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Abstract. Hydro-biogeochemical models are used to foresee
the impact of mitigation measures on water quality. Usually,
scenario-based studies rely on single model applications.
This is done in spite of the widely acknowledged advantage
of ensemble approaches to cope with structural model un-
certainty issues. As an attempt to demonstrate the reliabil-
ity of such multi-model efforts in the hydro-biogeochemical
context, this methodological contribution proposes an adap-
tation of the reliability ensemble averaging (REA) philoso-
phy to nitrogen losses predictions. A total of 4 models are
used to predict the total nitrogen (TN) losses from the well-
monitored Ellen Brook catchment in Western Australia. Sim-
ulations include re-predictions of current conditions and a set
of straightforward management changes targeting fertilisa-
tion scenarios. Results show that, in spite of good calibration
metrics, one of the models provides a very different response
to management changes. This behaviour leads the simple av-
erage of the ensemble members to also predict reductions in
TN export that are not in agreement with the other models.
However, considering the convergence of model predictions
in the more sophisticated REA approach assigns more weight
to previously less well-calibrated models that are more in
agreement with each other. This method also avoids having
to disqualify any of the ensemble members.

1 Introduction

Nowadays, mathematical models are often used to assess the
impact of changes in boundary conditions on a natural sys-
tem. More precisely, in the hydro-biogeochemical context,

they are used to study the effect of changes in management
practices (e.g. fertilisation rate), climate and land-use cover
(e.g. clear-cutting, reforestation) on the water and nutrient
balances (e.g. Arheimer et al., 2005; Breuer and Huisman,
2009; Zammit et al., 2005). Most of the time, the adopted
methodology is to use a single model calibrated to match well
with current conditions. Then, some modifications mimick-
ing real world changes are imposed on the relevant boundary
conditions resulting in a set of scenarios. The actual scenario
prediction is produced by re-running the model with these
updated drivers. Impacts can be estimated as the difference
between the original model outcomes and the altered ones in
either a relative or an absolute way. Optimally, these predic-
tions should be compared to the actual post-change observa-
tions to assess their reliability but, in the case of land-use or
climate change, this is seldom done as such data are typically
not available. Nevertheless, some major concerns arise from
this straightforward methodology in catchment scale hydro-
biogeochemical model predictions.

First, natural processes involved in the water and nutrient
balances (e.g. infiltration, denitrification) are described with
a set of equations: the model structure. This primarily rep-
resents a translation of our understanding of natural mech-
anisms and regulating factors into mathematics. Because of
the differences in the hydro-climatic and nutrient contexts
between catchments, processes represented in a model can
be adjusted by some conceptual parameters that are usu-
ally difficult to measure like the inorganic nitrogen reten-
tion rate in HBV-N (Arheimer and Brandt, 1998). The cor-
responding calibration procedure aims at finding the param-
eter values for which the agreement between observations
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and simulations is acceptable, based on some goodness-of-fit
criteria (e.g. Legates and McCabe Jr., 1999). Although a lot
of effort has been put into developing ever more efficient op-
timisation algorithms for the last two decades (Duan et al.,
1992; Vrugt et al., 2003), the ability of these models to ade-
quately simulate the impact of changed boundary conditions
is of concern (Huisman et al., 2009), especially since predic-
tions are almost never validated against post-change obser-
vations (Whitehead et al., 2002).

Second, it is now widely acknowledged that several pa-
rameter sets may perform equally well (Beven, 2006) and
that the outcome of a successful calibration procedure may
indeed not be the actual best result. Therefore, an option to
address the uncertainty in predictions, especially in the case
of scenario predictions, is to use ensembles of multi-model
predictions gathering the information content of several sim-
ulations. Single-model ensembles regroup predictions ob-
tained with the same model structure whilst altering param-
eter values and boundary conditions in a Monte-Carlo pro-
cedure like the GLUE methodology for example (Beven and
Freer, 2001). Nevertheless, part of the predictive uncertainty
is also linked to sometimes huge differences between model
structures developed to address the same issues. As stated
by Breuer et al. (2008) this is especially true in the context
of hydro-biogeochemical predictions. In order to cope with
structural uncertainties, it has become state-of-the-art to con-
sider more than one model of the same system. These ensem-
bles of predictions have been used in the fields of climate,
weather, flood forecasting, rainfall-runoff and sub-surface
flow, and a first multi-model comparison approach targeting
agricultural fluxes of nitrogen was published by Diekkrüger
et al. (1995). But to our knowledge, the ensemble methodol-
ogy has received little interest in the nutrient fluxes context to
date, in spite of the demonstrated improvement in prediction
reliability. Furthermore, the few available studies, including
previous publications by our working group, have only been
based on re-prediction (hindcasting) efforts rather than sce-
nario analyses (Exbrayat et al., 2010, 2011; Kronvang et al.,
2009). Therefore, we present here an example of the poten-
tial advantage of using multi-model predictions to assess the
impact of a simple management change on the nutrient bal-
ance of a well-monitored mesoscale catchment in south-west
Western Australia.

2 Experimental setup

2.1 The Ellen Brook catchment

The Ellen Brook catchment (570 km2) is located in coastal
SW Western Australia and contributes significantly to the
water (6 %) and N loads (10 %) entering the Swan–Canning
estuary that drains the city of Perth (Viney and Sivapalan,
2001). Most of the catchment has been cleared for agricul-
tural purposes (Swan River Trust, 2007).
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Fig. 1. Seasonal cycle and relative contribution of different species
to TN (pie chart) in the Ellen Brook (1989–2006). Missing values
in March and April correspond to no flow periods.

Hydro-climatic conditions are typical of a Mediterranean
influence with a mean annual rainfall ranging from 510 to
830 mm yr−1 (1989–2006), derived from inverse distance
weighted interpolation from the 4 Australian Bureau of Me-
teorology rain gauges located in the catchment. Intra-annual
precipitation is distributed in cool and wet winters and warm
and dry summers corresponding to high flow (May–June to
September–October) and low to no flow periods (October–
November to April–May), respectively (Fig. 1). Pan evap-
oration is high (∼2000 mm yr−1) and because of the sandy
nature of the soils, runoff is mostly generated as a quick
and peaky response to rainfall events which explains a five-
fold difference between minimum and maximum annual dis-
charge over the study period. Soil texture does not allow
the adsorption of large quantities of dissolved organic matter
(Petrone et al., 2009). Furthermore, dissolved organic nitro-
gen that accumulates in the groundwater slowly discharges
in high concentration into the surface water during the driest
months (Donohue et al., 2001).

As shown in Fig. 1, about 10 % of the TN flowing out of
the Ellen Brook catchment is in the form of dissolved inor-
ganic N (NO3-N and NH4-N) derived from animal wastes
and fertilisers used for agriculture and private gardens (Swan
River Trust, 2007). Dominant organic N forms are either
present in dissolved forms of degrading matter or parti-
cles composed of plant and animal debris. Concentrations
of all N forms rise up during autumn and winter (May–
September) because they are flushed with surface runoff.
They fall in early spring (September–November) as rainfall,
hence runoff, decreases in intensity (Fig. 1). Slight increases
in concentrations in December (Fig. 1) may be attributed to
either evapotranspiration induced concentration phenomena
or animals entering the stream more frequently during these
hot periods (Swan River Trust, 2007).

Eutrophication-driven algal blooms have become frequent
in the Swan–Canning estuary as a result of nutrient losses
from upstream catchments cleared for agricultural purposes
such as the Ellen Brook (Swan River Trust, 2009). This has
led local authorities to set a target of nutrient loss reduc-
tion from upstream catchments of 50 % via different manage-
ment options: stream bank fencing to reduce animal wastes
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Table 1. Model characteristics.

Model Smallest spatial unit Climate forcing Nutrient forcing N species # spatial units

LASCAM Subcatchment DailyP and annual
PET

Rainfall concentration,
fertiliser application

NO3-N, NH4-N,
Organic-N

29

CHIMP Land-use class DailyP , T and PET Rainfall concentration,
fertiliser application

NO3-N, NH4-N,
Organic-N

108

SWAT HRU DailyP , maximum and
minimum dailyT

Rainfall concentration,
fertiliser application

NO3-N, NO2-N,
NH4-N, Organic-N

608

HBV-N-D Grid cell Daily P andT and PET Rainfall concentration,
leaching coefficients,
fertiliser application

TN ∼57 000

P : precipitation, PET: potential evapotranspiration,T : air temperature, HRU: hydrological response unit.

and erosion, re-vegetation to stabilise river banks, increased
community awareness to encourage reductions in fertiliser
use, nutrient traps, improved monitoring of hot spots. Mean-
while, a large monitoring effort has been undertaken and
more than 900 daily samples of total nitrogen (TN) concen-
trations are available at the Ellen Brook outlet out of a to-
tal of 3870 days with runoff between 1989 and 2006. Over
this period, mean TN concentration was 2.1 mg N L−1 with
values ranging from 0.3 to 7.4 mg N L−1 with no significant
long-term temporal trend. This rich dataset allows a reliable
application of our model ensemble.

2.2 Model cohort

The more independent the predictions within an ensemble
are, the more errors tend to cancel each other (Abramowitz
and Gupta, 2008). Therefore, in a scenario analysis con-
text multi-model ensembles (MMEs) are preferred to mul-
tiple realisations of the same model structure in order to
avoid results biased by an eventually inadequate model struc-
ture. There are however not many freely available nutrient
mobilisation and transport models developed for mesoscale
catchments (100–10 000 km2). A recent review by Breuer
et al. (2008) listed a total of 8 model approaches that are
used to simulate the N cycle in catchments. Among these
8 model structures, several are actually modifications of the
same common ancestor (i.e. SWAT); hence they share parts
of their parameterisations.

In this study, we set up four conceptual model structures to
describe the water and nitrogen balances of the Ellen Brook
catchment at a daily time step. The ensemble includes LAS-
CAM (Sivapalan et al., 1996a, b; Viney et al., 2000), CHIMP
(Exbrayat et al., 2010), SWAT (Arnold et al., 1998) and
HBV-N-D (Lindgren et al., 2007). Table 1 summarises the
main features of each model and a short description follows.
Our ensemble seems in fact to cover a large part of the avail-
able modelling philosophies reported by Breuer et al. (2008)
in terms of simulated N-species, turnover processes as well
as spatial distribution.

The simplest model, LASCAM, only splits the basin into
lumped subcatchments over which the land-use cover is con-
sidered homogeneous. At each time step, the water balance
is solved for each subcatchment and surface runoff, sub-
surface flow and baseflow discharge into the corresponding
stream. Since it has been developed for semi-arid and hot re-
gions where temperature is not a limiting factor, LASCAM
does not require temperature input. Therefore, only substrate
availability governs the represented soil N turnover processes
that affect the three considered N-species (NO3-N, NH4-N,
and TN): residue decay, plant harvest, mineralisation, volatil-
isation, plant uptake, nitrification, denitrification and fixation
(Viney et al., 2000). Nutrients discharging from land into the
stream are routed to the catchment outlet.

CHIMP is a more complex semi-distributed model which
further divides the sub-catchments into land-use classes
(Exbrayat et al., 2010). Water and nutrient balances are cal-
culated for each of them before their outcome is weighted
by the respective relative area over the sub-catchment. Since
the recent implementation of an organic N store (Exbrayat
et al., 2011), the same N-species as in LASCAM are con-
sidered, but temperature has a positive effect on the soil
N turnover processes of plant uptake, nitrification, denitri-
fication, fixation, mineralisation and immobilisation. Unlike
in LASCAM, in-stream denitrification and nitrification pro-
cesses can also occur.

The well-known SWAT model adopts a more detailed spa-
tial distribution scheme by considering each single combina-
tion of land-use and soil type as an independent hydrological
response unit (HRU). Water balance and different moisture-
and temperature-controlled N turnover processes are sim-
ulated for each HRU: plant uptake, residue decay, miner-
alisation, nitrification, volatilisation, denitrification, fixation
and leaching. Re-infiltration from the stream is also allowed
along with algal respiration and uptake. Amongst our four
models, SWAT requires the most data and the multiple input
files were directly generated from GIS data (Olivera et al.,
2006).

Whereas the three previously described models are semi-
distributed with nested subcatchments discharging into
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another only via stream flow, the fully distributed HBV-N-D
(Lindgren et al., 2007) simulates the water and nutrient bal-
ances for each 100× 100 m grid cell across the Ellen Brook
catchment. Each pixel has its own land-use class with cor-
responding parameters and each grid cell flows into the ad-
jacent downstream one following a single-flow-direction al-
gorithm. HBV-N-D only considers TN and a single retention
process assumed to represent the net effect of denitrification,
uptake and sedimentation as a function of temperature and
substrate availability.

Because of this difference in the spatial representation of
the catchment within HBV-N-D, there is a massive differ-
ence of up to 3 orders of magnitude in the number of spatial
units required to cover the Ellen Brook catchment (Table 1).
The required boundary conditions and spatial disaggrega-
tion schemes within each model are summarised in Table 1,
along with our catchment-specific setup properties. Discrep-
ancies in considered nutrient species, and relevant turnover
processes, represent a sample of the large structural differ-
ences that exist in hydro-biogeochemical models (Breuer et
al., 2008).

The setup process of the different models to simulate the
behaviour of the Ellen Brook catchment is similar (but not
identical) to the one previously used by Exbrayat et al. (2011)
and is only briefly described hereafter. First, the hydrologi-
cal component of each model was calibrated with the SCE-
UA (Duan et al., 1992) by reducing the root mean square er-
ror (RMSE) of observed vs. predicted daily runoff between
1989 and 1997. Then, by keeping the calibrated hydrological
parameters fixed, parameters governing the different N mo-
bilisation and transport processes were also optimised with
the SCE-UA algorithm set to minimise the RMSE of daily
TN loads. Years 1998 to 2006 were used for validation and
scenario purposes. Applying genetic calibration algorithms
such as SCE-UA neglects parameter uncertainties by aim-
ing at finding the global optimum parameter set. We are
well aware of this stochastic component of model uncertainty
which we have dealt with in previous work (Exbrayat et al.,
2010). Considering model realisations with different parame-
ter sets results in single model ensembles that still follow the
same model structure. In the present work we are focusing
on different model structures rather than on the uncertainty
inherent to each model. We do this in order to test whether
a consideration of completely different model philosophies
results in a more reliable scenario forecasting.

One of the ways to fulfil the requirements of the Swan
Canning Water Quality Improvement Plan is to reduce the
diffuse source of total nitrogen (TN) that comes from fer-
tiliser application (Swan River Trust, 2007). Here, in order to
illustrate the reliability ensemble averaging (REA) philoso-
phy with a simple example, we apply some very straightfor-
ward scenarios of changing agricultural management prac-
tices (i.e. fertiliser reduction) over the catchment for the pe-
riod 1998 to 2006. For each new simulation, the current
fertiliser application rate of 30 kg N ha−1 yr−1 in the form

of ammonium (Zammit et al., 2005) is stepwise decreased
by 10 % of its original value and the models are re-run for
the validation period. Then, we apply the REA weighting
scheme described hereafter to all single predictions.

2.3 Reliability ensemble averaging

Previous studies on multi-model averaging techniques set in
a variety of environmental modelling contexts have demon-
strated that the simple mean of a MME usually outperforms
its members taken separately in terms of goodness-of-fit
metrics (Georgakakos et al., 2004; Shamseldin et al., 1997;
Viney et al., 2009). However, it has also been shown that
giving more weight to the already better performing mem-
bers tends to provide an overall more reliable prediction
(Exbrayat et al., 2010; Krishnamurti et al., 1999; Viney et al.,
2009). In this case, a “performance” coefficientRB weights
each single prediction according to either a goodness-of-fit
metric (e.g. RMSE), multiple-linear regression methods or
more sophisticated techniques like Bayesian Model Averag-
ing (Raftery et al., 2005).

Following this, Giorgi and Mearns (2002) proposed to also
consider the level of agreement between the models in re-
sponse to the same changes in boundary conditions in the
weighting scheme. The underlying philosophy is that the in-
fluence of a very well-calibrated model on the final predic-
tion should be dampened if it provides a completely different
response than the other models to the same changes. In that
sense, outlying predictions are penalised by the introduction
of a “convergence” coefficientRD favouring more central
predictions in the weighting scheme. Although primarily de-
signed for climate studies, the so called Reliability ensemble
averaging (REA) method has been recently adapted to sce-
nario analyses of the impact of land cover change on runoff
(Huisman et al., 2009). Put in a mathematical way, the fi-
nal weightRi assigned to each member of the MME can be
summarised as

Ri = RB,i · RD,i =

(
ε

|Bi |

)
·

(
ε

|Di |

)
, (1)

whereBi andDi are measures of the performance and con-
vergence for modeli, respectively. The termε corresponds
to a measure of the variability in TN export, expressed as
the difference between the highest and smallest observed val-
ues. Following Huisman et al. (2009),Bi corresponds to the
model bias in simulating present-day TN export, i.e. the rel-
ative difference between simulated and observed TN export
on days with measurements. The termDi is a measure of the
distance between the change predicted by a modeli, and the
REA average change such as

Di = 1TNi −

∑N
i=1Ri · 1TNi∑N

i=1Ri

, (2)

where1TNi is the relative change of TN export predicted by
modeli, andN the number of models in the ensemble. The
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Fig. 2.Observed and predicted daily discharge and daily total N ex-
port during calibration and validation periods for the model cohort.

REA average change is not known beforehand and it is ob-
tained iteratively following Giorgi and Mearns (2002). One
of the key points of the REA method is thatRB,i or RD,i

are set to 1 wheneverBi or Di are smaller thanε, respec-
tively. Assuming that the probability density function of the
change is somewhere between uniform and Gaussian, a 60–
70 % confidence interval is represented by the REA average
change plus and minus the weighted root mean square differ-
ence (RMSD) such as

RMSD=

(∑N
i=1Ri ·

(
1TNi − 1TN

)2∑N
i=1Ri

)1/2
. (3)

3 Results

Time series of simulated and observed discharge as well as
TN loads are illustrated in Fig. 2 for both the calibration
(1989–1997) and the validation period (1998–2006). Sea-
sonal dynamics of observed discharge are well covered by all
models, with usually no or only erratic flows from December
to April. However, intra-annual discrepancies with observed
discharges can be depicted for some models. For example,

Table 2. Model calibration (1989–1997) and validation (1998–
2006) results for runoff.

RMSE (m3 s−1)

Calibration Validation

LASCAM 1.01 1.11
CHIMP 1.48 1.13
SWAT 1.69 1.24
HBV-N-D 2.31 1.32

SWAT tends to overestimate discharge at the beginning of the
wet season in many years, especially in 1989, 2003 and 2004.
HBV-N-D has problems to correctly represent discharge at
the beginning of the simulation period, strongly underesti-
mating discharge in the first three years, which might be at-
tributable to a slightly too short spin-up period (2 yr) for this
model that led to inadequate initial conditions of water stor-
ages. Overall, LASCAM shows the best agreement between
simulated and observed discharge for both, the calibration
and validation period, apart from the year 2000 where it over-
estimates discharge. Calibration and validation metrics are
presented in Table 2, as reflected in the time series, LAS-
CAM performs clearly better in predicting discharge dur-
ing the calibration while HBV-N-D has the largest RMSE of
2.31 m3 s−1, more than twice LASCAM’s, as a result of the
mismatch from 1989 to 1991. CHIMP and SWAT present in-
termediary values during the calibration. The range of RMSE
in the ensemble narrows during the validation period. This
is due to both LASCAM’s RMSE increasing to 1.11 m3 s−1

and HBV-N-D’s reducing to 1.32 m3 s−1, while CHIMP and
SWAT also improve their performance.

Results for TN shown in Fig. 2 for both the calibration and
validation period are first of all dominated by SWAT. Despite
being a model explicitly set up for water quality simulations
SWAT overestimates the annual TN exports for almost all
years and a visual inspection of Fig. 2 attributes it to peaks
of TN losses up to an order of magnitude higher than ob-
servations. This is confirmed by high RMSE values in Ta-
ble 3. However, the average TN export simulated by SWAT
on sampled days compares well with observations, especially
during the calibration period (Table 3). This might be ex-
plained by a well-constrained calibration of SWAT for days
with observations. Regarding TN, the LASCAM model per-
forms the best for both periods in terms of RMSE whilst
CHIMP gives the closest daily average TN export predic-
tions as compared to the observation data. For CHIMP and
HBV-N-D, prediction quality increases between calibration
and validation, whilst the opposite is observed for LAS-
CAM and SWAT. The load calculations depend in part on
the correctness of the simulated hydrological fluxes and ac-
cordingly LASCAM and CHIMP provide the two best sim-
ulations in terms of runoff and TN losses. However, this is
not always true as SWAT always outperforms HBV-N-D for
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Table 3.Model calibration (1989–1997) and validation (1998–2006) results.

Model RMSE Average TN export Total TN
(g N ha−1 d−1) on sampled days export

(t N d−1) (t N yr−1)

Calibration Validation Calibration Validation Calibration Validation

Observations – – 0.53 0.41 – –
LASCAM 5.4 7.1 0.51 0.48 83.0 59.7
CHIMP 10.8 9.9 0.52 0.36 84.9 69.0
SWAT 18.5 26.2 0.55 0.65 131.1 117.7
HBV-N-D 14.3 10.4 0.24 0.21 34.3 31.3
Simple average – 8.6 – 0.42 69.5
REA average – 6.5 – 0.41 66.2

runoff predictions but has the worst RMSE for TN predic-
tions, especially during the validation period. Generally, the
models simulated less TN export during validation than dur-
ing calibration. The highest TN export is simulated by SWAT
with ∼131 and∼118 t N yr−1 during calibration and valida-
tion, respectively. This corresponds to almost 4 times more
export than HBV-N-D predictions (∼34 and∼31 t N yr−1).
According to Fig. 3 which represents the exceedance proba-
bility of daily TN losses simulated by the models, it seems
that this difference is due to some rare events of intensive
TN export predicted by SWAT. Meanwhile, LASCAM and
CHIMP are in a better agreement with each other over the
whole period. This is especially true for the simulated export
rates of∼83 and∼85 t N yr−1 for the calibration period by
LASCAM and CHIMP, respectively. Corresponding values
of ∼60 and∼69 t N yr−1 for the validation period differ a bit
more but are still the most similar amongst all the models.
As illustrated in Fig. 3, LASCAM simulated more frequent
daily TN exports greater than 1 t N d−1 than CHIMP, whereas
CHIMP’s higher probability of lower N losses and less fre-
quent no flow occurrence explains its higher average yearly
TN export.

The validation period also corresponds to the control sce-
nario. We therefore present corresponding results for a sim-
ple average of the predictions and the REA average in Ta-
ble 2. Here, the REA average is only calculated with the
reliability criterion as no perturbations have yet been made
to our system. The simple average performs with a RMSE
equal to 8.6 g N ha−1 d−1 which is worse than LASCAM but
better than the other three models. However, the correspond-
ing average export on sampled days is, at 0.42 t N d−1, closer
to the observed 0.41 t N d−1 than any of the single models.
Meanwhile, the REA average outperforms all the ensemble
members with a value of 6.5 g N ha−1 d−1. This represents
an improvement of about 10 % compared to LASCAM, the
best performing single model. The simulated mean export on
sampled days equals the observed mean.

Figure 4 summarises TN export changes for each model.
All the members of the ensemble predict the expected
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Fig. 3. Exceedance probability of daily TN exports as predicted by
the models during the validation period (1998–2006).

diminution of the TN export after a reduction in fertiliser
application. The responses of LASCAM, SWAT and HBV-
N-D to the changes in management practices are compara-
ble to each other, with total reductions of less than 10 %
when no fertiliser is applied. Conversely, CHIMP presents
a totally different behaviour with a reduction of up to 80 %
of its initially simulated TN export. The simple mean pro-
vides intermediary predictions towards a∼25 % TN export
reduction with no fertiliser. Nevertheless, the REA average
change is well in agreement with HBV-N-D, LASCAM and
SWAT with a reduction in TN export below 10 %. The shaded
area in Fig. 4 represents∼60–70 % of the uncertainty (REA
average± RMSD) of the change and always includes these
3 models but not CHIMP. The simple averaging scheme is
not in the uncertainty bounds of the REA for reductions of
more than 30 % in fertilisation, and moves further away from
it when the reduction increases.
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4 Discussion

Consistently with previous work in hydro-biogeochemical
modelling by Breuer et al. (2008), Exbrayat et al. (2010) or
Kronvang et al. (2009), discrepancies between model struc-
tures (Table 1) driven by a homogeneous dataset of boundary
conditions are a source of large predictive uncertainty. In-
terestingly, the more lumped models LASCAM and CHIMP
seem to perform better in estimating the nutrient losses than
the more distributed ones. This may be due to conceptuali-
sations of both hydrological and N cycles more adapted to
the Ellen Brook conditions. In addition, LASCAM has orig-
inally been developed to predict the water, salt and nutrient
balances in SW Western Australian catchments including the
Ellen Brook (Viney et al., 2000; Zammit et al., 2005). Simu-
lation of the water balance greatly impacts nutrient losses and
RMSE is more sensitive to the correct timing of peak events.
As shown in Table 2, SWAT and HBV-N-D runoff predic-
tions are of quality comparable to CHIMP during validation.
However, Figs. 2 and 3 as well as Table 3 clearly suggest that
SWAT globally overestimates and HBV-N-D underestimates
the TN losses, i.e. SWAT good matching of peak events is
accompanied by a constant high discharge while HBV-N-D
simulates lower flows.

Nonetheless, since our aim is to quantify a relative change
in total TN export in response to reductions in fertilisation
rates, we do not reject any of the models for our application.
Interestingly, the REA average outperforms any of the other
simulations in the control case for which we have data to
compare with, therefore giving more credit to the approach.
The most striking feature in Fig. 4 is the behaviour of the
CHIMP model during the scenario analysis. In spite of its

good calibration and validation results, CHIMP simulates a
reduction of up to 80 % in TN export while all the other
models seem to be more in agreement with a total reduc-
tion not higher than 10 % of the current TN export. There-
fore, we could attribute the acceptable calibration results of
CHIMP as the outcome of a successful curve-fitting exer-
cise in which the apparently plausible parameter values are,
in fact, incorrect (Wade et al., 2008). Further, because of the
outlying position of CHIMP, the simple mean provides a final
prediction equivalent to an almost 25 % reduction in nitrogen
losses when no fertilisation occurs. However, the trust we can
put in this projection is questionable since it is not really in
agreement with any of the single projections and its interme-
diary position is merely a result of very different but equally
weighted projections.

When the agreement between models is introduced into
the REA weighting scheme, the converging responses of the
LASCAM, SWAT and HBV-N-D models to changed condi-
tions provide a significantly different final prediction than the
former simple averaging scheme. Similarly to some of the
well-calibrated models in Huisman et al. (2009), the outly-
ing position of CHIMP decreases its reliability in the final
weighing scheme. Conversely, and in spite of their relatively
poor ability to match current conditions, SWAT and HBV-N-
D “attract” the final averaged prediction by being consistent
with each other, and LASCAM, in their relative response to
the management scenarios. This results in a final REA av-
erage prediction that looks more consistent with most of the
single models.

Of course, one could argue that the ensemble approach
is not entirely justified in our case because LASCAM is
a well-calibrated model that also presents the expected be-
haviour during scenario analyses. However, contrary to the
other models, LASCAM was primarily developed and tested
to simulate water and nutrient fluxes in this particular catch-
ment (Viney et al., 2000). In another application case, it is not
sure that the chosen model structure would have been devel-
oped over several years to predict the hydro-biogeochemical
fluxes of the catchment of interest, nor that there would be
enough monitoring data to support model quality assess-
ment. Similarly, although we agree that CHIMP’s source
code needs a thorough inspection in the near future, detec-
tion of probable quirks in its structure would not have been
possible without comparing its predictions with other models
in these scenario analyses.

Nonetheless, the results obtained with the adopted averag-
ing method are a good demonstration of its ability to extract
the most reliable content of information from each ensemble
member (Giorgi and Mearns, 2002). This is achieved in spite
of the relatively small size of our ensemble when compared
to studies published in other fields such as hydrology (e.g.
Breuer et al., 2009; Georgakakos et al., 2004) or climatol-
ogy (e.g. Krishnamurti et al., 1999). We do however argue
that ensemble studies focusing on water quality and nutrient
losses are still rare in the literature and this contribution is a
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further step in the innovative direction adopted by our work-
ing group as documented in previous contributions (Exbrayat
et al., 2010, 2011). Therefore, we consider our results to be
very valuable in the frame of hydro-biogeochemical predic-
tions (Breuer et al., 2008) and this method could surely be
helpful for application cases in which the absence of mon-
itoring would make it hard to identify the most appropriate
structure (Huisman et al., 2009), such as land management
scenarios or prediction in ungauged basins (Sivapalan, 2003).
This is especially true since we usually rely on models de-
veloped and calibrated for stationary and not changing con-
ditions (Milly et al., 2008; Sivapalan et al., 2011).

5 Conclusions

Through our straightforward example of fertilisation rate re-
duction we demonstrated the potential advantage of using a
multi-model ensemble to lower the risk of relying on a single,
maybe subjectively chosen, model structure. This is a real
advantage in our application case since the actual effects of
different changes are not yet known, making the evaluation
of model quality impossible. So far, REA and similar aver-
aging schemes have been primarily applied in climate and
hydrological sciences and more work is still required in this
direction to address their effect on predictions. We therefore
see some potential in the ensemble approach in other fields
of environmental modelling where the structural uncertainty
of models used for predictions is large and rarely addressed.
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