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Abstract. Complex physical systems can often be simulated
using very high resolution models but this is not always prac-
tical because of computational restrictions. In this case the
model must be simplified or parameterised in order to make it
computationally tractable. A parameterised model is created
using an ad-hoc selection of techniques which range from the
formal to the purely intuitive, and as a result it is very diffi-
cult to objectively quantify the fidelity of the model to the
physical system. It is rare that a parameterised model can be
formally shown to simulate a physical system to within some
bounded error. Here we introduce a new approach to param-
eterising models which allows error to be formally bounded.
The approach makes use of a newly developed computer pro-
gram, which we call iGen, that analyses the source code of
a high-resolution model and formally derives a much faster,
parameterised model that closely approximates the original,
reporting bounds on the error introduced by any approxima-
tions. These error bounds can be used to formally justify
conclusions about a physical system based on observations
of the model’s behaviour. Using increasingly complex phys-
ical systems as examples we illustrate that iGen has the abil-
ity to produce parameterisations that run typically orders of
magnitude faster than the underlying, high-resolution mod-
els from which they are derived.

1 Introduction

When we perform numerical experiments it is our duty, as
scientists, to ensure that the computer models we use are
plausible simulations of the physical systems of interest;
that is, we must ensure that observation of the behaviour of
the model can justifiably lead to beliefs about the physical
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system being modelled. Only then can we make scientific
conclusions about physical systems based on the results of
numerical experiments.

Establishing the plausibility of a model, especially a very
complex one such as a climate model, is far from straight-
forward (Winsberg, 2001). The fourth assessment report of
the IPCC (IPCC, 2007), for example, devotes a considerable
amount of space to establishing the plausibility of climate
models. The IPCC report presents a number of arguments,
but to turn these arguments into a plausibility for a model re-
quires us to weigh up many factors and make a number of
subjective judgements. For this reason, these arguments can-
not be used to make a formal, objective quantification of a
model’s plausibility. The arguments can be categorised into
three types:

The first type of argument consists of comparing the out-
put of a model to data from experiment, high-resolution sim-
ulation or a model from another research group. When as-
sessing the plausibility of a model based on this type of ar-
gument we must consider how much (or little) of the phase
space of the model has been shown to be similar to the data.
Based on this, it is difficult to prove that the untested por-
tions of the phase space also have small error. It could be,
for example, that these similarities can be explained, at least
partially, by the tweaking and tuning of the model. When the
data is experimental we must consider its limited precision
and incompleteness: how was a complete set of boundary
conditions for the simulation constructed and how was the
model output compared to the data? When the data comes
from other simulations we must assess, in turn, how plausi-
ble those simulations are.

The second type of argument compares the constituent
parts of the model to data from experiment, high-resolution
simulation or a model from another research group. For this
type of argument we must consider how the errors in the parts
will interact to cause errors in the whole model in addition to
the points mentioned in the previous paragraph.
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The third type of argument presents an account of how the
model, or its constituent parts, are related to the underlying
physics of the system of interest through a set of simplifi-
cations, idealisations, approximations and established mod-
elling techniques. If each of these techniques is plausible, it
is argued, then the resulting model is also plausible. Typical
simplification techniques include:

– Neglect of some physical process: sometimes a physical
process we know to be present in the physical system is
not included in the model. Sometimes the error can be
formally shown to be insignificant (e.g. neglect of the
height dependence of gravitational acceleration), other
times we must appeal to our physical intuition (e.g. ne-
glect of the carbon cycle in a climate model).

– Idealisation: sometimes a model is based on assump-
tions we know to be false (e.g. that the sea has the vis-
cosity of honey or that light travels only vertically) in or-
der to make it easier (or, sometimes, possible) to derive
the equations of the system. Quite often we do not have
an exact physical description of the system, so there is
no way to quantify the error introduced by the idealisa-
tion. We must then appeal to our physical intuition to
assess whether the idealisation will effect the behaviour
of the model in a way that we care about.

– Empirical/Semi-Empirical parameterisation: when our
physical understanding does not provide us with a set of
equations to describe a physical process, model building
is guided in an ad-hoc and informal way by a combina-
tion of theory, physical intuition, idealisation, experi-
mental data and a certain amount of trial and error.

Since these arguments cannot lead to an objective quantifica-
tion of a model’s plausibility, we must rely on the judgement
of the scientific community to weigh up the various argu-
ments and give an inter-subjective quantification. This state
of affairs has, without doubt, produced many good models
and useful scientific results, but on more than one occasion
it has produced conclusions that are somewhat clouded by
questions of the model’s plausibility.

iGen presents a new method of generating parameterisa-
tions of complex physical systems whose underlying equa-
tions of motion are known. The generated parameterisations
have formally bounded error, allowing their plausibility to be
objectively established. The method begins with a model of
sufficiently high resolution to resolve all the relevant physical
processes. Knowledge of the behaviour of this model can jus-
tifiably lead to beliefs about the physical system since by def-
inition the model integrates the underlying equations of mo-
tion with sufficient accuracy. However, such high-resolution
models would run far too slowly to be considered to be prac-
tical models or parameterisations. Suppose, though, that we
view the high-resolution model as a formal definition of the
desired behaviour of the parameterisation, rather than a code

to be executed. The problem of parameterisation then re-
duces to one of finding a computer program that closely ap-
proximates the behaviour of the high-resolution model but
uses far fewer computational operations. This is where iGen
comes in. iGen takes as input the source code of the high-
resolution model. Rather than execute it, iGen analyses the
structure of the code, applies appropriate approximations, de-
rives the source code of a faster model and reports bounds
on the error between the fast model and the high-resolution
model. Because the parameterisation is formally derived
from the high-resolution model, with bounded error, its out-
put can be used to justify conclusions about the behaviour of
the high-resolution model, and so about the physical system
of interest.

As an illustration of this method, take the problem
of the parameterisation of deep convection. One so-
lution to this problem is to replace the parameterisa-
tion with a high-resolution model that resolves the con-
vection, this is the idea behind superparameterisation
(Grabowski and Smolarkiewicz, 1999). However, superpa-
rameterisations are computationally very expensive. iGen
goes one step further by analysing the source code of the
superparameterisation and deriving a much more computa-
tionally efficient model which provably approximates the su-
perparameterisation with a specified error bound.

iGen can also be used as a tool for exploring the behaviour
of high-resolution models. Traditionally, a numerical exper-
iment would consist of executing a model with one or more
input values to get one or more corresponding output values.
iGen offers an alternative type of numerical experiment in
which the model is formally analysed to extract functional
relationships between large-scale observables. If we are try-
ing to understand the emergent behaviour of a complex sys-
tem, a formally derived functional relationship between ob-
servables is of much more immediate use to us than a set of
input/output pairs. For example, if we propose a theory that
predicts some relationship between observables, then iGen’s
analysis of the high-resolution model could supply us with
a formal derivation of this relationship from the underlying
equations of motion. Alternatively, we may not yet have a
fully formed theory, but the discovery of a simple functional
relationship between observables would be a valuable piece
of evidence that informs and directs our theory building ef-
forts. Held (2005) discusses how we could come to under-
stand a very complex physical system by building a hierarchy
of models, each one simpler than the last as conceptual com-
plications are peeled away in sequence like layers from an
onion. iGen could be used in the development of such a hier-
archy by demonstrating formal links between models, testing
hypothetical links and exploring our incomplete theories.
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Fig. 1. Schematic of a wrapped, high-resolution model.

2 Description of the method

The proposed method can conveniently be split into four
steps as follows:

1. Write a high-resolution model of the physical system of
interest.

2. Define the inputs and outputs of the parameterisation
and the range of inputs over which the parameterisation
should be valid.

3. “Wrap” the high-resolution model.

4. Feed the source code of the wrapped model into iGen.

The first step is to write a high-resolution model of the
physical system. This should be of high enough resolution
to ensure that the model captures all the behaviour that is
of interest to us. The next step is to define the inputs and
outputs of the parameterisation. In general, the inputs to
the parameterisation will be some coarse-grained descrip-
tion of the system which contains much less detail than the
input to the high-resolution model. Equally, the output of
the parameterisation will generally be some large scale or
coarse-grained observable, rather than the detailed output of
the high-resolution model. The range of values over which
these inputs should be valid should also be decided upon at
this stage. This could be based on the physically meaningful
range of each input, on theoretical bounds or on some set of
observed or simulated historical data.

The next step is to “wrap” the high-resolution model so
that its inputs and outputs are those of the desired parame-
terisation as defined in the previous step. The idea here is
to turn the high-resolution model into a (very slow) param-
eterisation, something akin to a superparameterisation. To
do this, two pieces of extra code should be written to trans-
form the inputs and outputs of the model. The first piece
of code should take a coarse-grained input of the param-
eterisation and transform it into a start state of the high-
resolution model. Since the input to the parameterisation
may not uniquely specify a high-resolution start state, a ran-
dom number generator may be used to choose between pos-
sible states. The code should be written so that the proba-
bility of returning a high-resolution stateψ on inputx is the
conditional probability of finding the system in stateψ given

that it conforms to the coarse-grained descriptionx. How
difficult this is depends on the nature of the model and the
desired parameterisation. In some cases a simple, uniform
probability distribution may suffice, in others the distribution
may be based on experimental data or the result of some kind
of constrained spin-up that allows the system to settle onto
its attractor. The range of values that each input can take is
also specified in this piece of code by including arange di-
rective that is read by iGen during the analysis. The second
piece of extra code should extract the desired output from the
high-resolution output. This is usually quite straightforward.
So, the wrapped model should take a coarse-grained input,
transform it stochastically into a high-resolution state, pass
it through the high-resolution model and finally extract the
output of interest (see Fig.1).

Once the model is wrapped, its source code can be fed di-
rectly into iGen together with a limit on the acceptable error
in the parameterisation. iGen then analyses the code, “in-
tegrates over” any random numbers, applies approximations
and outputs an alternative code and a set of error bounds.
The output of iGen is the source code of an efficient param-
eterisation and the bounds give us formally derived bounds
on the error between the parameterisation and the wrapped,
high-resolution model.

To illustrate this technique consider a simulation of a gas
contained within a 2-dimensional box and suppose that we
wish to parameterise the pressure of the gas in terms of its
temperature. In this case, the high-resolution model is a sim-
ulation of an atom bouncing around a box of unit dimen-
sion. To wrap the model we extract the pressure by calcu-
lating the average impulse per second on the right hand wall
of the box and use this as output. The input is the temper-
ature which is proportional to the average kinetic energy of
the atom (for simplicity we assume a uniform distribution of
kinetic energy rather than the Maxwell-Boltzmann distribu-
tion, but this does not affect the result). The initial velocity,
position and direction of motion of the atom is chosen at ran-
dom using a random number generator. The pseudocode for
the program is shown in Fig.2.

iGen was used to analyse this program. The analysis re-
quired no approximations (other than the finite precision of
thesqrt , sin andcos functions) and after integrating over
the random numbers, the result was a program that calculated
pressurep by multiplyingT by a constant. So, iGen derived
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input(T)
// Wrapper: turn T into position & velocity
// Rand() returns a random number in [-1:1]
x = (Rand()+1.0)/2.0
y = (Rand()+1.0)/2.0
angle = PI * (Rand()+1.0)
speed = sqrt(T + T * Rand()/2.0)
vx = speed * sin(angle)
vy = speed * cos(angle)

// Simulate atom bouncing around box
p = 0.0 // pressure (impulse)
t = 0.0 // time
while(t < TMAX) {

x = x + vx * DT
y = y + vy * DT
if(x > 1.0) {

x = 2.0 - x
p = p + (2.0 * vx)
vx = -vx

}
if(x < 0.0) {

x = -x
vx = -vx

}
if(y > 1.0) {

y = 2.0 - y
vy = -vy

}
if(y < 0.0) {

y = -y
vy = -vy

}
t = t + DT

}

// Wrapper: return average impulse per sec
p = p/TMAX

output(p)

Fig. 2. Program to simulate an atom bouncing around a
2-dimensional box.

3 Symbolic analysis

iGen works by using the technique of “symbolic analysis”
(Fahringer and Scholz, 2003) in which the variables of the
program are not considered to be floating point numbers with
specific values but instead are considered to be symbolic ex-
pressions that are functions of the program’s input variables.
iGen represents variables as pairs(C,b) whereC is a mul-
tivariate polynomial andb is a constant bound on the error
in C due to any approximations that have been applied. We
call these pairs “polynomial bounds”. In the following sec-
tions we explain how the structures encountered in a typical
programming language can be interpreted in terms of poly-
nomial bounds.

3.1 Arithmetic

Suppose we wish to generate an approximation of the very
simple program

input(x)
a = x + 1.0
y = a * a
y = y * y

output(y)

for inputs in the range−0.1≤ x ≤ 0.1.
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Fig. 2. Program to simulate an atom bouncing around a
2-dimensional box.

the thermodynamic relationshipp∝ T of an ideal gas from
the underlying equations of kinetic theory.

3 Symbolic analysis

iGen works by using the technique of “symbolic analysis”
(Fahringer and Scholz, 2003) in which the variables of the
program are not considered to be floating point numbers with
specific values but instead are considered to be symbolic ex-
pressions that are functions of the program’s input variables.
iGen represents variables as pairs(C,b) whereC is a mul-
tivariate polynomial andb is a constant bound on the error
in C due to any approximations that have been applied. We
call these pairs “polynomial bounds”. In the following sec-
tions we explain how the structures encountered in a typical
programming language can be interpreted in terms of poly-
nomial bounds.

3.1 Arithmetic

Suppose we wish to generate an approximation of the very
simple program

input(x)
a = x + 1.0
y = a * a
y = y * y

output(y)

for inputs in the range−0.1≤ x ≤ 0.1.
Normally, we would simply execute this program for some

input, sayx = 0.1. So, after the first linea = 1.1, af-
ter the second liney = 1.1× 1.1 = 1.21, the next liney =

1.21×1.21= 1.4641 and the output would be 1.4641. How-
ever, when analysing the program the input value is not spec-
ified. Instead, the input,x , is treated as the polynomial bound
(x,0.0) and the program is interpreted as a sequence of arith-
metic operations on polynomial bounds.

Arithmetic on polynomial bounds is interpreted in the fol-
lowing way:

(P,ε1)+(Q,ε2)→ (P +Q,ε1+ε2)

(P,ε1)−(Q,ε2)→ (P −Q,ε1+ε2)

(P,ε1)×(Q,ε2)→ (P ×Q,B(P )ε2+B(Q)ε1+ε1ε2)

(R,ε)−1
→

(
R−1,εB

(
R−1

)2
)

whereB(P ) is a constant bound on the absolute value ofP

over the domain of inputs. Here, the rule for finding the re-
ciprocal makes use of the inequalityB(P 2)≤B(P )2.

Let’s now analyse the example program above using this
definition of arithmetic. The first line setsa to (1+x,0.0),
the second line setsy to (1+2x+x2,0.0), after the next line
y becomes(1+ 4x+ 6x2

+ 4x3
+ x4,0.0) so the output of

the program is the polynomial bound(1+4x+6x2
+4x3

+

x4,0.0). If we evaluate this polynomial atx= 0.1, for exam-
ple, we get 1+0.4+0.06+0.004+0.0001= 1.4641, as we
would expect.

An implementation of this analysis process can increase
the speed of the analysis, and of the resulting model, by ap-
plying approximations that reduce the degree of the polyno-
mial bound.This can be formalised as the rule

(P ±δ,ε)→ (P,ε+B(δ)) .

For example, suppose we are willing to accept errors in the
output of our example program up to an absolute value of
0.04. The program’s symbolic output can be expanded in
the Chebyshev basis as(0.0000125T4(x

′)+ 0.001T3(x
′)+

0.03005T2(x
′)+0.403T1(x

′)+1.03004,0.0) whereTn(x′) is
thenth Chebyshev polynomial and we use the normalisation
x′

= 10x so that the independent variable lies in the range
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−1≤ x′
≤ 1. This can be approximated by simply truncat-

ing the appropriate number of higher order Chebyshev terms,
giving (0.403T1(x

′)+1.03004,0.0310625), where the bound
is calculated using the inequality|Tn(x)| ≤ 1.0. This can eas-
ily be turned back into the program

input(x)
y = 4.03 * x + 1.03004

output(y)

which approximates the original program given at the start
of this section with an error bounded by±0.0310625 and
reduces the number of computational operations from 3 to 2.

3.2 Random numbers

As mentioned in the introduction, when we wrap the high-
resolution model the transformation from low-res input to
high-res input will generally make use of a random num-
ber generator. To generate random numbers the wrapped
model should call a function,rand() , which, upon exe-
cution, returns a random floating point number with uniform
probability over the range(−1 : 1). When analysing a call
to rand() , iGen generates a unique, especially tagged vari-
able. The moments of each output can then be calculated by
integrating over each of the tagged variables. For example,
take the program

input(x)
x = x + 0.005 * rand()
a = x + 1
y = a * a
y = y * y

output(y)

The first moment of the output,y, would be

ȳ=
1
2

∫ 1
−1

[
(1+4x+6x2

+4x3
+x4)+

(0.02+0.06x+0.06x2
+0.02x3)r0+

(0.00015+0.0003x+0.00015x2)r2
0+

(5×10−07
+5×10−07x)r3

0 + 6.25×10−10r4
0

]
dr0

wherer0 is the output of the random number generator. Since
the outputs are always expressed in polynomial form, iGen
can use a simple algorithm to integrate them symbolically.
Evaluating this integral gives

ȳ= 1.000050000125+4.0001x+6.00005x2
+4x3

+x4 .

3.3 Fixed loops

A loop with a fixed number of iterations can be expressed as
the composition of a vector of polynomial bounds. Take, for
example, the program

input(r)
x = 0.0
y = 1.0
z = 0.0
loop 6 times {

dx_dt = 10.0 * (y-x)
dy_dt = r * x - y - x * z
dz_dt = x * y - (8.0/3.0) * z
x = x + dx_dt * 0.01
y = y + dy_dt * 0.01
z = z + dz_dt * 0.01

}
output(x)

which integrates the Lorenz equations over six time-steps.
The input to the program,r , is the parameterr in the Lorenz
equations (Lorenz, 1963) which is a non-dimensionalised
measure of the Rayleigh number, and the output of the pro-
gram is the value of thex parameter after 6 timesteps. The
loop can be dealt with by identifying the variables whose ini-
tial values are referenced in a single iteration of the body of
the loop; in this casex, y andz. Suppose these are placed
into a vector of polynomial bounds

L =

 (x,0.0)(y,0.0)
(z,0.0)

 .

A single iteration of the body of the loop can now be calcu-
lated, in the usual way, as the vector

L =

 (x+0.1y−0.1x,0.0)
(y+0.01rx−0.01y−0.01xz,0.0)

(z+0.01xy−
0.08

3 z,0.0)

 .

The whole loop, then, is equal to the compositionL6(x,y,z)

and the output,x, is just the first element of this. On per-
forming the composition and evaluating for the initial values
(0,1,0) for x, y andz, respectively, the output equates to

x= −1.09964×10−15r3
+5.66995×10−7r2

+

0.00169011r+0.455595.

If we specify that the input,r, lies in the range 0≤ r ≤ 28
(which includes the value used by Lorenz) and that errors up
to 10−4 are acceptable, then the output can be truncated in
the Chebyshev basis to give the approximation

x= 0.00171r+0.45554±5.6×10−5 .

This equation converts to a computer program

input(r)
x = 0.00171 * r + 0.45554

output(x)

that calculatesx in 2 arithmetic operations with an error
bounded by 5.6×10−5. This compares to 90 operations for
the original program.
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An important point to note here is that in the previous ex-
amples the analysis has proceeded sequentially, in much the
same order as it would during an execution. The loop,L6,
however, illustrates that an analysis may proceed very differ-
ently from an execution. During anexecutionof the loop, the
program pointer would loop round 6 times; during ananal-
ysis, on the other hand, we immediately define the mean-
ing of the loop asL6. This can be evaluated in any way
we please. For example, we may evaluateM =L⊗L⊗L,
thenL6

=M⊗M, giving L6 in 3 (albeit polynomial) oper-
ations. In some cases, there exists a closed form solution
for a loopLn in terms ofn. As a simple example, sup-
pose we have a loop with 100 iterations, and the body of the
loop evaluates toL=<(2X,0.0),(Y +1,0.0)> for an input
vector<X,Y >. Ln can be immediately solved asLn =<

(2nX,0.0),(Y +n,0.0) > giving L100
=< (2100X,0.0),(Y +

100,0.0)> without the need to go through the 100 iterations.
So, when a program is executed, a program pointer moves,

step by step, through the program. When a program is anal-
ysed, however, its equivalent polynomial bound is built up
from the structures of the program. There is no program
pointer, structures can be transformed in any order, the end
of the program may be transformed before the beginning.

3.4 if statements

Consider the following program which roughly simulates a
ball bouncing on the floor in a gravitational field:

input(z)
g = 10.0
dt = 0.01
v = 0.0

loop 100 {
z = z + v * dt - 0.5 * g* dt * dt
v = v - g * dt
if(z < 0) {

v = -0.8 * v
z = 0.0

}
}

output(z)

z is the height of the ball andv is its velocity in the up-
ward direction. The input is the initial height that the ball is
dropped from and is taken to be in the range 1≤ z≤ 2.

The new structure here is theif statement. This can be
dealt with by using the Heaviside step function, defined as

H(x)=

{
1 if x >0
0 if x <0

whereH(0) is undefined.
The body of theif statement can be calculated in the

same way as we did for fixed loops, giving the vector
P = ((0.0,0.0),(−0.8v,0.0)).The meaning of the wholeif
statement can be written as an expression of the form

F =H(−z)P +H(z)I

whereI = ((z,0),(v,0)) is the identity vector (i.e. thenth el-
ement is equal to thenth variable). To see thatF has the cor-
rect meaning consider that ifz<0 thenF = P and if z>0
thenF = I . This is exactly the behaviour we require for F to
be equivalent to theif statement1.

So, the whole loop equates to the vector

L=

(
(H(z+0.01v−0.0005)(z+0.01v−0.0005),0)
((1−1.8H(z+0.01v−0.0005))(v−0.1),0)

)
and the whole program equates toL100((z,0),(0,0)).

In general, the condition in anif statement may also con-
tain conjunctions&& or disjunctions|| so that(A && B)
is true if and only ifA andB are both true, and(A || B)
is true if and only ifA or B or both are true. A disjunction
(A || B) is taken to be equivalent toA+B−AB and a
conjunction(A && B) is equivalent toAB.

When dealing with expressions that include the Heaviside
step function, iGen first applies the following set of simple
reasoning rules before the approximate expansion of the step
functions into polynomial bounds.

If the argument to a step function can be proved not to
cross zero then the function is replaced with 0 or 1:

H(A)= 1 if Bl(A)>0

whereBl(A) is a lower bound onA.

H(A)= 0 if Bu(A)<0

whereBu(A) is an upper bound onA. Lower and upper
bounds on polynomials are calculated usinga0±B(A−a0),
wherea0 is the zero-th order coefficient ofA.

To simplify the form of complex booleans, the following
identities are used whenever the left hand sides are encoun-
tered:

1−H(A)=H(−A)

H (H(A)P +H(−A)Q)=H(A)H(P )+H(−A)H(Q)

if H(A)H(B)H(−C)= 0
and H(−A)H(C)H(−B)= 0
thenH(A)H(B)+H(−A)H(C)=H(B)H(C) .

The final identity is proved by noting that

H(A)H(B)(H(C)+H(−C))+

H(−A)H(C)(H(B)+H(−B))

=H(B)H(C)+H(A)H(B)H(−C)+

H(−A)H(C)H(−B) .

1Strictly speaking, the floating point variablez may equal 0.0
when theif statement is reached, in which caseF would be a func-
tion ofH(0) which is undefined. However, this is rarely a problem
in practice since we can always add a small random number to the
inputs to represent their inherent uncertainty. When the random
numbers are integrated over, the ambiguity is removed as long asP

remains finite.
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This may seem like a rather arbitrary piece of reasoning, but
because of the wayif statements split the input space into
two partitions, this structure was found to occur quite often.
Its effect is to join together neighbouring partitions that have
the same approximation.

Products of Heaviside functions of the form

H(P1)H(P2)...H(PN )

can sometimes be proved to be trivially true or false, and so
replaced by 1 or 0, respectively. The problem reduces to that
of deciding whether a set of inequalities on polynomials is
satisfiable. We used a simple algorithm based on the Gaus-
sian elimination method. The algorithm first transforms the
inequalities to equalities in the following way: each Heavi-
side termH(Pn) is equivalent to the inequalityPn>0. Since
Pn can be bounded above byBu(Pn) (as calculated using the
sum of its Chebyshev coefficients) then there exists ayn in
the range 0< yn ≤Bu(Pn) that satisfiesPn−yn = 0. If we
let

yn=
B(Pn)(1+zn)

2

thenzn is in the range[−1 : 1] and can be treated as a normal
Chebyshev variable. This leads to a set of equalities

P ′
n=Pn−

B(Pn)(1+zn)

2
= 0

for all 0<n≤N .
Once in this form, the highest degree terms that occur

in more than one equation can be successively removed by
Gaussian elimination. At each stage, the bounds of the re-
maining polynomials are checked. If any has an upper bound
that is below zero or lower bound above zero, the equation
cannot be satisfied and so there is no solution. An equation
P ′
n was removed if it could be shown to be tautological, i.e. if

it could be reduced to a formzn=Q andQ could be bounded
by the interval [−1:1].

We found that this algorithm detected all instances en-
countered in our example programs without becoming pro-
hibitively slow. However, in the worst case, this algorithm
runs in worse than exponential time so the procedure quits
if the number of equalities exceeds a cutoff value. No fast
algorithm for solving this problem is known, the first algo-
rithm was due toTarski(1951) but this also ran in worse than
exponential time. Exponential time algorithms were found
by Seidenberg(1954) and later byCollins (1975). More re-
cently, a sub-exponential time algorithm has been found by
Grigorev and Vorobjov(1988) but execution times remain
high.

3.5 Conditional loops

Conditional loops can be implemented using the structures
we have already described

while(A) {
...

}

is equivalent to

loop M {
if(A) {

...
}

}

for someM that gives the maximum number of times the
while loop can iterate over the domain of inputs.

By insisting thatM is given a finite value we are, in effect,
restricting iGen’s applicability to the subset of computer pro-
grams known as “basic recursive”. These are the programs
that can be proved to terminate. As it turns out (Solomonoff,
2005), almost all computer programs in practical use hap-
pen to compute basic recursive functions. Upon reflection,
it is not surprising that numerical models can be shown to
terminate: they are written that way. For example, if it was
suspected that an algorithm could enter an infinite loop, this
would in all practical respects be considered to be a bad algo-
rithm and would be rewritten or thrown out of the model. The
one exception to this is the use of randomised algorithms,
some of which may technically never terminate. However,
these algorithms all have the property that the probability of
termination very quickly approaches 1 as the number of it-
erations of some loop increases. So, by limiting the number
of iterations we effectively take an algorithm with a vanish-
ingly small probability of not terminating and replace it with
an algorithm with a vanishingly small probability of return-
ing the wrong answer. So when we come to integrate over
the uncertainties in the input, as long as all outputs are finite,
there is always a finiteM that ensures that the result is the
correct answer with a vanishingly small error. We therefore
restrict ourselves to the consideration of the basic recursive
functions without fear that this will be a problem for our pro-
posed application.

3.6 Arrays

Array reference and modification can be performed by rep-
resenting the whole array as a single polynomial with the
array’s index variable as an independent variable (multidi-
mensional arrays can trivially be reduced to one dimensional
arrays by using the memory address offset as the index of
each element). Suppose we have an array,A, of sizeN . Let
xn be theN equidistant points on the interval [−1:1]

xn=
2n

N−1
−1

wheren is an integer in the range 0≤ n<N . The Lagrange
basis polynomials on these points is defined as

ln=

∏
0≤i<N,i 6=n

x−xi

xn−xi
.
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These polynomials have the important property thatln(xm)=

0 if n 6=m andln(xn)= 1. If we letai be the value ofA[i]
for all integers 0≤ i <N , then the(N−1)th degree polyno-
mial

A(x)=

N−1∑
i=0

ai li

has the property that for any integer 0≤ j < N , A( 2j
N−1 −

1)= ai . So an array referenceA[j] has the value

A

(
2j

N−1
−1

)
.

If we now define the bi-variate polynomialL(i,x) as

L(i,x)=

N−1∑
j=0

lj

(
2i

N−1
−1

)
lj (x)

so thatL(i,x)= li(x) for any integer 0≤ i < N , then the
value of an arrayA after an assignment operationA[i] =
Y is equivalent to the polynomial

A+

(
Y −A

(
2i

N−1
−1

))
L(i) .

4 Implementation details

iGen has been written in C++ and is, at present, only ca-
pable of analysing C++ source code although work is un-
derway to link iGen to the GNU compiler collection (GCC)
so that it can analyse all languages that can be compiled by
GCC. iGen can analyse any C++ source code although calls
to pre-compiled library code, other than the<cmath > li-
brary, cannot be analysed. Any arithmetic that is sensitive
to machine precision or that depends on overflow or float-
ing point exceptions should be avoided as this behaviour is
not reproduced by the analysis. Consideration should also be
given to the time it will take for iGen to analyse the model.
At present, integer arithmetic (but not integer loop counting)
tends to lead to slow analysis speed. Luckily this is usually
quite easily avoided in models of physical systems. Another
consideration is that since iGen represents each variable as
a polynomial, rather than a floating point number, the mem-
ory requirements of an analysis can be many times that of an
execution.

iGen represents polynomials as a set of values at the
Gauss-Lobatto collocation points as this allows very efficient
computation of arithmetic operations. The type of polyno-
mial approximation used is user specifiable and is either by
truncation in the Chebyshev basis or by interpolation be-
tween collocation points. We chose to use the Gauss-Lobatto
collocation points because of their good convergence prop-
erties (Boyd, 2001), this is extended to the multivariate case
by using a generalised, adaptive sparse grid as described in
Gerstner and Griebel(2003).

The analysis can be terminated when the bounds on error
fall below a certain level, or when a certain amount of CPU
time has been used. The rate of reduction of error as analy-
sis time increases depends on the smoothness of the function
calculated by the wrapped model, the smoother the function,
the faster the convergence. The convergence properties of
the sparse grid used by iGen have been discussed at length in
the literature, see for exampleGerstner and Griebel(2003),
Barthelmann et al.(2000) or Bungartz and Griebel(2004)
for a survey. Polynomial approximations of certain discon-
tinuous functions never converge, this is known as the Gibbs
phenomenon. However, discontinuities in a model can be
formally removed by accounting for the finite precision of the
input values. This can be done by adding a random number to
each input value with a magnitude that represents the preci-
sion of the input. On integrating over these random numbers,
any discontinuities in the wrapped model are removed.

5 Applications of iGen

5.1 Automatic derivation of the Lorenz equations

iGen was used to analyse a high-resolution model of
Rayleigh-Benard convection in a 2-dimensional, laminar, in-
compressible fluid on an 80× 28 grid. The model was
wrapped so that the input was three variables(X,Y,Z).
These were converted to a state of the fluid according to

ψ(x,z)=

√
2(1+a2)

a
X sin(πax) sin(πz)

and

θ(x,z)=

√
2Y cos(πax) sin(πz)−Z sin(2πz)

πr

whereψ(x,z) is the stream-function,θ(x,z) is the tempera-
ture perturbation,a=

1
√

2
is the aspect ratio of the convective

cells andr = 28 is the non-dimensionalised Rayleigh num-
ber. Similarly, the output of the high-resolution model was
converted back to the(X,Y,Z) phase space by extracting the
appropriate lowest modes ofψ andθ according to

X=
1

√
2(1+a2)

∫ ∫
ψ(x,y) sin(πax) sin(πz) dx dz

Y =
πR
√

2a

∫ ∫
θ(x,y) cos(πax) sin(πz) dx dz

Z= −
πR

2a

∫ ∫
θ(x,y) sin(2πz) dx dz

The final output of the wrapped model was the average rate
of change ofX, Y andZ over a 0.00001s simulation.

The variables,(X,Y,Z), correspond to the variables of
the Lorenz equations (Lorenz, 1963), which describe a 3-
variable parameterisation of Rayleigh-Benard convection.
iGen analysed the wrapped model of Rayleigh-Benard con-
vection and produced the following simplified code:
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input(x,y,z)
dx_dt = 9.95076 * y + 9.94443 * x
dy_dt = -0.991175 * x* z - 0.999187 * y

+ 27.9712 * x
dz_dt = -2.65625 * z + 0.997019 * x* y

output(dx_dt, dy_dt, dz_dt)

which is a statement of the Lorenz equations with a slight
difference (less than 0.9%) in the constants. This represents
an increase in execution speed of 5 orders of magnitude com-
pared to the wrapped model. The slight difference between
iGen’s analysis and the Lorenz equations is attributed to the
finite resolution of the grid, the finite time over which the in-
tegration was performed and the accuracy of the algorithm
used to solve the Poisson equation.

5.2 Mie scattering

In order to demonstrate iGen’s ability to deal with much
more complex mathematical functions, a program was writ-
ten to simulate the scattering of parallel light by spherical
water droplets. This was done using Mie theory (Bohren and
Huffman, 1998) which gives a method of solving Maxwell’s
equations for parallel light incident upon a sphere, using
complex spherical Bessel and Hankel functions. In order to
analyse this, iGen had to deal with polynomials that spanned
many orders of magnitude and included sharp peaks due to
resonances, without losing precision.

The program was wrapped to calculate the scattering cross
section per unit mass of water for light of wavelength 500 nm
scattered by a thin layer of cloud. The cloud was made up of
spherical water droplets with refractive index of 1.33+1×

10−8ı. The droplets in a cloud are not generally all of the
same radius and are often assumed (Dobbie et al., 1999) to
have a gamma distribution given by

P(r)=Arαe−βr

where

α=
1

ve
−3.0

and

β =
1

vere

andA is a normalisation factor,ve is the relative “effective
variance” of the distribution and is set to 0.172, andre defines
an “effective radius” of the droplets.re was taken to be the
input of the wrapped model, and defined to lie in the range
5 µm to 40 µm. The output of the wrapped model was defined
to be the reciprocal of the scattering cross section per unit
mass.

iGen was used to analyse this wrapped model and pro-
duced the simplified model for the scattering cross section
Ksca:
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Fig. 3. Plot of scattering cross section for fixed radius droplets
(solid line), numerically integrated over the droplet radius distri-
bution (dashes), and iGen ’s simplified model (dots). For clarity, a
magnified section is shown in the lower plot.

Ksca=
1

660.1re−2.188×10−4

with an error bounded by 4 m2 kg−1. This is plotted in Fig.3
together with the exact result calculated using numerical in-
tegration.

5.3 Entrainment in stratocumulus

In order to show that this technique scales well and can be
applied to models of realistic complexity, iGen was used to
create a parameterisation of the mixing rate (entrainment) at
the upper surface of a nocturnal, non-precipitating marine
stratocumulus cloud. This is a particularly challenging case
as it involves turbulent motion, phase changes between liq-
uid water and vapour, radiative heating/cooling and surface
fluxes of heat and moisture. No analytic derivation of en-
trainment rate is known and the parameterisation of marine
stratocumulus remains a large source of uncertainty and er-
ror in existing climate models (Bony and Dufrence, 2005;
Dufrence and Bony, 2008).

www.geosci-model-dev.net/4/785/2011/ Geosci. Model Dev., 4, 785–795, 2011



794 D. F. Tang and S. Dobbie: iGen 0.1: a program for automatic parameterisation

The high-resolution model in this case was a 2-
dimensional cloud resolving model, wrapped so that its in-
put was a 5-variable specification of the large scale state of
the system and the output was the mean and variance of the
entrainment velocity over the final 4 h of a 6 h simulation.

iGen’s analysis produced 10th degree multivariate poly-
nomials for mean and variance of entrainment. These poly-
nomials can be approximated to form a parameterisation
of entrainment that executes in a few hundred arithmetic
operations. iGen’s parameterisation of mean entrainment
was shown to be in good agreement with data from the
DYCOMS-II field campaign and from an intercomparison of
cloud resolving models (Stevens et al., 2005). Full details of
this experiment is given inTang and Dobbie(2011).

6 Discussion

There remain many ways in which iGen could be developed
further. iGen’s use of an adaptive sparse grid representation
for polynomials goes some way to dealing with the expo-
nential increase in the size of polynomial approximants as
the number of independent (input) variables of the wrapped
model increases. However, this “curse of dimensionality”
cannot be staved off forever and iGen’s performance will
quickly diminish as the number of independent variables in-
creases beyond around six. The exact number of indepen-
dent variables that can be practically analysed depends on the
smoothness of the function calculated by the wrapped model.
If the wrapped model contains many discontinuities or singu-
larities then iGen’s analysis will slow down and the resulting
parameterisations will have wider error bounds. This could
be improved by including localised adaptive grid refinement
or having a piecewise polynomial representation of variables.
If the wrapped model has many more independent variables
than iGen can handle then it may be possible to split the pa-
rameterisation into modules and parameterise each module
separately. For this to be possible each module should have
inputs and outputs with clearly defined physical meaning so
that wrapped models of each module can be constructed. A
mathematical treatment of this strategy and a way of calcu-
lating error in the whole model from the error in each module
is given inTang(2010).

If the variables in the high-resolution model become very
sensitive to initial conditions then error bounds may become
wide. iGen will apply approximations in order to prevent
the analysis becoming too slow, and this will introduce a
small uncertainty to the value of the variable. If this uncer-
tainty is subsequently amplified in the final result, the error
bounds will end up correspondingly wide. To improve the
calculation of error bounds iGen could calculate probabilistic
bounds, use bounds that are functions of the input variables
or use automatic differentiation in order to apply approxima-
tions more intelligently. iGen is being actively developed in
this area.

It should be noted that using iGen to analyse a model is
different from just fitting a curve to a model or training a
neural network in two key respects. Firstly, since iGen is
analysing the structure of the source code, rather than exe-
cuting it, it may be possible for iGen to analyse loops in a
much more computationally efficient way than executing the
program multiple times on a number of input values. Sec-
ondly, the analysis allows iGen to calculate error bounds that
are valid over the whole of the input domain. Fitting a curve
or training a neural net on a set of input/output pairs does
not give any way to bound the error at points that are not in
the training set without making additional assumptions about
the model. So the resulting parameterisation cannot be given
formally bounded error.

The iGen software and techniques described here are cur-
rently being developed into a user-friendly environment that
will allow scientists to use formal methods to generate mod-
els of physical systems and perform numerical experiments
that lead to formally provable assertions about the real world.
Since the iGen source-code is changing rapidly it has not
been released at this time. As soon as the iGen software
reaches a stable, easy-to-use state it will be made available to
the scientific community and documented in another paper.
In the meantime, scientists interested in applying or experi-
menting with iGen are encouraged to contact the lead author
for access to the source code.

7 Conclusions

In this paper we have provided a “proof of concept” of a
new technique that allows the formal generation of fast com-
puter models whose error is bounded compared to a high-
resolution model. This is important because it provides a for-
mal, epistemic link between the results of a numerical exper-
iment and the physical system that is being simulated. This
ultimately allows conclusions about the physical system to be
convincingly justified by the model’s output. The technique
makes use of a computer program called iGen that automat-
ically generates the source code of a parameterisation by
analysing the source code of a high-resolution model. iGen’s
ability to generate models was illustrated with a sequence
of examples of increasing complexity. iGen was shown to
scale up to models of realistic complexity by generating a
parameterisation of entrainment in marine stratocumulus; an
open problem that has been identified as a large source of
uncertainty and error in existing climate models (Bony and
Dufrence, 2005; Dufrence and Bony, 2008).

There is much scope for the further development of iGen
and the technique described here but the authors firmly be-
lieve that iGen has the potential to become an important tool
for model development.
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