the computational domain is a box of size
800× 2400 m2, and we use a uniform 200× 600 mesh,
with 1x = 1z = 4 m and a time step1t = 10−3 s. Figure10
shows the vertical velocity field of the gas phase and the
particle distribution above the vent after 20 s, when quasi-
steady-state conditions are reached. The simulation repro-
duces the expected behavior of a supersonic underexpanded
jet, displaying the barrel shock with a convex Mach disk,
at about 320 m above the vent, which decelerates the mix-
ture down to subsonic velocities (see Fig.10a) and com-
presses the gas phase so that the particle volumetric fraction
increases by one order of magnitude across the discontinuity,
as shown in Fig.10b.

To better analyze the jet dynamics, and to quantitatively
compare our results with those ofOgden et al.(2008b), we
study the time-averaged vertical profiles along the axis of
pressure, mixture density, gas vertical velocity and gas tem-
perature, shown in Fig.11. The gas phase undergoes a rapid
expansion from the initial pressure of 2.02× 106 Pa to pres-
sure values below atmospheric pressure. The minimum of the
pressure is 9.1× 103 Pa, and it is reached at the height of
324 m above the vent. The ratio between Mach disk height
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Fig. 10.Case A.(a) Gas vertical velocity [ms−1] and(b) logarithm
to the base 10 of particle volume fraction. Snapshots att = 20 s.

and vent radius is 8.1, and the difference with respect to
the corresponding result ofOgden et al.(2008b) is around
1 %. Through the normal compression shock, the gas phase
returns to atmospheric value. During the expansion, as ex-
pected in supersonic flows, the gas phase accelerates up to
482 ms−1, and then through the shock it abruptly deceler-
ates to a subsonic regime, with a vertical velocity around
33 ms−1. During the expansion and acceleration phase, the
gas decreases its temperature down to 1104 K and then
warms up again by about 70 K through the Mach disk. Mix-
ture density, defined asρm = εgρg + εsρs , decreases by two
orders of magnitude above the vent, and then it increases by
one order of magnitude through the shock. The difference in
the Mach disk position with respect to the results reported in
Ogden et al.(2008b) is around 4 %, whereas the difference
in the maximum vertical velocity is around 2 %.

In case B we consider an inlet pressure ratio ofK = 5
and a vent diameter of 20 m (Table3) in order to main-
tain the sonic conditions at the vent. The computational do-
main is a box of size 200× 400 m2, and we use a uniform
200× 1000 mesh, with1x = 1 m, 1z = 0.4 m and a time
step1t = 5×10−5 s. Figure12shows the gas vertical veloc-
ity and the particle volume fraction when the quasi-steady-
state configuration of the normal shock is achieved. The two-
dimensional jet pattern and shape closely fit the results pre-
sented in Fig. 3b ofOgden et al.(2008b). The results ob-
tained with the multiphase model are thus in quantitative
agreement with the result obtained byOgden et al.(2008b),
demonstrating that the pseudogas approximation is appropri-
ate for the description of the underexpanded jet regime when
particle sizes are lower than 10 µm.

Finally, in case C we consider the same configuration as in
case B and we change the gas and particle mixture by intro-
ducing a second class of solid particles with diameter equal
to 1000 µm. The vertical, axial profiles of case B and C, dis-
played in Fig.13, report a Mach disk height around 39 m
from the vent and the ratio between the Mach disk height and

Table 3.Inlet conditions of the inhomogeneous underexpanded jets.

Case A Case B Case C

Dv (m) 80 20 20
K 20 5 5
w (ms−1) 150.3 150.3 150.3
T (K) 1200 1200 1200
Mav 1.0 1.0 1.0
εs1 0.08784 0.021985 0.010992
ds1 (µm) 10 10 10
ρs1 (kgm−3) 1000 1000 1000
εs2 – – 0.010992
ds2 (µm) – – 1000
ρs2 (kgm−3) – – 1000

the vent radius equal to 3.9, in agreement with the numerical
and experimental results reported inOgden et al.(2008b). In
case B, the maximum vertical velocity of the gas phase is
413 ms−1, while the minimum temperature along the axis is
1132 K, showing a temperature decrease of about 5 % with
respect to the vent temperature.

In case C, the Mach disk position is unchanged, whereas
we observe a peak velocity about 30 ms−1 lower. Above the
normal shock, gas velocity is 56 ms−1 in case B and 87 ms−1

in case C. Flow density is also considerably higher in case C.
Such differences between case B and C are associated with
the presence of a coarser particulate phase, whose effects are
here analyzed in more detail.

5.2.1 Assessment of multiphase effects

The assessment of the influence of fine and coarse particles
on the structure of shock waves is still an open issue in the
multiphase flow literature, and its deep understanding could
also have further impact beyond volcanological applications.
To assess the influence of nonequilibrium effects on the jet
dynamics, we adopt the scaling analysis presented above. To
estimate the magnitude of the relaxation time, we first esti-
mate from numerical results the maximum relative Reynolds
number, as defined in Eq. (29) in order to estimate the drag
coefficientDg,s . We consider that the maximum disequilib-
rium is achieved across the Mach disk, where the gas phase
is decelerated almost instantaneously, while particles cross
the discontinuity undisturbed before slowing down by the ef-
fect of viscous drag. By using the gas velocity jump across
the shock as a proxy of the velocity difference between the
gas and the particles and the gas density after the shock, we
estimate the maximum relative gas–particle Reynolds num-
ber on the order of 24 (case A) and 19 (case B). Therefore,
we can use Eq. (28) to estimate the particle relaxation time,
obtainingτs ' 1.5×10−4 s (by assuming water vapor viscos-
ity at 1000 K equal toµg = 3.7× 10−5 kgm−1s−1). We can
compare the particle relaxation time with the formation time
of the Mach disk defined by Eq. (31).
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Fig. 11.Case A. Time-averaged axial profiles computed over the interval[16,20] s of gas pressure, mixture density, gas vertical velocity and
gas temperature.

Fig. 12.Case B.(a) Gas vertical velocity [ms−1] and(b) logarithm
to the base 10 of particle volume fraction. Snapshots att = 2 s.

Taking T = 1000 K and considering a dilute mixture of
water vapor and solid particle withρs = 1000 kgm−3, εs =

0.01 andρg = 0.2 kgm−3, we obtaincs,mix ' 300 ms−1; in
case AτMa ' 0.1 s, and in case BτMa ' 0.03 s. Therefore in
both case A and case B, the particle relaxation time is much
smaller than the formation time of the Mach disk (τs � τMa),
thus meaning that fine particles dynamics are strongly cou-
pled with the gas dynamics. Multiphase effects are negligible
and the pseudogas approximation is appropriate.

In case C, we can proceed in an analogous way by assum-
ing that coarse particles move in a fluid composed by water
vapor plus fine particles in mechanical and thermal equilib-
rium, described as a pseudogas (as verified for cases A and
B), and by adopting the same Eqs. (A1) and (A2). We there-
fore compute the average properties of the pseudogasρps,
µps, and use them to estimate the relaxation time for the
coarser particles in a bidisperse mixture.

The particles volume fraction of fine particles decreases
by one order of magnitude in the first 10 m above the vent,
and further down to 5× 10−4 before the shock. The pseu-
dogas density before the shock isρps = εgρg + εs1ρs1 =

1.2 kgm−3. Its mean viscosity can be computed asµps '

µg(1+ 2.5εs1) = 3.71× 10−5 Pas (Einstein, 1906), not very
different from the value for pure water vapor. The max-
imum gas–particles Reynolds number, computed from the
gas velocity jump across the shock|wb

g − wa
g | = 298 ms−1,

is Res ' 9× 103, thus implying that the low-Reapproxima-
tion in Eq. (28) for the relaxation time is not applicable. In
regimes whereRes > 1000, we can estimate the relaxation
time with the Reynolds number correction, as reported in
Eq. (A2); that is,

τs '
εs2ρs

Dps,s2

=
ρs2d

2
s2

0.33Res2µps
' 0.01s. (33)
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Fig. 13. Case B and C. Time-averaged axial profiles computed over the interval[1.6,2.0] s of gas pressure, mixture density, gas vertical
velocity and gas temperature.
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Fig. 15.Isosurfaces of gas vertical velocity [ms−1] at t = 2 s.

In case C the particle relaxation time and the formation
time of the Mach disk are comparable, and thus it is worth in-
vestigating in detail the nonequilibrium effects for the coars-
est particles.

We first estimate the magnitude of the velocity difference
between gas and particle below the shock as1west

≈ ατsw
b
g,

whereα =
dwg

dz
is the gas velocity vertical gradient below the

shock andwb
g is the gas vertical velocity below the shock,

as computed in the equilibrium gas–particle flow. Based on
the results discussed in the previous section (see Figs.11and
13), α is taken as constant. In the expansion region, the ve-
locity gradientα is approximatively equal to 6 s−1, the gas
velocity iswb

g = 386 ms−1, and we obtain1west
C ' 23 ms−1.

Across the normal shock, on the other hand, particles will
equilibrate to the gas flow within a distancel, also known
as shock relaxation (Marble, 1970). We can derive an es-
timate of the relaxation distance above the shock aslest

=

|wb
g−wa

g |·τs , where|wb
g−wa

g | is the gas velocity jump across
the normal shock. Across the Mach disk, the jump in verti-
cal gas velocity is 299 ms−1. The distance to which parti-
cles equilibrate to the gas flow above the shock can be com-
puted by assuming an initial disequilibrium velocity of the
same order of magnitude and the relaxation time, obtaining
lest
C ' |wb

g − wa
g | · τs ' 3 m.

Figure 14 shows the differences between gas and parti-
cles velocity and temperature in case C as they result from
the numerical code. We observe that smaller particles are es-
sentially in thermal and mechanical equilibrium with the gas
phase, as expected from theoretical results. Larger particles
just below the normal shock are slower than the gas by about
25 ms−1, and they cross the shock with a vertical velocity
that is about 140 ms−1 larger than the gas vertical velocity
before they finally reach an equilibrium velocity close to the
gas velocity. Larger particles tends to cool slower than the
gas and the smaller particles, and as such their temperature is
about 70 K higher than the gas temperature when they reach

the Mach disk. The estimated relaxation length is larger than
the vertical grid size (0.4 m), and as a result numerical res-
olution appears adequate to quantitatively resolve shock re-
laxation. In particular, after the normal shock, particles slow
down to the gas velocity within 6 computational cells, from
40.4 m to 42.8 m. The numerical estimate of the relaxation
distancelC ' 2.4 m is thus comparable with the theoretical
onelest

C ' 3 m.
Numerical results are therefore consistent with estimates

derived from the pseudogas solution and a simple dimen-
sional analysis based on the particle relaxation time.

5.3 Three-dimensional simulations

We repeated some of the simulations presented in the pre-
vious sections in a three-dimensional configuration in or-
der to compare the results with those obtained in the two-
dimensional axisymmetric tests. In this section, we present
the results obtained with the vent conditions of case B
(see Table 3). The computational domain is a box of size
400× 400× 400 m3, and we use a nonuniform mesh of
120× 120× 120 cells and a time step of1t = 10−4 s, with
maximum grid resolution of 1 m (equal to that employed in
2-D) in a subdomain of 50× 50× 50 m3 above the vent.

Figure15shows the isosurfaces of the gas vertical velocity
at t = 2 s. Figure16 shows the 3-D vertical velocity and the
logarithm to the base 10 of total particle volumetric fraction
averaged along the aximuthal angle. With respect to the 2-
D simulation in cylindrical symmetry (Fig.12), 3-D simula-
tion displays a more diffused jet boundary likely associated
with the effect of the noncircular inlet. Indeed, with Carte-
sian mesh discretization, the circular vent is approximated by
squared cells. The flow density have been opportunely cor-
rected in cells cut by the inlet rim by proportionally reducing
the particle concentration in order to impose the correct mass
flow rate. However, boundary conditions do not describe the
curved inlet rim. This produces some axial switching of the
jet cross section in the subsonic region above the Mach disk,
analogous to that observed in noncircular subsonic jets (e.g.,
Gutmark and Grinstein, 1999).

Nonetheless, the shock wave pattern (location and shape
of the Mach disk and slip lines) is analogous to the 2-D
case. Figure17 shows that the time-averaged axial profiles
of pressure, velocity and mixture density are consistent with
the results obtained with two-dimensional axisymmetric sim-
ulations. Temperature difference probably reflects some dif-
ferences in the average axial distribution of solid particles
associated with the approximate vent geometry.
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Fig. 16. (a)Gas vertical velocity [ms−1] and (b) logarithm to the
base 10 of particle volume fraction. Snapshots att = 2 s of a vertical
section of quantities averaged along the azimuthal angle.

6 Conclusions

The PDAC multiphase flow model has been improved in
several aspects of the numerical algorithm to modified the
temporal and spatial accuracy of the simulation of explo-
sive volcanic eruptions. In the new model version, a second-
order Crank–Nicolson-type time discretization has been in-
troduced and the fully multidimensional advection schemes
proposed byLeVeque(1996) have been employed. The new
model has been tested against the complex problem of vol-
canic jet decompression in both two and three dimensions.
Since a proper validation with volcanic jet data is not yet
possible, due to the large scale, the dangerous nature of the
phenomenon and the difficulty of remote measurements, we
have verified that the numerical results adequately reproduce
some similar phenomenology (i.e., an underexpanded, super-
sonic gas jet) as measured at the laboratory scale, where the
new numerical scheme demonstrates better performance (in
terms of accuracy and reduced numerical diffusion) with re-
spect to previous model versions at all regimes.

However, several aspects of the dynamics of volcanic jets
make them different from their laboratory analogues: vol-
canic jets involve the explosive decompression of a multi-
phase gas–particle mixture at high temperature, with a wide
spectrum of particle grain sizes. To account for the presence
of solid particles in supersonic volcanic jets, previous works
have described the eruptive mixture as a homogeneous pseu-
dogas (e.g.,Kieffer, 1984; Woods and Bower, 1995; Ogden
et al., 2008b; Orescanin et al., 2010). In the limiting case of
fine particles (having a diameter on the order of 10 microns
and relaxation time on the order of 10−4 s, much smaller than
the characteristic time for decompression), we have shown
that the multiphase PDAC model consistently reproduces
predictions of the pseudogas model. However, in the case
of coarse particles and polydisperse mixtures, multiphase ef-

fects become more important and also affect the average jet
dynamics.

The new numerical code appears suited for the multiphase
flow simulation of explosive regimes characterized by rapid
decompression of the eruptive mixture and possible transi-
tion to the supersonic regime, including the development of
impulsive Vulcanian eruptions and volcanic blasts. This ap-
plication will be addressed in future works, which will be
aimed at quantifying multiphase effects also for polydisperse
mixtures, where particle–particle drag might play a key role
in the nonequilibrium dynamics of gas–particle flows.

The present rigorous verification of a multiphase flow
model for volcanological applications demonstrates the need
for (at least) second-order numerical discretization schemes.
The use of numerical approximations of an order higher than
two may not be a major concern, if only volcanological ap-
plications are considered, due to the large uncertainties in the
available data and especially in the initial conditions. How-
ever, in order to improve the description of different por-
tions of the volcanic column, where turbulence effects be-
come more important, and in view of different applications
of the multiphase model to industrial problems on the labo-
ratory scale, we are planning to further improve the accuracy
by adopting spatial discretizations based on discontinuous
Galerkin methods, which allow for increasing the order of the
approximation while retaining a compact stencil. Concern-
ing computational efficiency of the time-advancing scheme,
we are also considering explicit time discretizations, such as
Runge–Kutta methods, that have been widely applied in the
literature to solve gas-dynamics problems at high Mach num-
bers.

Concerning the model formulation, the most critical aspect
pertains to particle thermodynamics, since particle–particle
collisions are nonnegligible for volume concentrations above
about 10−3 (Gidaspow, 1994). To improve model reliability
in such regimes, we are moving from the present formula-
tion (employing a semi-empirical description of solid pres-
sure and equation of state) to a more rigorous closure based
on the kinetic theory of dispersed granular materials. How-
ever, in the present application, such improvement is not crit-
ical since the dynamics are strongly driven by gas pressure
terms and gas–particle drag, whose form is well established.

Appendix A

Gas–particle nonequilibrium coefficients

The drag coefficient between gas and solid particles is a com-
plex function of the particle concentration and the gas–
particle Reynolds number defined in Eq. (29). In the dilute
regimeεg ≥ 0.8, we adopt the drag expression proposed by
Wen and Yu(1966):

Dg,s = Ds,g =
3

4
Cd,s

εgεsρg|vg − vs |

ds

ε−2.7
g , (A1)
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Fig. 17.Case B. Comparison between 2-D and 3-D simulations. Average axial profiles of gas pressure, gas vertical velocity, mixture density
and gas temperature computed over the time interval(1.6,2.0) s.

for all s = 1. . .N , with

Cd,s =
24

Res

[
1+ 0.15Re0.687

s

]
, if Res < 1000,

Cd,s = 0.44, if Res ≥ 1000.
(A2)

In the dense regimeεg < 0.8, we adopt the drag expression
proposed inErgun(1952):

Dg,s = 150
ε2
s µg

εgd2
s

+ 1.75
εsρg|vg − vs |

ds

, s = 1, . . .N. (A3)

The heat transfer between the gas and the solid phases is
given by the product of a transfer coefficientQs and a driv-
ing force, which is the difference in temperature between the
two phases. The coefficientQs represents the volumetric in-
terphase heat transfer coefficient, which is given by the prod-
uct of the specific exchange area and the fluid–particle heat
transfer coefficient.

Qs = 6Nuskgεs/d
2
s , (A4)

where the empirical expression for the Nusselt numberNus

is taken as

Nus =

(
2+ 5ε2

s

)(
1+ 0.7Re0.2

s Pr1/3
)

(A5)

+

(
0.13+ 1.2ε2

s Re0.7
s Pr1/3

)
(Gunn, 1978), for Res ≤ 105

Res =
ρgds |vg − vs |

µs

, P r =
cp,gµg

kg

, (A6)

andkg is the thermal conductivity of the gas phase.

Appendix B

Explicit terms in discretized equations

The expressions of the discrete explicit terms of the momen-
tum equations of the gas and the solid phase are the follow-
ing:
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En
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pn
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g,ijk
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The expressions of the discrete explicit terms of the energy
equations of the gas and the solid phase are the following:

En
hg,ijk = (εgρghg)
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s,ijk
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