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Abstract. Simulations using IPCC (Intergovernmental Panel
on Climate Change)-class climate models are subject to fail
or crash for a variety of reasons. Quantitative analysis of the
failures can yield useful insights to better understand and im-
prove the models. During the course of uncertainty quan-
tification (UQ) ensemble simulations to assess the effects
of ocean model parameter uncertainties on climate simula-
tions, we experienced a series of simulation crashes within
the Parallel Ocean Program (POP2) component of the Com-
munity Climate System Model (CCSM4). About 8.5 % of
our CCSM4 simulations failed for numerical reasons at com-
binations of POP2 parameter values. We applied support vec-
tor machine (SVM) classification from machine learning to
quantify and predict the probability of failure as a function
of the values of 18 POP2 parameters. A committee of SVM
classifiers readily predicted model failures in an independent
validation ensemble, as assessed by the area under the re-
ceiver operating characteristic (ROC) curve metric (AUC>

0.96). The causes of the simulation failures were determined
through a global sensitivity analysis. Combinations of 8 pa-
rameters related to ocean mixing and viscosity from three
different POP2 parameterizations were the major sources of
the failures. This information can be used to improve POP2
and CCSM4 by incorporating correlations across the relevant
parameters. Our method can also be used to quantify, predict,
and understand simulation crashes in other complex geosci-
entific models.

1 Introduction

Modern global three-dimensional climate models are ex-
traordinarily complex pieces of science (e.g.,Randall et al.,
2007; Gent et al., 2011; The HadGEM2 Development Team,
2011) and software engineering (Easterbrook et al., 2011;
Rugaber et al., 2011; Easterbrook, 2010). They contain over
a million lines of code (Easterbrook and Johns, 2009; East-
erbrook, 2012) and use hundreds to thousands of files, func-
tions, and subroutines to solve equations of state and con-
servation laws for the flows of matter, energy, and momen-
tum within and between the atmosphere, oceans, land, and
other reservoirs of the Earth system (Washington and Parkin-
son, 2005). They also use numerous algorithms of biologi-
cal, chemical, geologic, and anthropogenic processes to sim-
ulate the cycles of carbon, nitrogen, sulfur, aerosols, ozone,
greenhouse gases, and other climate-relevant quantities of in-
terest. To compound this complexity, these algorithms oper-
ate across many orders of magnitude in space and time, and
contain constituents that exist in gas, liquid, solid and mixed
phases.

Given this enormous range of scientific complexity, cli-
mate models are vulnerable to many types of software de-
sign and implementation issues. Climate models are devel-
oped in a manner analogous to large open source and agile
software projects (Easterbrook and Johns, 2009). Based on
current best understanding, small groups of scientists cre-
ate, test, and refine modules for select climate processes or
sub-systems (e.g., atmospheric convection or aerosol micro-
physics). Their software changes are committed upstream to
the climate model codebase, and the cycle is repeated un-
til the model simulations reproduce desired features (i.e.,
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1158 D. D. Lucas et al.: Failure analysis of climate simulation crashes

model validation). Varying amounts of software testing are
conducted throughout the cycle, but formal code verification
practices (e.g., seeD’Silva et al., 2008) are only recently
starting to be considered for climate model development
(Clune and Rood, 2011; Farrell et al., 2011). Nonetheless,
the concentration on sound science, as opposed to software
correctness, has led to climate models that contain fewer soft-
ware defects than other comparably sized projects (Pipitone
and Easterbrook, 2012).

Software issues aside, many potential problems still arise
with scientific representations in complex models. As code
verification can be used to find software bugs, emerging
tools being developed in the field of uncertainty quantifica-
tion (UQ) (seeNational Research Council Report, 2012) can
help pinpoint scientific discrepancies in simulation models,
the knowledge of which can be used to guide and improve
model development. Primary UQ targets for climate mod-
els are schemes containing parameters with adjustable val-
ues. These schemes represent physical processes that are not
fully understood or cannot be directly simulated at the model
resolutions of interest (e.g.,Stensrud, 2009). Parameteriza-
tions like this are often developed in isolation, so they can
respond in unexpected ways when inserted in nonlinear cli-
mate models and coupled to other parameterizations. Small
perturbations to the values of the adjustable parameters can
amplify and lead to large changes in simulation outputs. In
some cases, the simulations may fail altogether.

We report here on a series of simulation crashes encoun-
tered while running perturbed parameter UQ ensembles of
the Community Climate System Model Version 4 (CCSM4)
(Gent et al., 2011; CCSM4, 2012). Treating the simulation
crash problem as a black box in which we know only the val-
ues of the input parameters and a binary outcome flag indi-
cating whether the simulations ultimately failed or were com-
pleted, information that does not require detailed scientific
knowledge, we present a method that successfully predicted
crashes in independent simulations and pinpointed the model
parameters that caused the failures.

Numerous studies have applied UQ techniques to cli-
mate models similar to CCSM4 (e.g.,Murphy et al., 2004;
Stainforth et al., 2005; Jackson et al., 2008; Sanderson, 2011;
Shiogama et al., 2012). However, analogous simulation fail-
ures and crashes have been reported far less often, though
we suspect that they occur more frequently than indicated
by the relatively limited number of documented cases (i.e., a
reporting bias). Failures, crashes, or bifurcations have been
reported for climate models of both intermediate complex-
ity (Webster et al., 2004; Annan et al., 2005; Edwards et al.,
2011) and full complexity (see supplementary discussion in
Stainforth et al., 2005). The failures in these cases were at-
tributed to numerical instabilities, or to particular climate
phenomena, such as the collapse of the Atlantic meridional
overturning circulation or accelerated changes through pos-
itive feedbacks in the models.Webster et al.(2004) and
Edwards et al.(2011) present methods for calculating the

probability of failure for an input set of parameter values.
In addition,Edwards et al.(2011) use the failure probabil-
ity to design and prescreen ensemble members in follow-up
ensembles.

Our analysis and approach are similar toEdwards et al.
(2011), but with the added challenges of applying them to a
climate model system that is computationally more demand-
ing, uses smaller ensemble sizes, has more parameter uncer-
tainty dimensions, and exhibits fewer simulation failures. To
help overcome these challenges, we use machine learning al-
gorithms to calculate and predict the failure probability. As
climate models and other geoscientific codes become more
complex and UQ studies more commonplace, we fully ex-
pect parameter-induced simulation crashes to occur in these
models with a greater frequency. Our failure analysis method
will be beneficial for quantifying and determining the causes
of these crashes.

2 Overview of climate simulations

Different sets of perturbed parameter UQ ensembles were
executed as part of a broad effort to quantify and constrain
uncertainties in the atmospheric, sea ice, and ocean model
components of CCSM4 (Gent et al., 2011). The failures re-
ported here occurred during simulations that perturbed pa-
rameter values in the Parallel Ocean Program (POP2), the
ocean component of CCSM4. For these experiments, POP2
was coupled with the sea ice model, while data-based compo-
nents were used for the land and atmosphere. The simulations
were integrated for 10 yr, and the system was forced with cli-
matological air–sea flux data using normal year forcing from
Large and Yeager(2009). Further details about POP2 and the
UQ ensembles are given below.

2.1 Ocean model and parameters

POP2 is a state of the art depth-level model of the general
ocean circulation that solves the 3-D primitive equations of
rotational fluid dynamics and thermodynamics with standard
approximations of Boussinesq and hydrostatics. It is devel-
oped and maintained at Los Alamos National Laboratory
(Smith et al., 2010) and is the ocean component of CCSM4
developed at the National Center for Atmospheric Research
(Gent et al., 2011; Danabasoglu et al., 2012). The current
simulations use the displaced-pole coordinate grid with the
pole centered over Greenland and have a nominal horizontal
resolution of 1◦. Vertically it resolves 60 depth levels with
resolution varying from 10 m in the upper ocean (surface to
200 m) to 250 m in the deeper ocean. Refer toSmith et al.
(2010) andDanabasoglu et al.(2012) for more information.

The ocean model parameters perturbed in this study were
selected by POP2 model developers. They are used in six dif-
ferent sub-grid scale parameterizations to simulate the effects
of horizontal and vertical turbulent mixing in the oceans. The
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Table 1.Parameters sampled in the CCSM4 parallel ocean model.

Parametera [low, default, high] Scaleb Module Description

1 vconstcorr [0.3, 0.6, 1.2]×107 lin hmix aniso variable viscosity parameter (vconst1, vconst6)
2 vconst2 [0.25, 0.5, 2.0] log hmixaniso variable viscosity parameter
3 vconst3 [0.16, 0.16, 0.2] lin hmixaniso variable viscosity parameter
4 vconst4 [0.5, 2.0, 10.0]×10−8 log hmix aniso variable viscosity parameter
5 vconst5 [2, 3, 5] lin hmix aniso variable viscosity parameter
6 vconst7 [30.0, 45.0, 60.0] lin hmixaniso variable viscosity parameter
7 ahcorr [2.0, 3.0, 4.0]×107 lin hmix gm diffusion coefficient for Redi mixing (ah) and background

horizontal diffusivity within the surface boundary layer (ahbkg srfbl)
8 ahbolus [2.0, 3.0, 4.0]×107 lin hmix gm diffusion coefficient for bolus mixing
9 slm corr [0.05, 0.3, 0.3] log hmixgm maximum slope for bolus (slmb) and Redi terms (slmr)
10 efficiencyfactor [0.05, 0.07, 0.1] lin mixsubmeso efficiency factor for submesoscale eddies
11 tidal mix max [25.0, 100.0, 200.0] log tidal tidal mixing threshold
12 verticaldecayscale [2.5, 5.0, 20.0]×104 log tidal vertical decay scale for tide induced turbulence
13 convectcorr [1.0, 10.0, 50.0]×103 log verticalmix tracer (convectdiff) and momentum (convectvisc)

mixing coefficients in diffusion option
14 bckgrndvdc1 [0.032, 0.16, 0.8] log vmixkpp base background vertical diffusivity
15 bckgrndvdc ban [0.5, 1.0, 1.0] lin vmixkpp Banda Sea diffusivity
16 bckgrndvdc eq [0.01, 0.01, 0.5] log vmixkpp equatorial diffusivity
17 bckgrndvdc psim [0.1, 0.13, 0.5] log vmixkpp maximum PSI induced diffusivity
18 Prandtl [4.0, 10.0, 20.0] log vmixkpp ratio of background vertical viscosity and diffusivity

a Individual corr parameters (numbers 1, 7, 9, and 13) are used to represent the correlated pair of parameters given in the description. For example, values drawn for
vconst corr are assigned tovconst 1 andvconst 6. b Linear and logarithmic scales are used for parameter ranges that have ratios of high/low< 5 and high/low≥ 5,
respectively.

parameters and their uncertainty ranges are summarized in
Table1. Parameters 1–6 are used to capture horizontal mix-
ing of momentum with spatially anisotropic viscosity (Large
et al., 2001; Smith and McWilliams, 2003). Parameters 7–
9 are used for horizontal mixing of tracers via isopycnal
eddy-induced transport (Gent and McWilliams, 1990). Pa-
rameters 10–12 are used in recently developed schemes to
simulate submesoscale and mixed-layer eddies (Fox-Kemper
et al., 2008) and abyssal tidal mixing (Jayne, 2009). Parame-
ters 13–18 are used for vertical convection and vertical mix-
ing with the K-profile parameterization (KPP) scheme (Large
et al., 1994).

2.2 UQ ensembles

Table 2 summarizes the UQ ensemble simulations. Three
separate ensemble studies were conducted, each consisting of
180 simulations. The table also indicates the contributions of
the studies to different types of analysis. For instance, stud-
ies 1 and 2 were used to train machine learning algorithms to
learn about simulation crashes (see Sect.4.3), while study 3
was used to test the ability to predict simulation crashes (see
Sect.4.4). Out of 540 total simulations, there were 46 fail-
ures, with the failures occurring at various times during the
integration period. Each of the three studies used a Latin hy-
percube method to sample the values of the 18 POP2 param-
eters and a different random seed to generate the ensemble.
The model parameters were represented using standard uni-
form or log-uniform probability distribution functions nor-
malized to [0, 1] using the ranges (low and high values) and
scales (linear and logarithm) noted in Table1.

The Latin hypercube method is a stratified, space-filling
variant of Monte Carlo sampling that is used extensively in
UQ and uncertainty analysis (McKay et al., 1979; Helton
and Davis, 2003). This sampling approach has superior vari-
ance reduction properties over standard Monte Carlo sam-
pling for some problems (Stein, 1987). For an ensemble size
of N , Latin hypercube splits each of theD parameter distri-
butions intoN intervals of equal probability, resulting in a
multi-dimensional grid withND separate bins. For our case,
D = 18 andN = 180. Ensemble members are obtained by
selecting parameter values from different bins chosen at ran-
dom, with the important constraint that the bins are cho-
sen so that each interval along every parameter dimension
is sampled only one time per ensemble. An example of a
five-member Latin hypercube ensemble for two parameters
is given by bins with indices (1, 4), (2, 2), (3, 5), (4, 3), and
(5, 1), which is one of 120 valid possibilities for this config-
uration. For our three UQ ensembles, the actual Latin hyper-
cube sample points are illustrated in Figs.1 and2 for four of
the POP2 parameters. These figures show that the Latin hy-
percube sample point coverage is uniform and dense in one
and two dimensions.

Ensembles were generated using the Lawrence Liver-
more National Laboratory UQ Pipeline (Walter, 2010; Tan-
nahill et al., 2011), which is a Python-based scientific
workflow system for running and analyzing concurrent
UQ simulations on high performance computers. Using
a simple, non-intrusive interface to simulation models, it
provides strategies for sampling high dimensional uncer-
tainty spaces, analyzing ensemble output, constructing sur-
rogate approximation models (e.g.,Forrester et al., 2008),

www.geosci-model-dev.net/6/1157/2013/ Geosci. Model Dev., 6, 1157–1171, 2013
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Table 2.Latin Hypercube Studies of the CCSM4 Parallel Ocean Program.

Study Simulations Successes Failures Failure rate Data used in Section

3 4.3 4.4 4.5 5

1 180 160 20 11.1 % X X X
2 180 168 12 6.7 % X X X
3 180 166 14 7.8 % X X X X

Total 540 494 46 8.5 %
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Table 2. Latin Hypercube Studies of the CCSM4 Parallel Ocean Program.
Study Simulations Successes Failures Failure rate Data used in Section
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Fig. 1. Climate model simulation successes and failures are shown for one-dimensional projections of
the values of 4 ocean parameters in 540 Latin hypercube experiments that sampled 18 model parameters.
Parameter values are normalized using the ranges in Table 1.

28

Fig. 1. Climate model simulation successes and failures are shown
for one-dimensional projections of the values of four ocean param-
eters in 540 Latin hypercube experiments that sampled 18 model
parameters. Parameter values are normalized using the ranges in
Table1.

incorporating observational data, performing statistical infer-
ences, and estimating parameter values and probability dis-
tributions using maximum likelihood and Bayesian methods.
Of the many capabilities provided by the UQ Pipeline, the
failure analysis presented here uses the simulation parameter
values and a method for calculating parameter sensitivities.

3 Descriptive failure analysis

Figures1 and2 show simulation successes and failures for
the three Latin hypercube studies (540 runs) as a function of
the values of 4 of the 18 parameters sampled in POP2. Sim-
ilar figures were generated for the other parameters, but are
not displayed to keep the discussion brief and because the
failures are highly sensitive to changes in these parameters
(see Sect.5). It is not possible to directly visualize the depen-
dencies in high dimensions, so the figures show the outcomes
projected in one and two parameter dimensions (Figs.1 and
2, respectively).

From the figures it is clear that the failures are gen-
erally concentrated around high values of parameters
vconst corr and vconst 2, and at low values of
backgrnd vdc1 . A weaker dependence of the failures on
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Fig. 2. Same as Fig. 1, but showing the two-dimensional projections for the same four model parameters.
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Fig. 2.Same as Fig.1, but showing the two-dimensional projections
for the same four model parameters.

high values ofconvect corr is also apparent. The analy-
sis presented in following sections does not require a detailed
understanding of the physical reasons that connect parameter
values to simulation failures, though we briefly summarize
the connections to help with the interpretation.

The parametersvconst corr andvconst 2 are part
of the anisotropic horizontal viscosity parameterization ap-
plied to the momentum equations in POP2 (Smith et al.,
2010). Their values are subject to three main constraints, con-
sidering the physical processes and limitations to maintain
numerical stability; their lower bounds are constrained by
the grid’s Reynolds number representing the ratio between
advection and diffusion, the Munk boundary layer constraint
is needed to represent western boundary currents (Jochum
et al., 2008), and their upper bounds are limited by a lin-
ear diffusion stability requirement specified by a viscous
Courant–Friedrichs–Lewy (CFL) condition, which depends
on the integration time step (one hour in this study) and grid
resolution (Griffies, 2004; Large et al., 2001). High values of
these parameters may trigger the limit set by the CFL con-
dition and is the likely reason for the model failures seen
in the experiments. Thebckgrnd vdc1 parameter is used
to set the background diffusivity for diapycnal mixing from
internal waves in the KPP vertical mixing parameterization

Geosci. Model Dev., 6, 1157–1171, 2013 www.geosci-model-dev.net/6/1157/2013/
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(Large et al., 1994). Reducing the values ofbckgrnd vdc1
and otherbckgrnd parameters increase the numerical noise
in the solution and consequently cause numerical instability.
Similarly, increasing the value ofconvect corr , which
increases diffusivity and viscosity in the implicit KPP verti-
cal mixing scheme, leads to instabilities in the vertical den-
sity profile. For detailed descriptions of all of the POP2 pa-
rameters used in the current study, please refer toSmith and
McWilliams (2003), Large et al.(2001), andDanabasoglu
et al.(2012).

In spite of the obvious relationships between the param-
eter values and simulation outcomes, other features present
in the figures suggest that the ability to determine the causes
of the failures is potentially complicated. Figure2, for in-
stance, indicates that there are strong correlations between
failed simulations and pairs of parameter values. As one
example, failures occur at the combination of high values
of vconst corr and low values ofbackgrnd vdc1 .
These two parameters reside in different modules in POP2
(hmix aniso , andvmix kpp , respectively), which makes
it difficult for POP2 model developers and users to discover
and attribute simulation failures to correlations in these pa-
rameters.

A more important complication arises from the overlap of
simulation successes and failures in the low dimensional pro-
jections shown in the figures. Some simulations appear to fail
in the same general vicinity of parameter space where other
simulations succeed, and vice versa. To illustrate, the upper
right portion of the scatterplot betweenvconst corr and
vconst 2 in Fig. 2 contains a high density of failures and
successes. Another notable example is the isolated failure
event shown in the lower left hand corner of the same scat-
terplot.

These overlaps can lead to serious misclassification errors
in statistical models used to predict failures as a function of
parameter values. Two types of misclassification errors can
occur. Simulations that are predicted to fail, but actually suc-
ceed are false positives or type I errors; those that are pre-
dicted to succeed, but actually fail are false negatives or type
II errors (see Sect.4 for further details). Imbalanced data,
in which the population of one class greatly outnumbers the
populations of other classes, are associated with class over-
lap (Prati et al., 2004), and the POP2 outcomes are highly
imbalanced (i.e., 46 failures out of 540 simulations). Another
related explanation is that higher parameter dimensions, and
possibly a non-linear decision boundary, are required to ef-
fectively separate the outcomes.

Statistical approaches more powerful than the descriptive
relationships illustrated in Figs.1 and2 are therefore needed
to attack our problem. As described in the remaining sec-
tions, we turned to algorithms and diagnostics developed in
the fields of pattern recognition, machine learning, and sig-
nal detection. These methods provided us with the ability to
predict simulation failures in advance of running the model
and a tool to quantify the causes of the failures. This latter

capability can be used to improve POP2 by making it more
robust to parameter changes.

4 Probabilistic failure classification

For a given set of model input parameters, a POP2 simula-
tion will either succeed or fail. We denote these outcomes by
a two-class categorical variable in which failures belong to
classCf and successes belong to classCs. The present discus-
sion considers only a single failure class, but we recognize
that simulations can fail for a variety of reasons (e.g., lack of
iterative convergence, numerical instabilities, etc). Without
difficulty, the two-class methodology described below can be
extended to handle multiple modes of failure through multi-
class classification.

Our goal for probabilistic failure classification is to de-
termine the probability that a POP2 simulation will fail for
a vector of model input parametersx = (x1,x2, . . . ,x18). We
denote this using the conditional probabilityP(Cf |x). Using
Bayes’ rule, the posterior conditional probability can be writ-
ten

P(Cf |x) =
P(x|Cf)P(Cf)

P(x|Cf)P(Cf) +P(x|Cs)P(Cs)
, (1)

whereP(x|Ci) and P(Ci) correspond to class-conditional
densities and class priors, respectively. By introducing a vari-
ableλ representing the natural logarithm of the likelihood-
odds ratio,

λ = ln

[
P(x|Cf)

P(x|Cs)

P(Cf)

P(Cs)

]
, (2)

Eq. (1) can be rewritten as the “S-shaped” logistic sigmoid
function

P(Cf |x) =
1

1+ exp(−λ)
. (3)

Theλ term is a function ofx and takes values in(−∞,∞).
As illustrated in Fig.3, the sigmoid function is bounded be-
tween 0 and 1, inclusive. This formalism provides a mecha-
nism to transform an input vector of model parameter values
to a probability that the corresponding simulation will fail or
succeed.

It is also useful to mention that the methods presented here
can be applied to a much broader set of problems. Any geo-
scientific model output that varies continuously is amenable
to probabilistic failure analysis by thresholding or discretiz-
ing the output, and then classifying the “failures” and “suc-
cesses” as cases that fall on different sides of the threshold or
fall within different bins. For instance, if a 5 K difference in
global average surface temperature between a climate model
simulation and a reference case is deemed excessive, then
climate model instances above and below this threshold can
be categorized as failures and successes, respectively. Equa-
tion (3) would then provide a probability that a new model

www.geosci-model-dev.net/6/1157/2013/ Geosci. Model Dev., 6, 1157–1171, 2013
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Fig. 3. Logistic sigmoid function defined in Eq. (3) with λ(x) =x.
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Fig. 3.Logistic sigmoid function defined in Eq. (3) with λ(x) = x.
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Fig. 4. Conceptual image showing the separability of the red and
blue classes through kernel transformations in SVMs.

case would “fail” by simulating temperatures that exceed the
5 K threshold, information that developers could use to im-
prove their models.

4.1 SVM classification

Support vector machine (SVM) classification (Vapnik, 1995;
Cortes and Vapnik, 1995; Burges, 1998) from the fields
of pattern recognition and supervised machine learning
(Bishop, 2007; Kotsiantis, 2007) is used to assign a simula-
tion to classCf orCs for input vectorx. This type of classifica-
tion problem can also be handled using other methods, such
as logistic regression (Hosmer and Lemeshow, 2000), neu-
ral networks (Bishop, 2007), decision trees (Breiman et al.,
1984), and random forests (Breiman, 2001). We limit our at-
tention to SVMs, however, given our familiarity with the al-
gorithm and its excellent performance on our climate model
application.

Briefly, the SVM method is based on maximizing the dis-
tance between parallel hyperplanes that separate the classes
(i.e., the margin), while allowing for misclassifications from
overlapping data points during training (i.e., a soft mar-
gin). For non-linearly separable classes, the hyperplanes are
determined by transforming the input space to a higher-
dimensional feature space using kernel functions. The pur-
pose of the transformation is to make it easier to separate the
classes, as illustrated conceptually in Fig.4. The support vec-
tors are the training points that lie on the margin for classes
that are separable, and lie on or within the margin for classes
that are not. New input vectorsx are assigned to a class using
the sign of the predictive decision function:

f (x) =

Ns∑
i=1

yiαiK(xi,x) + b, (4)

wheref (x) > 0 andf (x) < 0 are assigned to classesCf and
Cs, respectively. The sum in Eq. (4) is over theNs support
vectors from the training set,yi ∈ {−1,1} is a binary out-
come indicator variable,K(xi,x) is the kernel function, and
b andαi are, respectively, bias and Lagrange multiplier terms
determined through constrained optimization of the margin.
Refer toBurges(1998), Bishop (2007), or Chang and Lin
(2011) for further details.

The decision function in Eq. (4) assigns inputs to a class,
but does not provide a probability of class membership. An
extension to the standard SVM approach was therefore devel-
oped (Platt, 1999) that derives class probabilities by fitting
λ in Eq. (2) to a two parameter function using the training
data and cross validation. A variation of this procedure is im-
plemented in theLIBSVM package (Chang and Lin, 2011),
which we used to fit SVM classifiers that calculate the failure
probabilitiesP(Cf |x).

As described in more detail in Sect.4.3, we also applied
an ensemble learning approach (Dietterich, 2000) to create a
“committee” of SVM classifiers. Each classifier in the com-
mittee contributes a vote (i.e., failure probability), and the
votes are tallied in different ways to predict simulation fail-
ures and to assess the performance of the classification sys-
tem.

4.2 Classification performance

Using a format known as the “confusion matrix” in machine
learning, Fig.5 summarizes the four possible outcomes for
the two-class simulation failure problem. Classifiers that cor-
rectly predict actual failures and successes are labeled true
positives (TP) and true negatives (TN), respectively; those
that incorrectly predict actual failures and successes are de-
noted false negatives (FN) and false positives (FP), respec-
tively. Of the numerous ways to combine these outcomes to
assess classifier performance, we focus on the true positive
rate (TPR) and false positive rate (FPR), which are given by
the expressions
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Fig. 5. The confusion matrix showing the four possible outcomes
for a two-class simulation failure problem.

TPR=
TP

TP+ FN
, (5)

and

FPR=
FP

FP+ TN
. (6)

Perfect classifiers have TPR and FPR values of 1 and 0, re-
spectively. As noted previously, we use SVM classifiers that
provide probabilities of class membership. The assignment to
a particular class, and resulting TPR and FPR values, there-
fore depends upon a specified decision variable and threshold
value. If decisions are made using the failure probability with
a threshold of 0.5, for example, then probabilities above and
below this threshold will be assigned to classesCf andCs,
respectively.

The quantities in Eqs. (5) and (6) are combined into a con-
venient diagram used in signal detection and decision analy-
sis known as a receiver operating characteristic (ROC) curve
(Swets, 1988; Fawcett, 2006). ROC curves plot the FPR (hor-
izontal axis) versus TPR (vertical axis) of a decision variable
as the threshold is varied from+∞ to −∞. A perfect classi-
fier is represented in ROC space by the vertical line connect-
ing points (0, 0) and (0, 1), followed by the horizontal line
connecting points (0, 1) and (1, 1). A classifier that makes
random assignments, on the other hand, is represented by the
diagonal line connecting points (0, 0) and (1, 1). The predic-
tive capability of a classification system can therefore be as-
sessed by a single number, the area under the ROC curve
(AUC) (e.g., Marzban, 2004). As a rough rule of thumb,
a classifier with an AUC score of about 0.8 or higher is useful
for discrimination. The AUC score is used in following sec-
tions to train SVM classifiers and to test their performance
on independent simulation failure data.

Table 3.Predictions and outcomes of simulation crashes in study 3.

Run µc σc Predicted∗ Actual

Davg Dsum Dsnr

002 0.47 0.13 Success Failure Success Success
006 0.54 0.14 Failure Failure Failure Failure
015 0.37 0.10 Success Success Failure Success
017 0.42 0.12 Success Failure Failure Failure
027 0.25 0.09 Success Success Success Failure
044 0.04 0.02 Success Success Success Failure
060 0.80 0.10 Failure Failure Failure Failure
073 0.52 0.15 Failure Failure Failure Failure
088 0.63 0.11 Failure Failure Failure Failure
095 0.47 0.15 Success Failure Success Success
097 0.83 0.09 Failure Failure Failure Failure
120 0.49 0.13 Success Failure Failure Failure
141 0.88 0.09 Failure Failure Failure Success
148 0.76 0.12 Failure Failure Failure Failure
155 0.31 0.08 Success Success Failure Failure
166 0.64 0.11 Failure Failure Failure Failure
173 0.75 0.12 Failure Failure Failure Failure
177 0.67 0.14 Failure Failure Failure Failure

∗ Actual successes predicted by all decision criteria are not reported here for the sake
of brevity. Predictions fromDavg andDsum were made before the study, while those
from Dsnr were determined retrospectively.

4.3 Supervised learning of simulation failures

The three UQ studies listed in Table2 were performed in suc-
cession to one another. After completing studies 1 and 2, but
before starting study 3, we trained a committee of SVM clas-
sifiers to learn about the simulation failures. The goal was to
use the committee to predict the outcomes of study 3 before
those simulations even began to run. This section describes
the training procedure, while the following two sections de-
scribe the performance on study 3.

The training set consisted of the 360 simulations from
studies 1 and 2, which had 32 simulation failures and 328
successes. Given the relatively small ratio of the number of
failure events to the number of classifier inputs (i.e., 32 / 18),
we utilized an ensemble learning approach (Dietterich, 2000)
known as bootstrap aggregation (i.e., “bagging”) (Breiman,
1996). Bagging quantifies the variability of classifier predic-
tions and can help improve the overall classification perfor-
mance. The bagging was applied by resampling the training
dataNb = 100 times, allowing for duplicates in the samples
(i.e., sampling with replacement). This step effectively cre-
ated 100 different versions of the training data that were
used to construct the committee of individual SVM classi-
fiers. Failure predictions were then made by aggregating the
votes across the committee, using an equal weight for each
classifier. In particular, we computed the mean value (µc) and
standard deviation (σc) of the committee,
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µc =
1

Nb

Nb∑
i=1

Pi(Cf |x) (7)

and

σ 2
c =

1

Nb

Nb∑
i=1

[Pi(Cf |x) − µc]
2 , (8)

and then combined these quantities in different ways to
form decision variables for prediction and ROC analysis (see
Sects.4.4and4.5).

The LIBSVM package (Chang and Lin, 2011), which is
freely available and open source, was used to train each of the
classifiers in the committee.LIBSVM offers two versions of
SVM classification (C-support andν-support) and four stan-
dard types of kernel functions (linear, polynomial, Gaussian,
and hyperbolic tangent). On the basis of familiarity and ex-
perience, we employedC-support classification with Gaus-
sian kernels,K(xi,x) = exp(−γ ‖xi −x‖

2), though we sub-
sequently tested other kernels (see below). The values of two
adjustable SVM-related parameters, the kernel widthγ and
misclassification penaltyC, were determined using a cross
validation method (Arlot and Celisse, 2010). For each boot-
strap replicate of the training dataset, we randomly selected
80 % of the data to construct an individual classifier and
used the remaining 20 % to test that classifier. The objec-
tive was to find values forγ and C that are the same for
all of the classifiers and that maximize their performance on
these held-out tests. This task was accomplished by com-
bining the individual tests into a large cross validation test
set with 7200 data instances (0.2 test fraction×360 simula-
tions×100 resampling size), and then computing the ROC
curve and AUC score on this data. Figure6 shows the ROC
curve using the values that maximized the AUC (γ = 0.1,
C = 3, and AUC= 0.93). The area under the curve is well
above 0.8, which indicated that the SVM committee could
be used for predicting simulation crashes in study 3.

The analysis presented throughout the manuscript utilized
only the Gaussian kernels. However, to test the sensitivity
to the choice of SVM kernel, we subsequently re-trained the
classifiers using the same training data and cross validation
technique, but instead applied linear, cubic, and hyperbolic
tangent kernel functions. The Gaussian kernels performed
slightly better than the other kernels, but all of the kernels
still achieved cross validation AUC scores above 0.92. This
test suggests that theCf andCs classes are primarily linearly
separable, because the linear kernel performed nearly as well
as the nonlinear kernels.

4.4 Predicting simulation failures

Before running the 180 simulations in study 3, we used the
SVM classifier committee trained from studies 1 and 2 to
predict simulation failures in study 3. These predictions were
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Fig. 6. Receiver operating characteristic for the bootstrapped set of
individual SVM classifiers assessed using holdout test data. SVM
training parameters (γ = 0.1, C = 3) are chosen to maximize the
area under the ROC curve.

sent out to group members by email at the beginning of the
study (see fourth and fifth columns in Table3) and were
largely validated by the end of the study. The predictions
were based on Eqs. (7) and (8). Simulations were assigned
to theCf class using decision criteria denoted by

D ≡ decision variable≥ threshold. (9)

Two initial criteria were selected using the same threshold,
but different decision variables. The first criterion used the
committee average,

Davg ≡ µc ≥ 0.5, (10)

while the second used the sum of the committee average and
standard deviation,

Dsum≡ µc + σc ≥ 0.5. (11)

The second criterion was chosen to account for variability
across committee members by categorizing some simulations
as Cf even though they had a committee mean below 0.5.
After all of the simulations were completed, a third criterion
based on the signal-to-noise ratio from the committee,Dsnr,
was also considered and analyzed (see Sect.4.5).

The predictions and actual outcomes are summarized in
Table3 and displayed in Figs.7 and8. As noted in Table2,
there were 14 actual simulation failures and 166 successes in
the study. The classifier committee performed exceedingly
well using the two initial criteria,Davg andDsum. Referring
to the confusion matrix in Fig.7, both made 174 correct pre-
dictions (TP+ TN, 96.7 % accuracy) and only six incorrect
predictions (FP+ FN). The incorrect predictions, however,
are distributed differently for the two criteria.Davg had more
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Fig. 7. The confusion matrix for predictions of 180 simulations in
study 3 using the SVM committee with three different decision cri-
teria (Davg, Dsum, andDsnr).

FNs than FPs, whileDsum had an equal number of each. Be-
cause of this difference,Davg andDsum operate at different
points in ROC space.Davg has ROC coordinates of (1/166,
9/14), whileDsumoperates at (3/166, 11/14). Based on their
Euclidean distance from a perfect classifier, which is given

by
[
FPR2

+ (TPR− 1)2
]1/2

, we conclude thatDsum (dis-
tance= 0.215) performs better thanDavg (distance= 0.357).

To ascertain the cause of the performance difference be-
tweenDsum andDavg, the top and middle panels in Fig.8
display the actual outcomes and predictions using theµc and
µc + σc decision variables for the runs in study 3. The de-
cision criteria are represented by the horizontal lines in the
panels. Runs that are on or above the lines were predicted
to fail, while those below were predicted to succeed. Cor-
rect predictions are displayed in blue (TP and TN), and in-
correct predictions in red (FP and FN). The figure indicates,
for example, that runs 17 and 120 failed, but were misclas-
sified byDavg because theirµc values were slightly below
0.5. By comparisonDsum assigned these runs to the correct
class, but also misdiagnosed runs 2 and 95. A visual inspec-
tion of the figure shows that, except for the relative position
of the threshold, the distribution of points inµc andµc + σc
look very similar. We therefore attribute the performance dif-
ference to the threshold value. IfDavg had used a threshold
value of about 0.4 instead of 0.5, it would have made the
same predictions and had the same performance asDsum.

At this point, we can also compare the predictive perfor-
mance of our classification system to the “second design”
predictions inEdwards et al.(2011) (see Sect. 4.3 therein).
We do not compare to their “first design” results (i.e., the ta-
ble of Sect. 4.2 therein), because those results use the same
data to both train and evaluate their statistical model (i.e.,
they are not predictions). Moreover,Edwards et al.(2011)
provide only TN and FN values for this design because they

screened out simulations that were predicted to fail. Their
model incorrectly classified 26 % of the predicted successes,
which we calculate using FN/(FN+ TN). By comparison,
our system misclassified only 3 and 2 % of the predicted suc-
cesses usingDavg andDsum, respectively.

4.5 Retrospective analysis of simulation failures

After study 3 was completed, we applied the same SVM
committee to test the performance of an additional crite-
rion based on the signal-to-noise ratio,µc/σc, as the deci-
sion variable. Without prior knowledge about a setting for the
threshold for this criterion, it was not used to predict simula-
tion failures in advance. Retrospectively, we used the same
values ofµc and σc that were used for the predictions in
Sect.4.4, but determined and tested a setting for the threshold
that maximizes the overall accuracy and minimizes the total
number of false outcomes (FP+ FN). The resulting criterion
is defined by

Dsnr ≡ µc/σc ≥ 3.53. (12)

The performance of this criterion is displayed in Table3
and Figs.7 and 8. As shown,Dsnr outperforms bothDavg
andDsum. If included in our set of predictions, this criterion
would have made 176 correct predictions (97.8 % accuracy)
and only four false predictions balanced between two FNs
(runs 27 and 44) and two FPs (runs 15 and 141).Dsnr op-
erates at ROC point (2/166, 12/14), which is a distance of
0.143 from a perfect classifier. The reason for the improved
performance is shown more clearly in Fig.8. The signal-to-
noise ratio better separates the failures and successes than ei-
ther of the other decision variables, although runs 44 and 141
are still grossly misclassified. In spite of the improvement, it
is also worth noting that more simulations lie closer toDsnr
than eitherDavg or Dsum. This implies that the performance
of Dsnr is more sensitive to slight adjustments in the value of
the threshold than the other criteria.

In retrospect, we also varied the thresholds for the three
decision variables and calculated the FPRs and TPRs for
study 3. The resulting ROC curves and fixed locations of
the decision criteria are shown in Fig.9. The ROC curves
for µc andµc +σc nearly overlap, which confirms the previ-
ous statement that these two decision variables perform sim-
ilarly after accounting for threshold differences. Based on
their AUC scores,µc performs marginally better thanµc+σc
because adding committee variability causes some success-
ful simulations to get tallied relatively sooner as FPs (see
points with values close to run 27 in Fig.8). In contrast to
these cases, the ROC curve forµc/σc is noticeably better and
has an AUC of 0.966. This occurs becauseµc/σc is more ef-
fective at separating the classes, which enables it to identify
more TPs as the threshold is lowered. Overall, however, all
three decision variables perform exceedingly well at classi-
fying new simulation failures. Using these ROC curves, we
can choose decision criteria for making new predictions that
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Fig. 8. Actual and predicted outcomes are shown for the 180 simulations in study 3. Predictions are based on three decision variables
and thresholds (µc andDavg, top; µc + σc andDsum, middle;µc/σc andDsnr, bottom). The horizontal axis displays simulation numbers
based on their order in the ensemble. Simulation failures and successes are shown using stars and circles, respectively. Correct and incorrect
predictions are shown in blue and red, respectively.

consider the tradeoffs between TPs and FPs. Slightly lower-
ing the threshold inDsnr, for example, will increase the TPR
and move it to a point that lies closer to a perfect classifier in
ROC space, but this occurs at the expense of also increasing
the FPR.

5 Sensitivity analysis of simulation failures

Following on the demonstrated success of our predictions,
we used the classifier committee to identify, quantify, and
rank the importance of the model parameters responsible for
the simulation failures. This information can be used to make
the model more robust to parameter perturbations by improv-
ing the modules associated with the most sensitive parame-
ters. For this analysis, we drew 104 Latin hypercube sam-
ples from uniform distributions representing the 18 POP2
parameters, calculated the average failure probability from
a committee of SVM classifiers (µc) at each of the sam-
ple points, and then performed a global sensitivity analysis
(Saltelli et al., 2000; Helton et al., 2006) on the parameter-
induced variance of logµc. All of the available simulation
data were used to compute the parameter sensitivities by

re-training a new committee of 100 SVM classifiers with the
full set of 540 simulations from studies 1–3. The training fol-
lowed the procedure previously described in Sect.4.3. Also
note that the sensitivity analysis is illustrated below usingµc
as the committee response, but the same general results are
obtained using the signal-to-noise ratio (µc/σc).

5.1 Polynomial chaos expansion of the failure
probability

Parameter sensitivities were measured and ranked using
Sobol indices (Sobol, 2001; Saltelli et al., 2000), which
decompose the variance of logµc into contributions from
individual parameters and various higher-order combinations
of parameters. Polynomial chaos expansions (Wiener, 1938)
provide a convenient format for the sensitivity analysis be-
cause the squares of the expansion coefficients are directly
proportional to Sobol indices (Sudret, 2008; Lucas and Prinn,
2005; Tatang et al., 1997). The distribution of logµc was
fit to Np = 18 parameters using a second-order polynomial
chaos expansion expressed as
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D. D. Lucas et al.: Failure analysis of climate simulation crashes 1167

log µc = a0 +

Np∑
i=1

[biP1(ξi) + ciP2(ξi)]

+

Np−1∑
i=1

Np∑
j=i+1

dijP1(ξi)P1(ξj ), (13)

whereξi is the random variable representation of parameter
i, Pn(ξi) is ann-th order orthogonal polynomial inξi , and the
a0, bi , ci anddij are expansion coefficients to be determined.
For the case where theξi are standard uniform random vari-
ables, thePn(ξi) are the shifted Legendre polynomials (see
Xiu and Karnidakis, 2002) with the following orthogonality
property:

1∫
0

Pm(ξi)Pn(ξi)dξi =
1

2n + 1
δmn, (14)

whereδmn is the Kronecker delta function. The first and sec-
ond order shifted Legendre polynomials are given by

P1(ξi) = 2ξi − 1 (15)

and

P2(ξi) = 6ξ2
i − 6ξi + 1. (16)

The coefficients in Eq. (13) were determined through least
squares, and higher-order terms were not considered because
the second-order expansion fits the data very well (adjusted
R2

= 0.98). The resulting fit is given in Table4, which shows
the leading terms of the expansion in two forms.

Analytical expressions for the moments of logµc as
a function of the POP2 parameters were derived by directly
taking expectation values of Eq. (13). The average value and
variance are

avg(log µc) = a0, (17)

and

var(log µc) =

individual parameters︷ ︸︸ ︷
Np∑
i=1

(
b2
i

3
+

c2
i

5

)
+

pairs of parameters︷ ︸︸ ︷
Np−1∑
i=1

Np∑
j=i+1

d2
ij

9
. (18)

The two groups of terms labeled on the right hand side of
Eq. (18) signify variance contributions from individual pa-
rameters (linear and quadratic) and pairs of parameters. The
fractional values of the squared polynomial chaos expansion
coefficients in Eq. (18) follow from application of Eq. (14).

5.2 Sensitivity network of the failure probability

Given a parameter-based decomposition of the variance, we
have developed a technique to visualize complex variance
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Fig. 9. ROC curves for the 180 simulations in study 3 using the
SVM committee with three decision variables (µc, µc + σc, and
µc/σc). The locations of the discriminators using the fixed thresh-
olds inDavg, Dsum, andDsnr are also shown.

connections using network graphs with nodes and edges. The
size of nodei in the graph is proportional to the fractional
contribution from parameteri,

nodei ∝
b2
i /3+ c2

i /5

var(log µc)
, (19)

while the thickness of edgeij connecting nodei and nodej is
proportional to the fractional contribution from joint varia-
tions of parametersi andj ,

edgeij ∝
d2
ij/9

var(log µc)
. (20)

The technique has been extended to include higher order
effects (e.g., using edgeijk for 3rd-order terms), but this is
not needed for the current application. Important parameters
on the resulting network graph are represented by nodes that
are large or make significant connections to other nodes.

Figure10 displays the network graph for the variance de-
composition of logµc. Based on node size and connec-
tivity, the graph indicates that 8 out of the 18 parameters
are the main drivers of the simulation failures (see param-
eters labeled in red in the graph). These eight parameters
account for about 95 % of the variance of logµc, as quan-
tified using Eq. (18). Of these,vconst corr , vconst 2,
convect corr , andbckgrnd vdc1 stand out distinctly
as the top four parameters in the graph. Recall that the same
four parameters are described in Sect.3 and displayed in
Figs. 1 and 2. The top four parameters have the largest
overall and most heavily connected nodes in the graph, and
they collectively account for about 88 % of the variance of
log µc. The strong connections indicate that the probabil-
ity of simulation failure depends on correlations between the
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Table 4.Polynomial chaos expansion of failure probability.

Expansion Leading terms∗

ξi

log µc ≈ −4.347+ 4.049ξ1 + 3.400ξ2 + 2.267ξ13− 1.980ξ14− 1.393ξ16− 1.253ξ5 −

1.143ξ4 − 1.007ξ17− 0.885ξ2 ξ1 − 0.796ξ13 ξ1 − 0.739ξ6 − 0.637ξ13 ξ2 − 0.610ξ9 +

0.578 ξ14 ξ2 + 0.480 ξ16 ξ2 − 0.471 ξ15− 0.414 ξ2
1 + 0.382 ξ5 ξ1 + 0.372 ξ14 ξ1 +

0.351ξ17 ξ2 + 0.320ξ2 ξ5 + 0.320ξ2
8 + . . .

Pn(ξi)

log µc ≈ −2.609+ 1.628P1(ξ1) + 1.546P1(ξ2) + 1.061P1(ξ13) − 0.895P1(ξ14) −

0.475P1(ξ5) − 0.455P1(ξ16) − 0.338P1(ξ4) − 0.311P1(ξ17) − 0.245P1(ξ9) −

0.221P1(ξ1)P1(ξ2)−0.199P1(ξ1)P1(ξ13)+0.196P1(ξ12)+0.174P1(ξ10)+0.164P1(ξ11)−

0.159P1(ξ2)P1(ξ13) + 0.145P1(ξ2)P1(ξ14) + 0.133P1(ξ18) + 0.120P1(ξ2)P1(ξ16) +

0.096P1(ξ1)P1(ξ5) + 0.093P1(ξ1)P1(ξ14) + 0.088P1(ξ2)P1(ξ17) − 0.082P1(ξ6) + . . .

∗ Leading terms are based on the magnitude of the absolute value of the coefficients of the polynomial chaos expansion. Refer to Table1 for
the parameter labels that correspond to the numbers. D
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Fig. 10. Sensitivity of the probability of simulation failure to cli-
mate model parameters is shown using a network graph. Node size
and connector thickness are proportional to sensitivity contributions
from individual parameters and pairs of parameters, respectively.
The eight parameters labeled in red are the main causes of simula-
tion failures.

top four parameters. The direction of the dependence is de-
termined by inspecting the signs of the corresponding coef-
ficients in the polynomial chaos expansion (i.e., forξ1, ξ2,
ξ13, andξ14). Referring to Table4, the failure probability in-
creases for increasing values ofvconst corr , vconst 2,
andconvect corr , and increases for decreasing values of
bckgrnd vdc1 , which is in accordance with the results in
Figs.1 and2.

The variance decomposition therefore validates the de-
scriptive relationships given in Sect.3. However, it also

extends the failure analysis in important ways. Equation (18)
quantitatively ranks the effects of the parameters on the sim-
ulation failures, which provides a way to prioritize efforts to
improve the model. This type of ranking cannot be easily ob-
tained using just the scatterplots in Figs.1 and2. Moreover,
the scatterplots show the correlations between the parameter
values and simulation failures, but the one and two dimen-
sional projections are not sufficient for separating the over-
lappingCf andCs classes. Figure10, on the other hand, very
clearly shows that four or more parameter dimensions are re-
quired to explain and separate the simulation failures from
the successes.

6 Summary and conclusions

We experienced a series of code crashes while running Latin
hypercube ensemble simulations that sampled the values of
18 ocean mixing and viscosity parameters in the POP2 com-
ponent of CCSM4. The crashes occurred for numerical rea-
sons at different combinations of parameter values, which we
surmise is due to violations of numerical conditions defined
in the model (e.g., CFL as described in Sect.3). Assuming
no special knowledge or physical insight about the specific
nature of the crashes, we formulated the simulation crashes
as a binary problem (i.e., they fail or succeed) and used ma-
chine learning classification to quantify failure probabilities
as a function of the 18 model parameters. A highly predic-
tive SVM classification system was trained from a dataset
containing only 32 failure instances out of 360 simulations
and validated using an independent set of 180 simulations.
The resulting classification system had a prediction AUC
score exceeding 0.96 and achieved discrimination accura-
cies above 97 %. Global sensitivity analysis was then used to
identify eight model parameters from four different modules
that drive high probabilities of failing, the results of which
can be used to increase the robustness of CCSM4 to param-
eter perturbations. These methods can be used to character-
ize simulation failures in other complex scientific computer
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models. The climate ensemble failure dataset used for all of
the analysis presented in this manuscript is being made avail-
able for public download at three sites (Bache and Lichman,
2013; MLdata.org, 2013; Lawrence Livermore National Lab-
oratory Green Data Oasis, 2013).
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