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Abstract. We designed a method to simulate atmospheric
CO2 concentrations at several continuous observation sites
around the globe using surface fluxes at a very high spatial
resolution. The simulations presented in this study were per-
formed using the Global Eulerian-Lagrangian Coupled At-
mospheric model (GELCA), comprising a Lagrangian parti-
cle dispersion model coupled to a global atmospheric tracer
transport model with prescribed global surface CO2 flux
maps at a 1× 1 km resolution. The surface fluxes used in
the simulations were prepared by assembling the individ-
ual components of terrestrial, oceanic and fossil fuel CO2
fluxes. This experimental setup (i.e. a transport model run-
ning at a medium resolution, coupled to a high-resolution La-
grangian particle dispersion model together with global sur-
face fluxes at a very high resolution), which was designed to
represent high-frequency variations in atmospheric CO2 con-
centration, has not been reported at a global scale previously.
Two sensitivity experiments were performed: (a) using the
global transport model without coupling to the Lagrangian

dispersion model, and (b) using the coupled model with a
reduced resolution of surface fluxes, in order to evaluate
the performance of Eulerian-Lagrangian coupling and the
role of high-resolution fluxes in simulating high-frequency
variations in atmospheric CO2 concentrations. A correla-
tion analysis between observed and simulated atmospheric
CO2 concentrations at selected locations revealed that the
inclusion of both Eulerian-Lagrangian coupling and high-
resolution fluxes improves the high-frequency simulations of
the model. The results highlight the potential of a coupled
Eulerian-Lagrangian model in simulating high-frequency at-
mospheric CO2 concentrations at many locations worldwide.
The model performs well in representing observations of at-
mospheric CO2 concentrations at high spatial and temporal
resolutions, especially for coastal sites and sites located close
to sources of large anthropogenic emissions. While this study
focused on simulations of CO2 concentrations, the model
could be used for other atmospheric compounds with known
estimated emissions.
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1 Introduction

The anthropogenic emissions of greenhouse gases could po-
tentially change the global average temperature, leading to
global warming. The latest assessment report of the Inter-
governmental Panel on Climate Change (IPCC-AR4) states
that climate models are capable of reproducing the temper-
ature trends observed in recent decades if they are forced
with increasing concentrations of anthropogenic greenhouse
gas (IPCC, 2007). A major contributor to anthropogenic
greenhouse gases in the atmosphere is carbon dioxide (CO2),
which plays a key role in the global climate. Consequently,
estimations of CO2 emissions are important in assessing its
influence on ongoing climate change. To understand the na-
ture of CO2 cycling between the land, atmosphere and ocean,
it is necessary to calculate precisely the natural and anthro-
pogenic fluxes of CO2 and the temporal and spatial variabil-
ity of CO2 concentrations in the atmosphere.

Variations in CO2 concentrations in the atmosphere are
generally assessed using transport models with prescribed
surface fluxes. Such modelling efforts are essential in order
to inversely estimate the CO2 fluxes between the atmosphere
and land–ocean surfaces using model-predicted quantities of
atmospheric CO2 and corresponding observations (Gurney et
al., 2002). The essential elements required for modelling of
atmospheric CO2 concentrations are a transport model, mete-
orological drivers, and surface fluxes. Consequently, the ac-
curacy of simulated concentrations is strongly dependent on
the ability of the transport model to represent the observed
variability of atmospheric CO2 concentrations, thereby re-
sulting in large differences in the outputs of various models
(Patra et al., 2008). Therefore, the faithful representation of
CO2 concentrations in transport models is an area of active
research (e.g. Patra et al., 2008). In this study, we present
a novel strategy to improve the performance of a transport
model by coupling two essential components of modelling,
as described below.

The concentrations of atmospheric constituents and their
transport are simulated using Lagrangian or Eulerian mod-
els. In Lagrangian models, the trajectories of individual par-
ticles (representing the chemical constituents of the atmo-
sphere) are calculated by following a predetermined atmo-
spheric velocity. One example of a Lagrangian model is a
trajectory model in which the locations of air masses are
traced using a notional particles. Lagrangian particle dis-
persion models (LPDM) are typical examples of trajectory
models extended to simulations of plume diffusion, utiliz-
ing multiple particles to represent turbulence and convection
processes, in addition to the movement of participles along
mean flow trajectory paths (e.g. Thomson, 1987). LPDMs
can be run forward or backward in time. Forward simula-
tions are generally employed to calculate the transport and
dispersion of tracers from point sources, whereas backward
simulations are used to estimate the potential contributions
of pollutants from many sites to a single location. In this

case, it is only necessary to perform one backward simu-
lation from the receptor point, tracing the given number of
particles back to the possible source locations. Many pre-
vious studies have employed backward trajectory analyses
of atmospheric tracer transport (Seibert et al., 1994; Stohl,
1996) and have utilized Lagrangian particle dispersion mod-
els (Lin et al., 2003; Seibert and Frank, 2004; Stohl et al.,
2005; Folini et al., 2008; Lin et al., 2011). A notable ad-
vantage of backward transport models is their ability to solve
adjoint equations of atmospheric transport and to explicitly
estimate a source-receptor sensitivity matrix, which is useful
for inverse modelling at high resolution (Stohl et al., 2009).
The equivalence of backward transport models to the adjoint
of forward transports has been discussed by Marchuk (1995)
and Hourdin and Talagrand (2006).

In the case of Eulerian models, the evolution of the con-
centration field is solved numerically using finite difference
approximations to the partial differential equation of tracer
transport on a fixed grid rather than along the trajectory path
(Richtmyer and Morton, 1967). Such models are applied
to global-scale simulations of the concentrations of atmo-
spheric constituents and to the inverse modelling of surface
fluxes (Gurney et al., 2002, 2004).

Each modelling approach has its advantages and disadvan-
tages. For example, Eulerian models reproduce the seasonal
cycle of atmospheric CO2 concentrations reasonably well,
but they suffer strongly from numerical diffusion, meaning
that they perform poorly in representing synoptic, super-
synoptic and hourly variations. Lagrangian models, in con-
trast, do not suffer from numerical diffusion and they perform
reasonably well in reproducing synoptic and hourly varia-
tions; however, it is necessary to employ a very long back-
ward trajectory simulation (up to 4 months or more) to re-
produce the seasonal cycle. The use of a longer trajectory
results in the accumulation of errors and is computationally
expensive (Stohl et al., 1998).

Given the above limitations, it is reasonable to consider
a hybrid model in which a Eulerian model is run to gen-
erate the global background concentrations of atmospheric
constituents, which are then used as initial conditions for a
Lagrangian model (e.g. Koyama et al., 2011). In the present
study, we extended the approach introduced by Koyama et
al. (2011) to a high-spatial-resolution case for simulating
the concentrations of atmospheric CO2 in the same coupled
Eulerian-Lagrangian modelling framework as that used in the
earlier study.

Several studies have reported the advantages of using
coupled Eulerian-Lagrangian models, and some have used
the WRF-STILT modelling system (Nehrkorn et al., 2010)
to estimate the CO2 surface fluxes over North America
(Gourdji et al., 2010). Rigby et al. (2011) and Koyama
et al. (2009) outlined a method for combining informa-
tion on the emissions-mole fraction sensitivity from Eulerian
and Lagrangian chemical transport models, for use in esti-
mating emissions at a global scale. Previous studies have
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also suggested the use of high-resolution coupled Eulerian-
Lagrangian models, especially for regional-scale studies.
Vermeulen et al. (1999) designed the nesting of a regional
Largangian model into a global model and implemented a
regional inversion. Trusilova et al. (2010) presented the
results of coupled TM3-STILT model simulations based
on the nested atmospheric inversion scheme developed by
Rödenbeck et al. (2009).

In the present study, we coupled a Eulerian model (Na-
tional Institute for Environmental Studies-Transport Model,
herein NIES-TM; Maksyutov et al., 2008; Belikov et al.,
2011) and a Lagrangian particle dispersion model (FLEX-
PART; Stohl et al., 2005). We did not apply the spatial cou-
pling at the domain boundary employed by the regional mod-
els described above; instead, we implemented a coupling
at temporal boundaries in the global domain. The coupled
model is described in detail in Sect. 2.

A goal of this study is to demonstrate the merit of us-
ing a coupled model together with a newly developed high-
resolution (1× 1 km) global CO2 flux dataset in simulat-
ing high-frequency variations of observed atmospheric CO2
concentrations. The use of 1-km surface fluxes combined
with low-resolution meteorological wind fields for driving
the model is justified because the wind fields are expected to
be in a state of well-mixed daytime conditions, especially for
observation sites located in relatively flat areas, where large-
scale geostrophic motions are generally expected to be dom-
inant. A spatial radius of correlation on the order of 100 km
or more is a commonly observed feature of wind and temper-
ature fields (Buell, 1960, 1972; Gandin, 1965).

The remainder of this paper is organised as follows. The
model, data and methods are described in Sect. 2, and CO2
emissions data and observations are presented in Sect. 3. The
model results and a discussion are presented in Sect. 4, and
the conclusions are provided in Sect. 5.

2 Model and methods

2.1 Lagrangian-Eulerian coupled model

Here, we describe the principles of the proposed Lagrangian-
Eulerian coupled model. The concentration simulated by the
Lagrangian model at the receptor (observation location) is
usually calculated as the integral of the residence time of all
particles at each grid cell multiplied by the flux correspond-
ing to that grid (Lin et al., 2003; Seibert and Frank, 2004).
The concentration of CO2 in the Lagrangian model at any
receptor point (corresponding to an observation site) can be
written as follows (Holzer et al., 2000; Lin et al., 2003):

C(xr,tr) =

tr
∫
t0

dt
∫
V

dV I (xr,tr|x,t)S(x,t)

+
∫
V

dV I (xr,tr|x,t0)C(x,t0)
(1)

where: C(xr,tr) – concentration at receptor pointxr at
time tr; C(x,t0) – initial concentration field at timet0, which
is obtained from the background fields simulated by the Eu-
lerian model;

I (xr,tr|x,t) – influence function or Green’s function link-
ing sources and sinksS(x,t) to the concentrations; anddV–
volume element. The first term of Eq. (1) denotes the con-
centration change at the receptor from sources/sinks in do-
main V during the time interval between initialization and
observation. The second term refers to the contribution to
the concentration at the receptor point by the advection of
CO2 from the background tracer fieldC(x,t0), which is pro-
vided by a Eulerian model. From a Lagrangian viewpoint,
the influence function corresponds to the transition probabil-
ity p(xr,tr|x,t) along the air mass trajectoriesxn(t), calcu-
lated by the Lagrangian model as follows:

p(xr,tr|x,t) =
1

N

N∑
n=1

δ(xn(t)−x) (2)

where: N – number of air parcels emitted in the backward
direction from the receptor point, andδ – delta function rep-
resenting the presence or absence of parceli at locationx.
Hence, in discrete form, Eq. (1) can be written as follows:

C(xr,tr) =
1

N

T

L

IJK∑
ijk

L∑
l=0

Sl
ijk

N∑
n=1

f ln
ijk +

1

N

IJK∑
ijk

CB
ijk

N∑
n=1

f n
ijk (3)

where: i,j,k – indices of a grid cell;l – time index;CB
ijk

– initial background concentration from the Eulerian model;
f n

ijk – 1 (parcel inside thei,j,k cell), 0 (parcel outside the
i,j,k cell); T – duration of trajectories; andL – number of
steps when sources are sampled by trajectories. Here, we
emphasise that the conditioning event involves the particles
passing through the receptor point(xr,tr), and it is custom-
ary in probability theory to write receptor after the random
variable (e.g.p(x,t |xr,tr) with tr > t). However, to be con-
sistent with previous authors, we employ the notation intro-
duced by Holzer et al. (2000) and Lin et al. (2003), who
placed the receptor on the left side, as established in Green’s
function notation, which is the opposite to probability nota-
tion. Furthermore, Flesch et al. (1994) showed the equiva-
lence of forward and backward conditional probabilities; i.e.
pb(xr,tr|x,t) = pf (x,t |xr,tr).

In the case of sampling surface sourcesF(x,y,t), we can
consider their significance to a heighth (e.g. 500 m, which is
the typical height of the planetary boundary layer):

S(x,t)=

{
F(x,y,t)mair

hρ(x,y,t)mCO2
,z ≤ h

0,z > h
(4)

where: mair andmCO2 – molar masses of air and CO2, re-
spectively; and̄ρ – average air density belowh.
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Finally, we obtain

C(xr,tr) =

T mair
hNLρmCO2

IJ∑
ij

L∑
l=0

F l
ij

N∑
n=1

f ln
ij +

1
N

IJK∑
ijk

CB
ijk

N∑
n=1

f n
ijk

(5)

where the left term is associated with concentrations obtained
from the Lagrangian model and the right term is the back-
ground CO2 concentration from the global Eulerian transport
model.

In our coupled model, we use FLEXPART (run in back-
ward mode) as the Lagrangian particle dispersion model and
NIES-TM as the Eulerian global transport model (see the In-
troduction for details). The background CO2 values on the
model grid are obtained by NIES-TM. We use a 2-day length
of backward transport in FLEXPART. Gloor et al. (2001)
found that a period on the order of 1.5 days is the timescale
over it is still possible to discern, in the mixing ratio varia-
tions, the imprint of surface fluxes on the air parcel before its
arrival at an observation point. In the present case, the back-
ground CO2 values on the model grid points were provided
by NIES-TM sampled 2 days prior to the observations.

2.2 Meteorological drivers

We used FLEXPART version 8.0 adapted to using JCDAS
data (Onogi et al., 2007), which are provided on hybrid
sigma-pressure levels and a Gaussian grid (40 model levels,
T106 grid). The original model was designed to use ECMWF
data on a regular latitude-longitude horizontal grid and on
hybrid sigma-pressure vertical levels. Therefore, to adapt
JCDAS data for the FLEXPART model, the required parame-
ter values were obtained via bilinear horizontal interpolation
from a Gaussian grid to a regular 1.25◦

× 1.25◦ grid. The
vertical structure of JCDAS data was used without any mod-
ifications; thus, the FLEXPART source code was adjusted
for new parameters describing JCDAS vertical levels. The
temporal resolution of input data is 6 h. The numerical con-
straints of the model (i.e. the maximum time-step required
for a smooth tracking of contributions of grid cell fluxes to
the model concentrations) demand that the model time step
(τ ) is belowh/U , whereh is the size of the flux grid cells
andU is the wind speed. At a wind speed ofU = 50 km h−1,
we obtainτ = 2, 0.2, and 0.02 h forh = 100, 10, and 1 km,
respectively. Therefore, we used a period of 1 min as both
the particle-transport time step and the flux-integration time
step (i.e.T/L of Eq. 5) for the 1-km flux setup.

The input meteorological data for the NIES-TM model
were taken from NCEP reanalyses with a spatial resolution
of 2.5◦

× 2.5◦ on pressure levels and a temporal resolution
of 6 h. In this version of NIES-TM, the advection terms are
solved by a second-order moment scheme (Prather, 1986).
The implementation is documented by Belikov et al. (2011).
The spatial resolution of the simulated NIES-TM back-
ground concentration, as supplied for the FLEXPART model,

was 2.5◦ × 2.5◦ on 15 sigma-levels; the corresponding tem-
poral resolution was 1 h (the same as temporal boundaries of
coupling). Background values were used in the model with-
out interpolation to the particle position within the Eulerian
grid box during coupling.

3 CO2 fluxes and observations of atmospheric CO2
concentrations

Three types of flux scenarios are commonly used in atmo-
spheric CO2 simulations: fossil fuel emissions, and bio-
spheric and oceanic sources and sinks. These three fluxes
collectively represent the major types of CO2 sources and
sinks. Forest fires should also be included as a component
of biospheric flux. In the present simulations, however, we
excluded the contribution from forest fires assuming that it
is reasonably small at the present observational sites, es-
pecially for the period of analysis used in this study. The
above three fluxes are typically available at a spatial reso-
lution of 1◦

× 1◦; however, this may be insufficient to rep-
resent strong, local emissions of CO2. In previous cou-
pled modelling studies (e.g. Koyama et al., 2011), the sur-
face CO2 fluxes at 1◦ × 1◦ resolution were used for simula-
tions of global atmospheric CO2 concentrations. However,
as mentioned above, a flux dataset prepared at a high spatio-
temporal resolution is sufficient for regional high-resolution
simulations (Trusilova et al., 2010). In this study, we used
1◦

× 1◦ fluxes for global-scale Eulerian calculations of atmo-
spheric CO2 concentrations, and used 1× 1 km fluxes for the
Lagrangian model. These contributions are combined in the
coupled model, as described in the previous section. The
1◦

× 1◦ fluxes used for Eulerian simulations are the same
as 1-km fluxes, with the only difference being resolution;
the one exception is biospheric fluxes, for which we used
those prepared by Nakatsuka and Maksyutov (2009) using an
optimized Carnegie-Ames-Stanford Approach (CASA) ter-
restrial ecosystem model (van der Werf et al., 2003). Dif-
ferent biospheric emissions are used for the Eulerian and
Lagrangian models because each model should handle the
appropriate fluxes. The Eulerian model describes seasonal
variations in CO2 whereas the Lagrangian part reconstructs
short-term variations. However, because VISIT fluxes did
not provide optimized seasonality for the Eulerian model at a
given time, we used optimized CASA emissions to describe
seasonal variations in concentrations in the biosphere in the
Eulerian part of the model. VISIT performs well in recon-
structing synoptic variations, and it can be used for sim-
ulations at high spatial resolutions. VISIT has prognostic
phenology, whereas CASA is driven by Normalized Differ-
ence Vegetation Index (NDVI) observations from space. The
VISIT model provides biospheric fluxes with a temporal res-
olution of 1 day, and it is not neutral on the annual scale.

The temporal resolution of the employed flux datasets is
low compared with the spatial resolution. An emissions
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Table 1. Combinations of emissions analysed in this study.

Type of emissions High resolution Low resolution

Fossil fuel 1 annual file with a resolution of 1× 1 km for spatial
representation

12 monthly files with a resolution of 1◦ × 1◦ for
temporal variations

Biosphere Global vegetation map (15 biotypes) with a resolu-
tion of 1× 1 km for spatial representation

Fluxes with a spatial resolution of 0.5◦
× 0.5◦

and a temporal resolution of 1 day for each bio-
type

Ocean Sea-land mask derived from a global vegetation
map for the biosphere with a resolution of 1× 1 km
for reconstruction of the coastline

12 monthly fluxes with a resolution of 1◦
× 1◦

database prepared at hourly time scale, for example, would
be suitable for high-resolution simulations like those pre-
sented here. However, datasets at an hourly time scale are
only available for certain regions and cities (e.g. Vulcan; Gur-
ney et al., 2009), and there is no available global CO2 emis-
sions dataset prepared at an hourly time scale. Therefore, we
used the best available emissions databases that are currently
available with monthly spatial resolution for fossil fuel and
oceanic fluxes, and 1-day variations for the biosphere.

3.1 Technique for handling fluxes on a 1× 1 km grid

Here, we describe technical aspects of surface flux simula-
tions at a very high resolution. Because each of the global
1× 1 km flux fields (e.g. biosphere, fossil and ocean fluxes)
requires∼3.5 gigabytes (GB) of computer memory, it is in-
convenient to operate with multiple layers of data at this reso-
lution. To reduce the memory and disk storage requirements,
we propose the novel approach outlined below.

a. The 1× 1 km surface flux fields at a given point are
calculated in the model using a combination of data
fields at high and medium resolutions. In the case of
fossil fuel emissions, we multiply 1-km-resolution an-
nual mean fluxes by a medium-resolution (1◦

× 1◦) spa-
tially varying factor that represents the seasonal cycle
at a monthly time scale. This factor is derived from
seasonally varying fossil-fuel-emissions data (Andres et
al., 2011) at a resolution of 1◦

× 1◦, normalized to the
annual mean. We use a land-cover mask at 1-km resolu-
tion to spatially redistribute the biospheric fluxes given
at medium resolution and simulated separately for each
of the 15 vegetation types. In this way, the memory us-
age and computational time are reduced considerably. A
description of each dataset is given in the following sub-
sections, and a summary of the combinations of fluxes
used in the simulations is given in Table 1. The flux data
at each model time step are obtained by linearly interpo-
lating between the monthly fields, except for biospheric
fluxes, which are provided a daily time step.

b. Even with the flux treatment outlined above, the mem-
ory requirements remained high. Consequently, we

used sparse matrix storage (a method of represent-
ing matrices populated primarily with zeros; Tewarson,
1973) to reduce the memory demand for storing the an-
thropogenic emission field at 1-km resolution, because
only ∼1 % of the elements in the matrix for anthro-
pogenic emissions have non-zero values. To speed up
the element search in the sparse matrix, we employed
1-dimensional lookup tables that contain indices for the
first and last non-zero elements for each longitude.

It is possible to use the same approach for biospheric fluxes;
however, this has little effect on storage requirements be-
cause about 30 % of the elements have non-zero values in
this case. The combined application of the above two tech-
niques (i.e. those described in a. and b.) reduces the memory
demand to below 1.5 GB.

3.2 Fossil fuel CO2 emissions

We used the Open source Data Inventory of Anthropogenic
CO2 emission (ODIAC) inventory as fossil fuel CO2 emis-
sion fields, which is a global 1× 1 km fossil fuel CO2 emis-
sion inventory based on country-level fuel consumption, a
global power plant database and satellite observations of
night lights (Oda and Maksyutov, 2011). National annual
total CO2 emissions were estimated using BP’s fuel con-
sumption statistics for coal, oil and natural gas (BP, 2008).
The spatial distribution of point emissions was determined
using power plant locations included in the CARbon Moni-
toring and Action (CARMA) power plant database (available
at http://www.carma.org), and nightlight distributions were
used for emissions from sources other than power plants. For
further details of the ODIAC inventory, see Oda and Maksyu-
tov (2011). We used the US Department of Energy Car-
bon Dioxide Information Analysis Center (CDIAC) monthly
emission inventory (1◦ × 1◦ resolution) to create monthly
fields (Andres et al., 2011). The CDIAC monthly emission
inventory was created using the monthly fuel consumptions
of the top 21 emitting countries. For other countries, we used
a proxy based on the data for the country among the top 21
with the most similar climate and economics. Further de-
tails of this approach are given in Andres et al. (2011). In
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the present study, the CDIAC monthly inventory was used
to distribute ODIAC annual totals into the 12 months of the
year. Monthly values on 1◦ × 1◦ grids were divided by an-
nual totals at the grids, yielding 1◦

× 1◦ normalized coef-
ficient fields that were applied to 1× 1 km ODIAC annual
fields to derive monthly varying fields. For the Eulerian
model simulation, we created 1◦

× 1◦ emission fields from
the 1× 1 km ODIAC (for the spatial pattern) and 1◦

× 1◦

CDIAC (for monthly variability) inventories.

3.3 Terrestrial biosphere fluxes

To estimate the vegetation CO2 fluxes at 1-km resolution,
the fluxes were first simulated with the terrestrial biospheric
model VISIT (Ito et al., 2007) at a resolution of 0.5◦

× 0.5◦

and a daily time step for each of 15 vegetation types in the
IGBP classification (Friedl et al., 2002) for each 0.5◦

× 0.5◦

grid, closely following the procedure described by Saito
et al. (2011). Saito et al. (2011) simulated the ecosys-
tem processes only for four dominant vegetation types us-
ing medium-resolution fluxes. However, for high-resolution
fluxes the number of vegetation types at each grid point
(on a 0.5◦ × 0.5◦ grid) should be extended to include all
possible types. The fluxes simulated on a 0.5◦

× 0.5◦ grid
were interpolated spatially to each pixel of the vegetation
map. Vegetation cover was derived from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) Land Cover
Product (Friedl et al., 2002). The present study used a
global dataset in the Plate Carree projection (IGBP vegeta-
tion classification) at 30 arc-seconds (∼1 km). This prod-
uct was derived from MODIS data for the year 2001 and is
based on the reprojected mosaic exports from the MODIS
MOD12Q1 v.004 dataset (available athttp://duckwater.bu.
edu/lc/datasets.html). A MODIS land cover map was used
only for the interpolation to obtain a 1× 1 km flux map, but
was not used in the VISIT model.

MODIS-IGBP classification divides terrestrial land covers
into 17 biome types and water body, whereas VISIT treats
15 biomes; consequently, the land cover classification was
reconstituted to match that of VISIT algorithms (Saito et al.,
2011).

3.4 Oceanic CO2 fluxes

Oceanic fluxes were obtained from a 4-D-var assimilation
system based on Valsala and Maksyutov (2010). In this sys-
tem, an offline biogeochemical model was driven by reanaly-
sis ocean currents and was used to simulate the surface ocean
partial pressure of CO2 (pCO2) and air-sea CO2 fluxes. The
surface oceanpCO2 in the model was constrained by ship-
based observations of correspondingpCO2 values and by
climatological mean maps ofpCO2. The model employs
a variational assimilation method to constrain the simulated
surface oceanpCO2 with reference to observations. Clima-
tological monthly mean air-sea ocean CO2 flux data were

constructed from this assimilation system based on the pe-
riod between 1996 and 2004. The air-sea CO2 flux data were
remapped onto a regular 1◦

× 1◦ grid. This dataset was ex-
tended to coastal areas using land–ocean mask data (∼1-km
resolution) derived from the MODIS global vegetation map
described above.

3.5 Atmospheric CO2 data

The model results were evaluated by comparison with atmo-
spheric CO2 data obtained at the following continuous obser-
vation sites, representative of both polluted and background
environments:

1. Fyodorovskoye tower, Russia;

2. Meteorological Research Institute (MRI) tower,
Tsukuba, Japan;

3. Queen’s Tower, Imperial College London, London, UK;

4. Royall Holloway University, Egham, London, UK.

The Fyodorovskoye site is located in the central part of
western Russia, near Tver (56◦27′ N, 32◦55′ E), within the
Central Forest State Biosphere Natural Reserve (Milyukova
et al., 2002; Kurbatova et al., 2008). The reserve is lo-
cated far from industrial or residential areas and is there-
fore largely free of air pollution. The measurement tower
is 29 m high and is located on a flat surface surrounded by
homogenous vegetation (spruce forest). The ambient CO2
concentrations at heights of 0.20, 1.0, 2.0, 5.0, 11.0, 15.6,
25.0, 27.6 and 29.0 m are measured by a system comprising
LiCor non-dispersive infrared gas analysers (Li-Cor 6262-
3 and Li-Cor 6251; LI-COR, Lincoln, NB, USA), a pump
(KNF, Neurberger, Germany), a switching manifold, BEV-
A-Line tubing, a data logger (CR23X, Campbell Scientific
Inc., Logan, UT, USA) and a laptop. The instrument was cal-
ibrated weekly using air of known CO2 concentration (pres-
sure bottle) and compressed pure nitrogen. CO2 data were
analysed for the year 2008.

The MRI meteorological tower, which was dismantled in
2011, was 213 m high and located at MRI, Tsukuba, Japan
(36◦04′ N, 140◦07′ E). Ambient air was introduced from in-
lets installed at heights of 1.5, 25, 100 and 200 m using di-
aphragm air pumps, and the CO2 concentration was mea-
sured using a non-dispersive infrared analyser (NDIR) (In-
oue and Matsueda, 1996, 2001). Calibration was performed
every 3 h using four standard gases (330, 360, 400 and
450 ppm) in the MRI87 scale, which is comparable to the
World Meteorological Organization (WMO) mole-fraction
scale (Ishii et al., 2004). In this study, we analysed hourly
data on CO2 concentrations obtained at 200 m height for the
year 2009. Hourly CO2 concentrations were calculated by
averaging the observations taken at 16-min intervals.

The other two measurement sites, Queen’s Tower and
Royall Holloway University of London, are located within
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28 km of each other (Rigby et al., 2008). The Queen’s Tower
(height 80 m) is located on the Imperial College campus in
South Kensington (51◦30′ N, 0◦11′ W), several kilometres
west of the geographical centre of London. Royal Holloway
University (51◦26′ N, 0◦34′ W) is located just outside of the
Greater London area, bordered by “green-belt” countryside
to the west and south. Measurements were made through a
rooftop inlet located approximately 15 m above the ground.
The site is ideally located to provide a “background” CO2
mixing ratio for London, because the prevailing wind direc-
tion is from the southwest, blowing toward London. In this
study, the hourly CO2 concentration was calculated by av-
eraging observational data sampled at 30-min intervals. We
analysed data for 2006 and 2007. Table 2 lists a summary of
the observation stations used in this study.

4 Results and discussion

We performed several simulations using the new model and
emissions scenarios: a “synthetic” test to compare the influ-
ence of low- and high-resolution fluxes on concentration sim-
ulations, sensitivity simulations with coupled and uncoupled
versions of the Lagrangian and Eulerian models, and sen-
sitivity simulations with low- and high-resolution fluxes in
the coupled model. The resulted are presented at continuous
monitoring stations with and without filtering of seasonal-
scale variability. As measures of the correspondence be-
tween models and observations, we chose correlation coef-
ficients and the centred root-mean-square difference (calcu-
lated over a 1-yr period). The Fisher r-to-z transformation
was used to obtain two-tailed p-values and to assess the sta-
tistical significance of the differences between correlation
coefficients.

4.1 “Synthetic” test

To demonstrate the differences between the usage of low- and
high-resolution CO2 fluxes and between Eulerian and cou-
pled models, we performed a “synthetic” test that examined
the transport of CO2 around the city of Moscow, where sev-
eral large power plants are located, emitting strong plumes
of CO2 that are transported to the east of the city by winds.
We selected three prospective observation sites (separated
from each other by∼50 km) located east of Moscow and per-
formed the calculations. The model results for the three sites
are shown in Fig. 1. It is difficult to distinguish concentra-
tions simulated by the Eulerian model (Fig. 1a). For the cou-
pled model and fluxes at a resolution of 1◦

× 1◦ (Fig. 1b), the
results are similar for all three sites, but a sharper structure
is resolved. For a resolution of 1× 1 km (Fig. 1c), however,
the results differ among the sites, clearly showing the impact
of the plumes. We note that this case study serves to demon-
strate the effect of flux resolution on the model results; obser-
vation data are not available from these sites for verification
of the results.

Fig. 1. Results for three imaginary observation sites located east
of Moscow.(a) Eulerian model;(b) Coupled model with 1◦ resolu-
tion; (c) Coupled model with 1-km resolution.

4.2 Comparison of simulated concentrations at
continuous monitoring stations

To demonstrate the feasibility and advantage of very-high-
resolution tracer transport simulations using the coupled
Eulerian-Lagrangian approach, we chose several continu-
ous monitoring stations and performed simulations with
(a) NIES-TM, (b) the coupled model with 1◦

× 1◦ fluxes and
(c) the coupled model with 1× 1 km fluxes.

First we present simulation results at the station Fyodor-
ovskoye, for which we used 3-hourly samples of observa-
tions and model results for the year 2008. We performed
a correlation analysis between the observed and simulated
concentrations, yielding correlation coefficients of 0.40 for
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Table 2. General information on the stations.

Station Longitude Latitude Instrument Data
height, m period

Fyodorovskoye 32.9220 56.4615 27 2008
MRI, Tsukuba 140.1237 36.0526 200 2009
Queen’s Tower, London −0.1768 51.4983 80 Aug 2006–Jun 2007
Egham, London −0.5616 51.4266 15 2006–2007

Fig. 2. Taylor diagram showing the simulated results:(a) without
being deseasonalized;(b) deseasonalized.

NIES-TM, 0.43 for the coupled model with 1◦
× 1◦ fluxes,

and 0.46 for the coupled model with 1× 1 km fluxes. In
this case, the coupled model outperforms the Eulerian model
alone, although the overall correlations are relatively weak.

Similar results were obtained for the station at Egham,
London, using hourly samples of observed and modelled
concentrations for the year 2007. The correlation coeffi-
cients are 0.47 for NIES-TM, 0.54 for the coupled model
with 1◦

× 1◦ fluxes, and 0.55 for the coupled model with
1× 1 km fluxes. Again, the correlations are relatively weak.

Overall, the correlations between observed and simulated
concentrations are not as high as we expected, possibly be-
cause the model mixed layer depth was not accurately esti-
mated. To investigate this possibility, we restricted our analy-
sis to observations and model results sampled at hourly inter-
vals in the daytime, because estimations of mixed layer depth
are expected to be reasonably accurate during the well-mixed
daytime conditions. The data selection could also consider
the wind fields and boundary layer height, but we did not
perform such extensive sensitivity tests based on model me-
teorology. In addition, the use of biospheric fluxes with daily
variations helps to constrain the calculation of night-time val-
ues.

In the case of daytime sampling only, we see an obvious
increase in the correlation coefficients between model and
observations. For example, in the case of Fyodorovskoye, the
correlation coefficients are 0.65 for NIES-TM, 0.68 for the
coupled model with 1◦ × 1◦ fluxes, and 0.735 for the coupled
model with 1× 1 km fluxes. For Egham, the corresponding
correlations are 0.66, 0.66, and 0.69, respectively.

We also compared the simulations results obtained using
different durations of trajectories in the Lagrangian model.
Using 7-day instead of 2-day trajectories, we obtained a mi-
nor increase in the correlation coefficient from 0.735 to 0.740
for the 1× 1 km fluxes at Fyodorovskoye. This improvement
(by 0.005) is not statistically significant because the Fisher
r-to-z transformation gives a two-tailed p-value of 0.7414,
which is much greater than 0.05 (the result is generally con-
sidered to be statistically significant if the p-value is less than
0.05). Therefore, relatively little is gained despite the much
longer computation time required for 7-day trajectories.

For the remaining stations, we considered only daytime
sampling of observations. The results are presented in Ta-
ble 3, and a Taylor diagram (Taylor, 2001) for all of the
simulated stations is shown in Fig. 2a. The results show that
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Fig. 3. Deseasonalized results for Fyodorovskoye tower (represen-
tative 4-month time series).

the coupled model is superior to the Eulerian model alone in
terms of reproducing the observations. The use of 1× 1 km
surface fluxes (instead of 1◦

× 1◦ fluxes) results in a higher
correlation coefficient between simulations and observations.
For most of the stations considered here, the combined model
and 1× 1 km emissions inventory resulted in an improve-
ment in the correlation and in the centred root-mean-square
(RMS) difference.

4.3 Comparison of modelled and observed
high-frequency variability

The high-resolution model performs better than the low-
resolution model in representing the high-frequency variabil-
ity of observed concentrations. The skill of simulations of
CO2 concentrations is affected by the quality of atmospheric
transport, which dominates the variability at the synoptic
scale, and the accuracy of surface fluxes, which affects the
seasonal cycle (Patra et al., 2008). Therefore, to evaluate
the quality of high-resolution simulations it is advisable to
separate the high-frequency synoptic-scale variability from
the low-frequency variability related to the seasonal cycle of
surface fluxes.

The high-frequency variability was extracted from the ob-
servations and from the model results by employing the fol-
lowing equation:

Cd = Ci −
1

n+1

i+n/2∑
j=i−n/2

Cj (6)

where:Cd – de-seasonalized CO2 concentration;Ci – origi-
nal CO2 concentration; andCj – average CO2 concentration
over a 30-day period. Fifteen-day averaging was performed
at the beginning and end of the analysis period.

Table 4 summarizes of correlation coefficients and RMS
differences. The results for individual stations are shown
in Figs. 3–6 for a period of 4 months. A Taylor diagram
(Taylor, 2001) is presented in Fig. 2b. The coupled model

Fig. 4. Deseasonalized results for MRI tower (representative 4-
month time series).

Fig. 5. Deseasonalized results for Queen’s Tower, London (repre-
sentative 4-month time series).

outperforms the Eulerian model for all stations. The use
of 1× 1 km fluxes further improves the correlations and the
RMS differences, although in some cases there is no clear
advantage over the use of 1◦

× 1◦ fluxes. For the site at Fyo-
dorovskoye and the MRI tower, the correlations are relatively
weak for all flux resolutions, possibly due to seasonal vari-
ations (which could potentially affect the total correlation).

The increasing misfit at higher resolutions may be ex-
plained by the rather coarse meteorology. Our version of
the FLEPART model is driven by meteorological fields at a
spatial resolution of 1.25◦ × 1.25◦ (about 125 km), which is
close to the observed horizontal scale of variability in atmo-
spheric winds and temperatures, often expressed as the cor-
relation radius. It is important to use analysed data and emis-
sions at the highest possible resolution, and we are presently
working on this problem. The present model is unable to
resolve local phenomena such as sea breezes, which can be
handled locally if wind fields generated with regional mod-
els (e.g. the Weather Research & Forecasting Model, WRF;

www.geosci-model-dev.net/5/231/2012/ Geosci. Model Dev., 5, 231–243, 2012



240 A. Ganshin et al.: A global coupled Eulerian-Lagrangian model

Table 3. Information on correlation coefficients (statistical significance between correlation coefficients (for 1◦: comparison between NIES-
TM and 1◦; for 1 km: comparison between 1◦ and 1 km) and two-tailed p-value between current and previous (from the cell to the left of the
current cell in table) correlation coefficients)/centred root-mean-square difference between simulations and observations.

Station NIES-TM Coupled model Coupled model
(1◦ surface fluxes) (1 km surface fluxes)

Fyodorovskoye 0.65/8.6 0.68 (0.11)/8.3 0.73 (0.00)/7.7
MRI, Tsukuba 0.38/8.2 0.42 (0.14)/8.0 0.47 (0.06)/7.9
Queen’s Tower, London 0.66/8.9 0.79 (0.00)/7.3 0.81 (0.07)/6.8
Egham, London, 2006 0.68/10.3 0.78 (0.00)/9.0 0.78 (0.70)/8.8
Egham, London, 2007 0.66/15.6 0.66 (0.71)/15.4 0.69 (0.06)/14.4

Table 4. Information on correlation coefficients (statistical significance between correlation coefficients (for 1◦: comparison between NIES-
TM and 1◦; for 1 km: comparison between 1◦ and 1 km) and two-tailed p-value between current and previous (from the cell to the left of the
current cell in table) correlation coefficients)/centred root-mean-square difference between simulations and observations. The results have
been deseasonalized.

Station NIES-TM Coupled model Coupled model
(1◦ surface fluxes) (1 km surface fluxes)

Fyodorovskoye 0.17/6.1 0.34 (0.00)/5.7 0.34 (0.95)/5.7
MRI, Tsukuba 0.14/6.8 0.23 (0.01)/6.8 0.33 (0.00)/6.7
Queen’s Tower, London 0.55/5.5 0.66 (0.00)/4.9 0.69 (0.06)/4.7
Egham, London, 2006 0.52/7.2 0.73 (0.00)/5.8 0.71 (0.21)/6.0
Egham, London, 2007 0.52/9.0 0.55 (0.17)/8.7 0.63 (0.00)/8.2

Fig. 6. Deseasonalized results for Egham, London (representative
4-month time series).

available athttp://www.wrf-model.org) are used. However,
the model works well in the case of stronger winds or if the
motion is close to geostrophic. Despite the problems related
to coarse wind resolution, the model shows improvements
that can be explained by the abovementioned properties of
the large-scale circulation. Further progress requires mod-
els that provide high-resolution fields. On the other hand,
we wish to stress that the main innovation in the present
model is the focus on how to efficiently represent and handle
kilometre-scale fluxes at the global scale.

5 Conclusions

We demonstrated the feasibility of a very-high-resolution
tracer transport simulation with a coupled Eulerian-
Lagrangian model extended to a global flux-field resolution
of 1× 1 km. We prepared and tested a high-resolution flux
dataset and model framework, and performed simulations of
atmospheric CO2 at selected observational points using (a) a
grid-based Eulerian transport model running at a medium
resolution of 2.5◦, (b) a Lagrangian plume dispersion model
and (c) surface fluxes at a resolution of 1× 1 km. A compari-
son of modelled and observed CO2 simulations revealed that
the coupled model outperforms the Eulerian model alone.
The use of surface fluxes at a resolution of 1× 1 km has a
clear advantage over lower-resolution (1◦

× 1◦) fluxes in re-
producing the high-concentration spikes caused by anthro-
pogenic emissions. In some cases, the use of high-resolution
fluxes does not result in an improved simulation, yielding
a weaker correlation with observed variability as compared
with low-resolution fluxes. The simulated concentration
variation is higher at high resolutions, resulting in larger mis-
fit in cases where the timing and amplitude of simulated high-
concentration events do not match observations. This mis-
fit may explain the misrepresentation of the wind fields and
fluxes at high resolutions.

We propose a technique to represent fluxes as a com-
bination of fixed spatial patterns at a high resolution
and temporal variability at medium resolution, thereby
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significantly reducing memory and computational demands.
This model can be efficiently used to analyse continuous ob-
servation data for sites downwind of a large emitting source.
The model explicitly treats areas of sharp discontinuities
in CO2 flux, such as coastlines, where many background
monitoring sites are located. It is also possible to use the
model to simulate and analyse observations from satellites
and aircraft, and to perform inverse modelling and validation
of high-resolution emission datasets.
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