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Abstract. Implementation of bulk cloud microphysics
(BLK) parameterizations in atmospheric models of different
scales has gained momentum in the last two decades. Uti-
lization of these parameterizations in cloud-resolving models
when timesteps used for the host model integration are a few
seconds or less is justified from the point of view of cloud
physics. However, mechanistic extrapolation of the applica-
bility of BLK schemes to the regional or global scales and
the utilization of timesteps of hundreds up to thousands of
seconds affect both physics and numerics.

We focus on the mathematical aspects of BLK schemes,
such as stability and positive-definiteness. We provide a strict
mathematical definition for the problem of warm rain for-
mation. We also derive a general analytical condition (SM-
criterion) that remains valid regardless of parameterizations
for warm rain processes in an explicit Eulerian time inte-
gration framework used to advanced finite-difference equa-
tions, which govern warm rain formation processes in mi-
crophysics packages in the Community Atmosphere Model
and the Weather Research and Forecasting model. The SM-
criterion allows for the existence of a unique positive-definite
stable mass-conserving numerical solution, imposes an addi-
tional constraint on the timestep permitted due to the micro-
physics (like the Courant-Friedrichs-Lewy condition for the
advection equation), and prohibits use of any additional as-
sumptions not included in the strict mathematical definition
of the problem under consideration.

By analyzing the numerics of warm rain processes in
source codes of BLK schemes implemented in community
models we provide general guidelines regarding the appro-
priate choice of time steps in these models.

1 Introduction

In the last decade there has been only one study (Morrison
and Gettelman, 2008) (MG08) that discusses explicit time
integration scheme used to advance governing microphysi-
cal equations in a bulk microphysics (BLK) scheme. MG08
implemented a two-moment BLK scheme with a diagnostic
treatment of precipitating hydrometeors in the Community
Atmosphere Model (CAM) version 3 (Collins et al., 2006).
To advance governing microphysical prognostic equations
in MG08, time splitting is applied to separate sedimenta-
tion from the rest of the microphysical processes, and rain
and snow sedimentation are treated diagnostically similarly
to Ghan and Easter(1992). For cloud water and cloud ice
sedimentation, an upstream advection scheme and an explicit
time integration scheme are used. The Courant-Friedrichs-
Lewy condition is always satisfied because the microphys-
ical time step is sub-divided into smaller equal time steps.
This procedure assures stability and positive definiteness.
To advance other microphysical equations, an explicit Eu-
lerian time integration framework is used. Because stabil-
ity and positive-definiteness criteria are not defined, some-
times hydrometeors’ mixing ratio might be negative. To pre-
vent negative mixing ratios, a so-called “mass conservation”
technique is used to calculate artificially modified growth
rates for some microphysical processes but the time step
remains unchanged. We speculate that the “mass conserva-
tion” approach can influence such cloud characteristics as
effective radius, radar reflectivity, precipitation fluxes, and
cloud radiative properties as well as the amount of accumu-
lated precipitation and its spatial and temporal distributions.
We also speculate that when applied in global scale earth
system models with time steps of 10–20 min, a non-stable
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and non-positive-definite time integration scheme could in-
fluence the global water cycle causing artificial precipitation
patterns that are then used as surface boundary conditions for
ocean, land, lake, and sea ice models.

In the Weather Research and Forecasting (WRF) model
version 3 (Skamarock et al., 2008), both the single mo-
ment BLK schemes and the Morrison-Curry-Khvorostyanov
double-moment BLK scheme (Morrison et al., 2005)
(MCK05) might share similar deficiencies of non-positive
and unstable solutions for warm rain processes if the mi-
crophysical time step used is greater than a few tens of sec-
onds. This feature of BLK schemes implemented in commu-
nity models (CAM and WRF) could lead to possible erro-
neous conclusions regarding the role of cloud microphysics
and their influence on radiation or dynamics (amongst oth-
ers) when relatively long time steps are used for integration.

To avoid the uncertain performance of BLK microphysics
schemes, if relatively long time steps are used for model
integration and to improve the creditability of precipita-
tion amount calculations, we derive the necessary condi-
tion (referred to as SM-criterion) to keep an explicit Eule-
rian time integration scheme stable and positive-definite re-
gardless of the parameterizations used for warm rain pro-
cesses in BLK schemes. The SM-criterion constitutes the ex-
istence of a unique positive-definite stable numerical solution
and imposes constraints on the time step permitted (like the
Courant-Friedrichs-Lewy condition for the advection equa-
tion). We highlight that in addition to the limitations on the
time step imposed by the dynamics, there also exists a limi-
tation due to the microphysics. We also define well-behaved,
conditionally well-behaved, and non-well-behaved Explicit
Eulerian Bulk Microphysics Code (EEBMPC) classes and
show that source codes of BLK schemes, which were origi-
nally developed for use in cloud-resolving models and imple-
mented in community models, belong to conditionally well-
behaved EEBMPC class. We also provide recommendations
regarding integration time steps for prospective simulations
with WRF and CAM.

The paper is organized as follows. The general consid-
erations are given in Sect.2. The growth rate calculation
due to warm rain processes in BLK schemes are discussed
in Sect. 3. The comprehensive multi-step analysis of nu-
merics for the system of differential equations that governs
processes of warm rain formation in BLK scheme is pre-
sented in Sect.4. The first step in our analysis is the deriva-
tion of a mass-conserving positive-definite analytical solu-
tion for the linearized differential-difference equations, pre-
sented in Sect. 4.1. The second step in our analysis is the
derivation of a numerically explicit Eulerian solution for the
finite-difference equations, outlined in Sect. 4.2. The third
step in the comprehensive analysis is the stability analysis for
the numerical explicit Eulerian solution, given in Sect. 4.3.
In Sect. 4.4 we show how the utilization of the “mass con-
servation” technique might cause the violation of the sta-
bility and positive-definiteness conditions when analytical

representation of autoconversion and accretion growth rates
are known, using one of the BLK schemes as example. Dis-
cussion and recommendations are provided in Sect.5.

2 General consideration

We consider the following system of equations for bounded
positive X(t) and Y (t) with initial conditionsX(t = 0) =

X0 > 0 andY (t = 0) = Y0 ≥ 0 on time interval 0≤ t ≤ τ :

dX

dt
= −F(X) − G(X,Y ), (1)

dY

dt
= +F(X) + G(X,Y ), (2)

whereF(X) andG(X,Y ) are both positive and bounded, and
positiveτ is given.

We are looking for a numerical solution forX(n + 1) and
Y (n + 1) with initial conditionsX(n) = X0 andY (n) = Y0
such that at each time step “n” satisfies the conservation
equation

d[X + Y ]

dt
= 0 (3)

as well as positiveness and boundedness conditions

0 ≤ X(n + 1) ≤ X0 , (4)

Y0 ≤ Y (n + 1) ≤ X0 + Y0 , (5)

whereX(n) andY (n) areX andY at the beginning of time
step “n”.

Explicit finite-difference scheme with time stepτ is writ-
ten as

X(n + 1) = X(n) − τ [F(X(n)) + G(X(n),Y (n))] (6)

Y (n + 1) = Y (n) + τ [F(X(n)) + G(X(n),Y (n))]. (7)

It is clearly seen that this solution conserves the sum ofX

andY . By adding expressions (6)–(7) we get finite-difference
analog for the conservation equation given by Eq. (3):

X(n + 1) + Y (n + 1) = X(n) + Y (n).

The values ofX(n+ 1) andY (n+ 1) at the next time step
are always bounded and positive only if

τmax ≤
X(n)

F (X(n)) + G(X(n),Y (n))
. (8)

Expression (8) determines the time step permitted to keep the
solution (6)–(7) bounded and positive. To solve the system
we have to specifyX, Y , F(X), G(X,Y ), andτ as well as
determine a stability condition.
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3 Warm rain processes in community models

Applying these general considerations to cloud physics and
defining

X = Qc > 0

Y = Qr > 0

F(X) = PAUTO> 0

G(X,Y ) = PACCR> 0,

we obtain the following system of equations that governs
the process of “warm” rain formation in prognostic BLK
schemes:

∂Qc

∂t
= −(PAUTO+ PACCR) (9)

∂Qr

∂t
= +(PAUTO+ PACCR) (10)

whereQc is cloud water mixing ratio,Qr is rain water mix-
ing ratio, and PAUTO and PACCR are their changes due
to auto-conversion and accretion, respectively. By adding
Eqs. (9) and (10), we get

∂(Qc + Qr)

∂t
= 0. (11)

Equation (11) has the simple physical meaning. For the
“warm” rain formation process total water mixing ratioQt =

Qc + Qr remains unchanged.
Different single-moment and double-moment BLK

schemes used in CAM and WRF and referenced there-
after as RaschCAM (Rasch and Kristjansson, 1998) and
KESSLER (Kessler, 1969), LIN (Lin et al., 1983), ETA
(Ferrier, 1994), TAO (Tao et al., 2003), THOMPSON
(Thompson et al., 2004), MORRISON (Morrison et al.,
2005), and WSM6 (Hong and Lim, 2006) schemes, respec-
tively, calculate auto-conversion and accretion growth rates
using a different non-linear analytical representation for
functions PAUTO and PACCR. The system of non-linear
differential Eqs. (9)–(10) is linearized and solved using
an explicit Eulerian (EE) time integration scheme. Our
analysis of source codes of MG08 scheme in CAM and
TAO, THOMPSON, MORRISON, and WSM6 schemes
in WRF, respectively, reveals that positiveness criterion
(SM-criterion) similar to the inequality (8) and given by

τmax ≤
Qc

PAUTO+ PACCR
(12)

is never checked.
In our analysis of source codes for the BLK schemes re-

ferred to above, we use the following definitions. Based on
the validation of the SM-criterion we introduce definitions
for three different classes that are a well-behaved EEBMPC
class, a conditionally well-behaved EEBMPC class, and
poorly-behaved EEBMPC class.

If the SM-criterion has always been validated and re-
spected in EEBMPC, we define such a code as belonging
to well-behaved EEBMPC class. The remarkable feature of
a well-behaved EEBMPC is that it assures a unique sta-
ble positive-definite mass-conserving numerical solution (re-
ferred to as correct solution thereafter) for the governing dif-
ferential equations. To the best of our knowledge, there is no
well-behaved EEBMPC implemented in Community mod-
els.

If the SM-criterion has never been checked in EEBMPC,
we define such a code as belonging to a conditionally
well-behaved EEBMPC class or a poorly-behaved EEBMPC
class, whose common feature is that both rely on a so-called
“mass conservation” technique in an attempt to avoid nega-
tiveness of hydrometeors’ mixing ratios and make an explicit
Eulerian time integration scheme positive-definite. As it is
shown in the next section, the quintessence of the “mass con-
servation” technique is an incorrect assumption: it assumes
the existence of a positive numerical solution for the govern-
ing differential equations in a time interval where this solu-
tion is not defined.

The distinguishable feature of a conditionally well-
behaved EEBMPC is that the SM-criterion is satisfied even
if it has never been checked. As used in cloud resolving
models or large eddy simulation models with temporal res-
olution about a few seconds, conditionally well-behaved
EEBMPC provides a correct solution for governing differ-
ential equations because the limitation on the time step im-
posed by dynamics is more restrictive than that imposed by
microphysics (SM-criterion), and, in fact, the “mass conser-
vation” technique is never applied. The transition between
conditionally well-behaved EEBMPC and poorly-behaved
EEBMPC is determined by the SM-criterion. If the time step
used in a host model (CAM or WRF) is as those typically
used for regional scale and especially large scale simula-
tions and the SM-criterion is occasionally violated, a con-
ditionally well-behaved EEBMPC would become a poorly-
behaved EEBMPC. The eventual feature of a poorly-behaved
EEBMPC is that it does not provide a correct solution for
governing differential equations.

To avoid the use of an artificial “mass conservation” tech-
nique, mimic the utilization of well-behaved EEBMPC, and
provide guidelines regarding time steps permitted for model
integration for prospective CAM and WRF users, we present
maximal time steps for autoconversion and accretion pro-
cesses as well as effective maximal time steps for both
processes that are necessary to keep stability and positive-
definiteness of an explicit Eulerian time integration scheme.
These maximal time steps, which satisfy SM-criterion, are
calculated for specified values of cloud water and rain water
mixing ratios and two values of cloud droplet concentrations
(Nc) for different BLK schemes and are shown in Table1.
The rightmost column in Table1 shows the maximal time
step permitted, if a particular BLK scheme is chosen, for a
simulation. The values in paretheness correspond to different
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Table 1. Maximal time steps permitted to keep explicit Eulerian time integration scheme stable and positive-definite for autoconversion,
accretion, and due to both processes in CAM and WRF bulk microphysics schemes. For comparison, the same values forBeheng(1994),
Seifert and Beheng(2001), andSeifert and Beheng(2006) parameterizations are presented in gray. Maximal time steps shown forQc =

1.0 g kg−1, Qr = 0.5 g kg−1, Nc = 10(100) cm−3.

Time step, s
SCHEME AUTOCONVERSION ACCRETION EFFECTIVE

RaschCAM 487(1050) 375(375) 212(277)

KESSLER 1000(1000) 351(351) 260(260)
LIN 1000(1000) 418(418) 295(295)
TAO 208(208) 418(418) 139(139)
THOMPSON 133(105e2) 315(321) 93( 312)
MORRISON 1174(724e2) 263(263) 215(262)
WSM6 660(1423) 418(418) 256(323)

BEHENG 36(381e2) 333(333) 33(330)

SIEFERT 161(161e2) 348(348) 110(341)

SIEFERTnew 492(492e2) 381(381) 215(378)

cloud droplet concentrations (Nc) and indicate dependence
of autoconversion or accretion onNc = 10(100) cm−3. For
example, the KESSLER scheme representation of both au-
toconversion and accretion do not depend onNc, and for the
KESSLER row, values of time step are equal in each column.
Non-dependence onNc, in the autoconversion column, mani-
fests non-applicability of KESSLER, LIN, and TAO schemes
for cloud-aerosol interaction simulations, whereas, only the
THOMPSON scheme accounts for dependence of accretion
onNc. Except for this scheme, all other WRF BLK schemes
under consideration can be used for regional scale simula-
tions if the time step in the host model does not exceed two
to three hundred seconds. However, it should be noted that
this conclusion is valid only for specificQc = 1.0 g kg−1 and
Qr = 0.5 g kg−1 used to calculate maximal time steps pre-
sented in Table1.

To demonstrate the instantaneous dependence of the effec-
tive maximal time step on typical cloud water mixing ratio
and rain water mixing ratio for different cloud types we de-
fine a SM-number (Nsm) as

Nsm =
τ(PAUTO+ PACCR)

Qc
. (13)

It should be noted that there is an obvious relation-
ship between the SM-criterion and the SM-number. The
SM-criterion is valid (an explicit Eulerian finite-difference
scheme is stable and positive-definite) if

Nsm ≤ 1. (14)

Thus, the maximal time step permitted to keep an explicit
Eulerian time integration scheme stable and positive-definite

corresponds to

Nsm = 1. (15)

Maximal time steps calculated according to expres-
sion (15) for TAO, THOMPSON, MORRISON, and WSM6
WRF BLK schemes as functions ofQc and Qr for two
different droplet concentrationNc = 10 cm−3 and Nc =

100 cm−3, which are used as a proxy for clean “maritime”
and “continental” clouds, are shown on Figs.1 and 2 and
Figs. 3 and 4, respectively. For “clean maritime” clouds,
Fig. 1 shows instantaneous dependence of maximal time
step onQc for Qr = 0.1 g kg−1 (top left), 0.5 g kg−1 (top
right), 1.0 g kg−1 (bottom left), and 3.0 g kg−1 (bottom
right), respectively, whereas Fig.2 shows instantaneous de-
pendence of maximal time step onQr for Qc = 0.1 g kg−1

(top left), 0.5 g kg−1 (top right), 1.0 g kg−1 (bottom left), and
3.0 g kg−1 (bottom right). Figures3 and4 replicate Figs.1
and2, respectively, for “clean continental” clouds.

The set of these four figures represents a simple yet pow-
erful tool to analyze the behavior of a BLK microphysics
scheme. Since a conventional way to validate new micro-
physics parameterizations is through the use of a single col-
umn model (SCM), observations (vertical profiles of cloud
water mixing ratio, rain mixing ratio, and cloud droplet con-
centration) and data from Figs.1–4 can be used to analyze
theoretical vertical profiles of SM-criterion. These vertical
profiles provide a useful way to make an appropriate choice
for the time step used for a SCM integration instead of arbi-
trary values as is conventionally done. Moreover, in the case
of 2-D or 3-D simulations, the vertical profiles of the SM-
criterion show additional limitations imposed on the time
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Fig. 1.Maximal time step dependence onQc andQr for Nc = 10 cm−3.

Fig. 2.Maximal time step dependence onQr andQc for Nc = 10 cm−3.
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Fig. 3.Maximal time step dependence onQc andQr for Nc = 100 cm−3.

Fig. 4.Maximal time step dependence onQr andQc for Nc = 100 cm−3.
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step used in a multidimensional host model. For example,
limitation on the time step provided in the WRF User Guide
is given as

τwrf ≤ 61Xwrf , (16)

whereτwrf is the time step in seconds and1Xwrf is the spatial
resolution in kilometers. However, this constraint does not
account for additional restrictions due to the microphysics
imposed by the SM-profiles that ensure an explicit Eulerian
scheme stability and positive definiteness and reliability of
model output. In fact, for regional or large scale WRF simu-
lations with a time step chosen according to inequality (16)
violation of the SM-criterion at different times, altitudes, and
spatial locations leads to a non-positive-definite numerical
solution for the governing warm rain differential equations.

To show that the SM-criterion is a necessary condition
for an explicit Eulerian time integration scheme stability and
positive-definiteness and to demonstrate the consequences of
using the “mass conservation” technique, the next section de-
scribes the multi-step analysis used.

4 Analytical and numerical solutions and stability
analysis

Different single-moment and double-moment BLK schemes
used in community models formulate auto-conversion
PAUTO and accretion PACCR growth rates in a variety of
ways providing different non-linear functional dependences
on Qc, Qr, and Nc. The system of nonlinear differential
Eqs. (9)–(10) that governs the processes of warm rain forma-
tion can be solved only numerically using iterative methods.
However, if some linearization is assumed, they could also
be solved analytically.

4.1 Warm rain processes: analytical solution

To solve the system (9)–(10) analytically, linearized on
time interval 0≤ t ≤ τ , both the auto-conversion growth rate
PAUTO and accretion growth rate PACCR can be written as

AUTO = C0
uQ0

c (17)

ACCR = C0
aQ0

r Q
0
c (18)

where Q0
c = Qc(t = 0) > 0, Q0

r = Qr(t = 0) > 0, and C0
u

andC0
a are given by

C0
u = PAUTO(Q0

c)[Q
0
c]

−1 (19)

C0
a = PACCR(Q0

c,Q
0
r )[Q

0
c]

−1
[Q0

r ]
−1. (20)

With expressions (17)–(20), Eqs. (9)–(10) are rewritten as
follows

∂Qc

∂t
= −AUTO − ACCR= −C0

uQ0
c − C0

aQ0
r Q

0
c (21)

∂Qr

∂t
= +AUTO + ACCR= +C0

uQ0
c + C0

aQ0
r Q

0
c. (22)

Solving forQc andQr on time interval 0≤ t ≤ τ we get an
analytical solution for linearized differential Eqs. (21)–(22):

Qc = Q0
c − t (C0

u + C0
aQ0

r )Q
0
c (23)

Qr = Q0
r + t (C0

u + C0
aQ0

r )Q
0
c. (24)

It can be easily seen that solution (23)–(24) conserves mass.
The analytical solution (23)–(24) is bounded and positive-
definite if and only if

0 ≤ Q0
c − t (C0

u + C0
aQ0

r )Q
0
c ≤ Q0

c (25)

Q0
r ≤ t (C0

u + C0
aQ0

r )Q
0
c + Q0

r ≤ Q0
c + Q0

r . (26)

These inequalities determine the maximal time step permit-
ted to keep a bounded and positive solution. Both are satisfied
if the SM-criterion is valid:

t ≤ τmax =
1

C0
u + C0

aQ0
r
. (27)

Thus, the SM-criterion determines the sufficient and neces-
sary positiveness condition for the analytical solution to the
system of differential Eqs. (21)–(22) regardless of the spe-
cific formulations for autoconversion PAUTO and accretion
PACCR growth rates. Condition (27) also determines the ap-
plicability of the linearization given by expressions (17)–
(20). At this point it should be clear that any assumption
regarding the existence of the analytical solution for a time
greater than that given by condition (27) is not sensible
mathematically. The analytical solution for the linearized
differential-difference Eqs. (21)–(22) permanently exists for
any “t” on time interval 0≤ t ≤ τmax only.

4.2 Warm rain processes: explicit Eulerian time inte-
gration scheme

The finite-difference analog for the system of nonlinear dif-
ferential Eqs. (9)–(10) that govern processes of warm rain
formation can be given as

qn+1
c − qn

c

τ
= −PAUTO− PACCR (28)

qn+1
r − qn

r

τ
= +PAUTO+ PACCR (29)

whereqn
c andqn+1

c , qn
r andqn+1

r are initial and new values
of cloud water mixing ratio and rain mixing ratio, respec-
tively. Time representations for auto-conversion and accre-
tion growth rates are still not specified. In general, Eqs. (28)–
(29) can be solved only using iterative numerical methods
that need significant computational time. However, if some
linearization is assumed, non-iterative computationally effi-
cient numerical methods can be used. For example, in an ex-
plicit Eulerian scheme a linearized explicit form is used for
both auto-conversion and accretion growth rates:

PAUTO = Cn
uqn

c (30)

PACCR= Cn
aqn

r qn
c (31)
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whereCn
u andCn

a are given by

Cn
u = PAUTO(qn

c )[qn
c ]

−1 (32)

Cn
a = PACCR(qn

c ,qn
r )[qn

c ]
−1

[qn
r ]

−1. (33)

Explicit representation means that both auto-conversion and
accretion growth rates can be calculated at the beginning of
the microphysical time step becauseqn

c andqn
r are known.

With expressions (30)–(33), Eqs. (28)–(29) are as follows:

qn+1
c − qn

c

τ
= −Cn

uqn
c − Cn

aqn
r qn

c (34)

qn+1
r − qn

r

τ
= +Cn

uqn
c + Cn

aqn
r qn

c . (35)

Solving for qc and qr we get a numerical solution for lin-
earized differential Eqs. (9)–(10):

qn+1
c = qn

c − τ (Cn
u + Cn

aqn
r )qn

c (36)

qn+1
r = qn

r + τ (Cn
u + Cn

aqn
r )qn

c . (37)

It is clearly seen that this solution conserves mass. By adding
expressions (36)–(37) we get the finite-difference analog for
the mass conservation equation given by Eq. (11):

qn+1
c + qn+1

r = qn
c + qn

r .

Despite the fact that the solution (36)–(37) conserves mass,
it is not positive-definite. Whereasqn+1

r is always positive,
qn+1

c sometimes might be negative. The numerical solution
(36)–(37) is bounded and positive-definite if and only if

0 ≤ qn
c − τ (Cn

u + Cn
aqn

r )qn
c ≤ qn

c (38)

qn+1
r ≤ τ (Cn

u + Cn
aqn

r )qn
c + qn

r ≤ qn
c + qn

r . (39)

These inequalities determine maximal time step permitted
to keep a bounded and positive numerical solution. Both in-
equalities are satisfied if the SM-criterion is valid:

τ ≤ τmax =
1

Cn
u + Cn

aqn
r
. (40)

Thus, the SM-criterion provides the necessary condition for
the explicit Eulerian finite-difference scheme (34)–(35) to be
positive-definite regardless of the parameterization formu-
lae used for autoconversion and accretion growth rates (30)–
(33).

An observation that the solution (23)–(24) for differential-
difference equations and the solution (36)–(37) for finite-
difference equations coincide is important, and its mathe-
matical meaning is that the finite-difference scheme is sta-
ble for fixed timesteps that do not exceed the maximal
timestep given by the SM-criterion for the finite-difference
equations (40). It should be clear that any attempt to solve
the finite-difference Eqs. (34)–(35) using a timestep that is
greater than that given by (40) is neither mathematically nor
physically sensible because this situation is not governed
by these equations in an explicit Eulerian time integration

framework. For a different time integration framework, the
positive-definiteness condition and stability condition might
differ. Stability is a very important issue that makes the finite-
difference equations different from the differential-difference
equations for which the stability problem is not relevant. The
analysis of stability is of crucial importance for any finite-
difference scheme and should be done before its implemen-
tation in a numerical model.

4.3 Stability analysis: explicit Eulerian scheme

The numerical solution (36)–(37) can be written as the matrix
equation:[
qn+1

c
qn+1

r

]
=

(
1− τ (Cn

u + Cn
aqn

r ) 0
τ (Cn

u + Cn
aqn

r ) 1

)
×

[
qn

c
qn

r

]
. (41)

The matrix characteristic equation for system (41) has the
following form:

det

(
1− τ (Cn

u + Cn
aqn

r ) − λ 0
τ (Cn

u + Cn
aqn

r ) 1− λ

)
= 0. (42)

For the finite-difference scheme to be stable it is necessary
that all rootsλ1,2 of its characteristic equation satisfy

|λ1,2| ≤ 1. (43)

However, in the case

−1 ≤ λ1,2 ≤ 0, (44)

the numerical solution (36)–(37) might oscillate. This fact
contradicts the conditions of positiveness (38)–(39). Thus,
instead of inequality (43) λ1,2 must satisfy

0 ≤ λ1,2 ≤ 1. (45)

To find stability conditions for the scheme given by expres-
sions (32)–(35) all the roots of the matrix characteristic equa-
tion (42) have to be found. We then get the algebraic charac-
teristic equation

λ2
− [2− τ (Cn

u + Cn
aqn

r )]λ − [τ (Cn
u + Cn

aqn
r ) + 1] = 0. (46)

The solutions are as follows

λ1,2 =
2− τ (Cn

u + Cn
aqn

r ) ± τ (Cn
u + Cn

aqn
r )

2
. (47)

The first rootλ1 is given by

λ1 = 1, (48)

and stability inequality (45) for λ1 is always satisfied.
The second rootλ2 is given by

λ2 = 1− τ (Cn
u + Cn

aqn
r ) . (49)

According to (45) it must satisfy the following inequality

0 ≤ 1− τ (Cn
u + Cn

aqn
r ) ≤ 1. (50)
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The right inequality is held unconditionally, but for the left
inequality to be valid it is necessary that

τ ≤ τmax =
1

Cn
u + Cn

aqn
c

. (51)

The condition given by expression (51) is necessary for
the computational stability of the finite-difference scheme
given by expressions (32)–(35). Observation that conditions
(40) and (51) coincide permits us to conclude that the SM-
criterion provides the necessary condition for the explicit Eu-
lerian finite-difference scheme given by Eqs. (34)–(35) to be
stable and positive-definite regardless of the parameteriza-
tion used for autoconversion and accretion growth rates.

Because the stability of an explicit Eulerian time integra-
tion scheme for microphysical governing equations used in
BLK schemes has never been discussed, the effect of the vi-
olation of the SM-criterion on its stability and positive defi-
niteness is hidden. Since the validation of the SM-criterion
is not reproduced in EEBMPCs used in community mod-
els, these codes belong to the conditionally well-behaved
EEBMPC class. Thus, we conclude that if relatively long
time steps are used for WRF integration and the SM-criterion
is occasionally violated, the source code implementations of
the TAO, THOMPSON, MORRISON, and WSM6 schemes
in the official WRF distribution would belong to poorly-
behaved EEBMPC that do not provide a correct numerical
solution for governing differential equations.

Although the source codes for these four schemes share
the same deficiencies, in the following section we provide
a detailed analysis of numerics of warm rain processes in
conditionally well-behaved EEBMPC for the MORRISON
scheme in WRF (Morrison et al., 2005) as well as Morrison-
Gettelman scheme in CAM (Morrison and Gettelman, 2008),
because the numerical treatment of cloud water mixing ratio
in both schemes is identical.

4.4 Warm rain processes in WRF: MCK05 numerical
solution

The finite-difference analog for the system of differential
equations for the double-moment BLK scheme is not pre-
sented and discussed inMorrison et al.(2005).

In this scheme the warm rain formation processes are gov-
erned by the system of differential equations (Khairoutdinov
and Kogan, 2000) (KK2000):

∂qc

∂t
= −c1[qc]

2.47
[Nc]

−1.79
− c3[qc]

1.15
[qr]

1.15 (52)

∂qr

∂t
= +c1[qc]

2.47
[Nc]

−1.79
+ c3[qc]

1.15
[qr]

1.15. (53)

Using “reverse engineering” (translating source code doc-
umented in WRF to scientific notation used in the theory
of finite-difference schemes), the finite-difference analog for

the system (52)–(53) can be written as

qn+1
c − qn

c

τ
= −qn

c c1[N
n
c ]

−1.79
[qn

c ]
1.47

−

qn
c c3[q

n
c ]

0.15
[qn

r ]
1.15

(54)

qn+1
r − qn

r

τ
= +qn

c c1[N
n
c ]

−1.79
[qn

c ]
1.47

+

qn
c c3[q

n
c ]

0.15
[qn

r ]
1.15

(55)

where explicit representations for both PAUTO and PACCR
are used:

PAUTO= qn
c c1[N

n
c ]

−1.79
[qn

c ]
1.47 (56)

PACCR= qn
c c3[q

n
c ]

0.15
[qn

r ]
1.15. (57)

Explicit representation means that both the auto-conversion
PAUTO and accretion PACCR growth rates, which are cal-
culated at the beginning of the microphysical time step us-
ing known qnc, qn

r , and Nn
c, are constants and can not be “ad-

justed”.
Solving for qn+1

c and qn+1
r we get a numerical solution for

the differential Eqs. (52)–(53):

qn+1
c = qn

c −

τqn
c {c1[N

n
c ]

−1.79
[qn

c ]
1.47

+ c3[q
n
c ]

0.15
[qn

r ]
1.15

}
(58)

qn+1
r = qn

r +

τqn
c {c1[N

n
c ]

−1.79
[qn

c ]
1.47

+ c3[q
n
c ]

0.15
[qn

r ]
1.15

}
. (59)

It is clearly seen that this solution conserves mass. By adding
expressions (58)–(59) we get a finite-difference analog for
the mass conservation equation given by Eq. (11):

qn+1
c + qn+1

r = qn
c + qn

r .

Although the solution (58)–(59) conserves mass, it is not
positive-definite, whereas qn+1

r is always positive, qn+1
c

sometimes might be negative because the positiveness condi-
tion given by the SM-criterion for the MORRISON scheme

τ ≤ τmax =
1

{c1[Nn
c ]−1.79[qn

c ]1.47+ c3[qn
c ]0.15[qn

r ]1.15}
, (60)

whereτmax is the time step permitted to keep positive solu-
tion, is not satisfied.

To avoid negative qn+1
c , similar to the approach usu-

ally employed in other BLK schemes (e.g.,Reisner et al.,
1998) reduced artificial auto-conversion AAUTO and accre-
tion AACCR rates are used (through the “mass conservation”
technique):

AAUTO =
qn

c c1[N
n
c ]

−1.79
[qn

c ]
1.47

τ {c1[Nn
c ]−1.79[qn

c ]1.47+ c3[qn
c ]0.15[qn

r ]1.15}
(61)

AACCR =
qn

c c3[q
n
c ]

0.15
[qn

r ]
1.15

τ {c1[Nn
c ]−1.79[qn

c ]1.47+ c3[qn
c ]0.15[qn

r ]1.15}
.(62)

The expressions for the “adjusted” growth rates (61) and
(62) deserve some comments. First, their analytical represen-
tation is quite different from those provided by KK2000. Sec-
ond, their explicit dependence on timestepτ not found in the

www.geosci-model-dev.net/5/975/2012/ Geosci. Model Dev., 5, 975–987, 2012



984 I. Sednev and S. Menon: Analyzing numerics of bulk microphysics schemes

original formulae (56)–(57) is clearly seen. Third, it is as-
sumed that these expressions remain valid during timestepτ

provided by a host model. However, as explained above, any
attempt to use a timestep that is greater than that given by the
SM-criterion (60) is not relevant in an explicit Eulerian time
integration framework.

Because the SM-criterion is never checked in the
EEBMPC for the MORRISON scheme, we classify this code
as belonging to the conditionally well-behaved EEBMPC
class. However, if the SM-criterion is violated for a particular
“set” of {qc,qr,Nc, andτ } passed by a host model, the source
code for the MORRISON scheme would become poorly-
behaved EEBMPC. An attempt to avoid negativeness of qn+1

c
calculated according to the finite-difference Eq. (58) by ap-
plying a “reduced” autoconversion AAUTO and accretion
AACRR given by (61) and (62), respectively, that act during
timestepτ > τmax (the “mass conservation” technique) is ar-
tificial and has nothing in common with the numerical solu-
tion for the differential Eqs. (54)–(55) using the explicit Eu-
lerian finite-difference Eqs. (58)–(59) that have no positive-
definite and stable solution forτ > τmax.

If the SM-criterion is not respected, a poorly-behaved
EEBMPC in the MORRISON scheme creates a virtual mi-
crophysics reality characterized by a “virtual” cloud water
mixing ratio (qncv) and rain water mixing ratio (qnrv) that are
used instead of a ”real” cloud water mixing ratio (qn

c) and rain
water mixing ratio (qnr ) supplied by the host model. These
virtual numbers can easily be calculated using the following
procedure. If for input{qn

c,qn
r ,Nn

c, andτ } supplied by a host
model, Nsm > 1, artificially “adjusted” AAUTO and AACRR
rates are calculated using formulae (61) and (62). Then a sys-
tem of two equations for “virtual” qncv and qnrv derived by a)
substitution of qncv and qnrv instead of “real” qnc and qnr , respec-
tively, in Eqs. (56)–(57) and b) replacement of PAUTO and
PACRR with AAUTO and AACRR in (56) and (57), respec-
tively, has to be solved:

qn
cvc1[N

n
c ]

−1.79
[qn

cv]
1.47

= AAUTO (63)

qn
cvc3[q

n
cv]

0.15
[qn

rv]
1.15

= AACCR. (64)

The remarkable feature of these “virtual” solutions qn
cv and

qn
rv is that a “virtual” SM-number for the MORRISON

scheme (Nmv) defined as

Nmv =
τ {c1[N

n
c ]

−1.79
[qn

cv]
2.47

+ c3[q
n
cv]

1.15
[qn

rv]
1.15

}

qn
c

(65)

is always equal to one.
The mathematical meaning of the equality

Nmv = 1 (66)

is that there is more than one available way to “adjust” orig-
inal growth rates. The only condition is that a sum of artifi-
cially “adjusted” positive virtual autoconversion VAUTO and
accretion VACCR growth rates has to be equal to qn

c/τ . Thus,

instead of the equality (66) a general definition for the “vir-
tual” SM-number (Nsmv) that remains valid regardless of the
parameterization for autoconversion and accretion processes
can be written as

Nsmv =
τ {VAUTO + VACCR}

qn
c

= 1. (67)

However, even if a) virtual “adjusted” VAUTO and VACCR
rates can be calculated by different methods (for example, for
the MORRISON scheme these rates are given by AAUTO
and AACCR, respectively) and b) their sum can exactly be
equal to qnc/τ , there is no additional equation similar to (58)
that can be used for the calculation of qn+1

c . As our analysis
in Sects. 4.1–4.3 shows, the finite-difference Eq. (58) is not
valid for an arbitrary chosen timestepτ > τmax or, equiva-
lently, Nsm > 1.

If Nsm > 1, the expression (67) would constitute an ad-
ditional constraint that is not included in the strict mathe-
matical definition of the problem introduced in Sect.2. This
expression is the general “mathematical foundation” of the
“massConservation” technique, whose quintessence is an in-
correct assumption: it assumes the existence of a positive-
definite explicit Eulerian numerical solution in a time inter-
val that is greater than that given by the general condition
Nsm ≤ 1, whereas our analysis shows that such a solution
does not exist in an interval whereτ > τmax.

The physical meaning of the general virtual SM-number
(Nsmv) given by (67) is that “real” cloud water is com-
pletely depleted (qn+1

c = 0) by “adjusted” rates acting during
timestepτ (according to the finite-difference equation (58)),
and it is thought, that the problem of negative cloud water
mixing ratio on the next timestep is eliminated. The artificial
growth rates, that use “virtual” qncv and qnrv (for example, for
the MORRISON scheme these virtual numbers are given by
the solution for the system (63)-(64)), are then passed to a
host model for post-processing analysis.

Although our analysis is focused on warm rain processes,
we highlight that the inclusion of an ice phase makes the
SM-criterion more restrictive because additional solid hy-
drometeors compete for the available cloud water. For ex-
ample, the source code implemented into CAM (Morrison
and Gettelman, 2008) and GFDL AM3 GCM (Salzmann et
al., 2010) uses a diagnostic treatment of precipitating hy-
drometeors. However, the numerical treatment of cloud wa-
ter generalized to include ice-phase remains similar to the
one discussed above. To avoid numerical instability two
equal time substeps are used, and to avoid non-positive-
definiteness “mass conservation” is applied to modify origi-
nal growth rates due to numerous warm, ice, and mixed mi-
crophysical processes. Our comprehensive analysis relevant
to warm processes shows that these growth rates are affected
if a more restrictive criterion than the SM-criterion is not
satisfied for timesteps typically used in GCM simulations
(10–20 min). Then, the transition from conditionally well-
behaved EEBMPC to poorly-behaved EEBMPC occurs. In
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this case, the output of a poorly-behaved EEBMPC contains
artificially modified growth rates due to different microphys-
ical processes.

5 Discussion

To date, there are no studies that analyzed the numer-
ics of bulk microphysics schemes with prognostic treat-
ment of precipitating hydrometeors implemented in WRF
(TAO, THOMPSON, MORRISON, and WSM6). Moreover,
a finite-difference analog for each of these schemes has
never been provided. Our analysis of source codes for these
schemes in WRF reveals that a non-positive-definite explicit
Eulerian time integration scheme is used to advance finite-
difference microphysical equations.

Focusing on the mathematical aspects of BLK schemes,
such as stability and positive-definiteness, we provide a strict
mathematical definition for the problem of warm rain for-
mation. We derive a general analytical condition (the SM-
criterion) that remains valid regardless of parameterizations
for autoconversion and accretion processes in an explicit Eu-
lerian time integration framework used to advanced finite-
difference equations that govern warm rain formation pro-
cesses in BLK microphysics schemes. We also prove that the
SM-criterion is a necessary condition of positive definiteness
for the analytical solution of the linearized equations as well
as a necessary condition of stability and positive-definiteness
for an explicit Eulerian time integration scheme. The SM-
criterion constitutes the existence of a unique positive-
definite stable mass-conserving numerical solution, imposes
an additional constraint on the timestep permitted due to
the microphysics (like the Courant-Friedrichs-Lewy condi-
tion for the advection equation), and prohibits the use of any
additional assumptions not included in the strict mathemati-
cal definition of the problem under consideration. In general,
preciseness of numerical scheme and time truncation errors
would also be numerical issues to consider if there is a proof
that a numerical scheme is stable and positive-definite.

Our analysis in Sects. 4.1–4.3 shows the non-existence
of a unique positive-definite stable numerical solution in
an explicit Eulerian time integration framework for differ-
ential equations that govern warm rain microphysical pro-
cesses for microphysical environmental conditions and an
arbitrary chosen timestep for which Nsm > 1. This conclu-
sion implies that any additional assumptions not included
in the strict mathematical definition of the problem are not
valid. One of these additional assumptions is the extrapola-
tion of the existence of a positive-definite explicit Eulerian
numerical solution to a time interval that is greater than that
given by the general SM-criterion. The latter assumption is
the quintessence of the so-called “massConservation” tech-
nique that assumes that “adjusted” growth rates are appli-
cable in a time interval where a positive-definite numerical
solution does not exist. An understanding of the fact that the

numerical solution does not exist on an arbitrary chosen time
interval is sufficient to reject the utilization of the “mass con-
servation” technique, and any additional proof for its rejec-
tion is not needed.

We highlight that the utilization of “mass conservation”
technique applied to warm rain processes in an explicit Eu-
lerian time integration framework is an incorrect attempt to
avoid negativeness of cloud water mixing ratio. The “mass
conservation” approach is conceptually incorrect because it
relies on an assumption that “reduced” with respect to “orig-
inal” autoconversion and accretion growth rates act during a
given time step. This assumption contradicts a general rule
used for the derivation of an explicit Eulerian finite-different
representation for governing differential equations. In an ex-
plicit Eulerian framework, the “original” growth rates are
known constants calculated at the beginning of each micro-
physical time step and can not be changed.

It is conventionally thought that the WRF model can be
applied to a broad range of spatial scales from large eddy up
to global scale simulations. However, for a prospective WRF
simulation at a regional or global scale, the time step cho-
sen according to recommendation provided in the user guide
can cause occasional violations of the SM-criterion at dif-
ferent times, altitudes, and spatial locations. An inappropri-
ate choice of the time step leads to non-positive-definite nu-
merical solution for the microphysical governing differential
equations and degradation of the ability of WRF to calculate
precipitation amount and its spatial and temporal distribu-
tion. By introducing the concept of the SM-criterion vertical
profile we provide a simple yet powerful tool that permits
a rough estimation of an additional limitation imposed on
the time step by microphysics and an appropriate choice for
a time step for WRF simulations.

Depending on the validation of the SM-criterion
in an EEBMPC, we introduce a definition for well-
behaved EEBMPC, conditionally well-behaved EEBMPC,
and poorly-behaved EEBMPC. In a well-behaved EEBMPC,
the SM-criterion is always validated and satisfied, and a re-
markable feature of well-behaved EEBMPC is an assur-
ance of correctness of a numerical solution for the govern-
ing differential equations. If the SM-criterion is never vali-
dated, EEBMPC is assigned to a conditionally well-behaved
EEBMPC class or poorly-behaved EEBMPC class, whose
common feature is the utilization of the “mass conservation”
technique.

As used in cloud resolving or large eddy simulations with
a time step of a few seconds, conditionally well-behaved
EEBMPC provides a correct numerical solution for the gov-
erning differential equations despite the fact that validity of
the SM-criterion is never checked. The necessity of its val-
idation is hidden, because a limitation on the time step im-
posed by dynamics is more restrictive than that imposed by
microphysics. Thus, the SM-criterion is always satisfied, and
the “mass conservation” technique is never applied.
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Because the SM-criterion determines instantaneous tran-
sition between conditionally well-behaved EEBMPC and
poorly-behaved EEBMPC, the mechanistic extrapolation of
applicability of conditionally well-behaved EEBMPC to re-
gional (global) scales and the utilization for WRF integra-
tion time steps on the order of hundreds (thousands) of sec-
onds should be made with caution. As documented in the
WRF user guide, limitation on time step permitted for model
integration is imposed mainly by dynamics. However, this
constraint does not account for additional restrictions due to
microphysics imposed by the SM-criterion that ensures ex-
plicit Eulerian time integration scheme stability and positive-
definiteness. An occasional violation of the SM-criterion
for this time step range determines the necessity of apply-
ing the “mass conservation” technique to avoid negative-
ness of cloud water mixing ratio that makes a conditionally
well-behaved EEBMPC become a poorly-behaved EEBMPC
(an explicit Eulerian time integration scheme becomes non-
stable and non-positive-definite). The eventual feature of a
poorly-behaved EEBMPC is that it does not provide a correct
numerical solution for the governing differential equations.

Our analysis shows that the source code implementation of
single moment (TAO, THOMPSON, and WSM6) schemes
and a double-moment MORRISON scheme with a prog-
nostic treatment of precipitating hydrometeors in WRF use
the “mass conservation” technique and belong to the con-
ditionally well-behaved EEBMPC class if used for cloud-
resolving or large-eddy simulations, but they can become
poorly-behaved EEBMPC for regional and large scale sim-
ulations.

It should be noted that one of the most important aspects of
numerical modeling is solving governing differential equa-
tions using appropriate numerical methods. If governing dif-
ferential equations are used, it is obvious that the milestones
of applied mathematics, in general, and the theory of finite-
difference schemes, in particular, should not be violated. The
theory of finite-difference schemes is a branch of science that
provides definitions for stability and positive-definiteness of
finite-difference schemes (among many others). Our analy-
sis of EEBMPCs in CAM and GFDL AM3 GCM reveals
that these extremely important issues are not recognized as
essential and crucial. For example, both CAM (Gettelman
et al., 2008) and GFDL AM3 GCM (Salzmann et al., 2010)
utilize diagnostic equations for precipitating hydrometeors,
but the numerical treatment of cloud water remains similar
to that used in EEBMPC with prognostic equations, which is
discussed above. Additionally, both codes use a mechanistic
approach, which is the utilization of equal time substeps be-
cause long time steps are used for the host model integration.
A feature of these codes is that at a minimum, two substeps
are used even if stability and positiveness condition is oc-
casionally satisfied. Moreover, even in a case having a few
substeps, stability and positive-definiteness conditions (the
SM-criterion) can be violated at different times, altitudes,
and spatial locations.

Despite the fact that our analysis is focused on warm rain
processes, we highlight that inclusion of the ice phase into
consideration makes the SM-criterion even more restrictive
because additional solid hydrometeors compete for the avail-
able cloud water. For this case the SM-criterion is a necessary
but not sufficient condition that should be included in any
microphysics scheme whose numerics is based on an explicit
Eulerian time integration framework.

As an alternative approach, numerical schemes different
from an explicit Eulerian time integration analyzed in this pa-
per can be used in BLK schemes. However, even if the gov-
erning differential equations can be solved using stable and
positive-definite finite-difference schemes, we would empha-
size the need to re-evaluate the validity of the utilization of
relatively long time steps in bulk microphysics schemes be-
cause of the non-linear dependence of the growth rates of
microphysical process on cloud characteristics. It is difficult
to expect that the linearization of these growth rates remains
valid for periods of time significantly longer than timesteps
routinely used in cloud-resolving models. The computational
expense of the utilization of smaller timesteps dictated by
cloud physics considerations can be prohibitive. However, it
is important to develop a numerical framework that is consis-
tent from both the physics and numerics points of view and
can be applied to any model regardless of scale.

Our future work is dedicated to the development of a pro-
totype of a so-called open flexible microphysics interface.
This interface consists of a suite of different stable positive-
definite time integration schemes (explicit, implicit, and
semi-implicit) and contains a process-oriented source code
repository with libraries that include functions for calcula-
tions of hydrometeor’s growth rates due to numerous micro-
physical process routinely used in different BLK schemes.
The distinguishable feature of the openFMI is its ability to
“create new bulk microphysics schemes on the fly” elimi-
nating necessity to support the multiple source codes for the
BLK schemes in the host model.
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