
Geosci. Model Dev., 4, 611–623, 2011
www.geosci-model-dev.net/4/611/2011/
doi:10.5194/gmd-4-611-2011
© Author(s) 2011. CC Attribution 3.0 License.

Geoscientific
Model Development

Influence of the compiler on multi-CPU performance of WRFv3

T. Langkamp and J. Böhner

Institute of Geography, University of Hamburg, Germany

Received: 14 February 2011 – Published in Geosci. Model Dev. Discuss.: 21 March 2011
Revised: 27 June 2011 – Accepted: 4 July 2011 – Published: 13 July 2011

Abstract. The Weather Research and Forecasting system
version 3 (WRFv3) is an open source and state of the art
numerical Regional Climate Model used in climate related
sciences. These years the model has been successfully op-
timized on a wide variety of clustered compute nodes con-
nected with high speed interconnects. This is currently the
most used hardware architecture for high-performance com-
puting (Shainer et al., 2009). As such, understanding the
influence of hardware like the CPU, its interconnects, or the
software on WRFs performance is crucial for saving com-
puting time. This is important because computing time in
general is rare, resource intensive, and hence very expensive.

This paper evaluates the influence of different compilers
on WRFs performance, which was found to differ up to 26 %.
The paper also evaluates the performance of different Mes-
sage Passing Interface library versions, a software which is
needed for multi CPU runs, and of different WRF versions.
Both showed no significant influence on the performance for
this test case on the used High Performance Cluster (HPC)
hardware.

Emphasis is also laid on the applied non-standard method
of performance measuring, which was required because of
performance fluctuations between identical runs on the used
HPC. Those are caused by contention for network resources,
a phenomenon examined for many HPCs (Wright et al.,
2009).

1 Introduction: the benchmark goal

In numerical weather modelling limited computing capac-
ity is a crucial problem.Especially for climate relevant time
spans of 30 yr simulation time (or even more), for high model

Correspondence to:T. Langkamp
(thomas.langkamp@uni-hamburg.de)

resolutions, and/or big domains (global) every percent of
gained model performance counts. Thus, the performance of
the Regional Climate Model (RCM) Weather Research and
Forecast (WRF) system is evaluated in this paper. More pre-
cisely the benchmark was done for one of the two available
numerical solvers of the WRF: the Advanced Research WRF
(ARW) version 3.

Since access was restricted to Tornado, a High
Performance Cluster (HPC) of theDeutsche Klima-
Rechenzentrum(DKRZ), an inter-comparison study between
different HPC hardware was not possible. Either way such
a study would not be as interesting at all, because many
hardware-related studies are already available for WRF. Most
of them are collected by WRF developer John Michalakes
of the National Center for Atmospheric Research (NCAR),
and made publicly available on the central web pagewww.
mmm.ucar.edu/wrf/WG2/benchv3. The page is updated at
least yearly with new benchmark measurements since 2008.

Instead of such a hardware-related study different software
influencing WRFs performance was evaluated. This includes
different versions of WRF, the Message Passing Interface
(MPI) library, and the compiler. This kind of benchmark yet
has been published in conference papers, but not in peer re-
viewed journals. For example, the search results on theISI
Web of Sciencehttp://apps.isiknowledge.comon 24 May in-
cluding the following words in the title were:

– 0 results for “compiler* benchmark* WRF*”,

– 16 results for “compiler* benchmark*”

3 of the 16 results were published after the year 2000. But
they lack a real-world benchmark situation, which would
give an idea on what is left of compiler optimizations and
their performance gains on HPCs. Also other databases and
search words yield no relevant peer reviewed literature. The
non-existence of a journal paper on this matter documents
the need and the motivation for such a paper.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/
www.mmm.ucar.edu/wrf/WG2/benchv3
www.mmm.ucar.edu/wrf/WG2/benchv3
http://apps.isiknowledge.com

612 T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3

But as mentioned, at least some conference papers dealt
with a compiler comparison benchmark on WRF. For exam-
ple Shainer et al. (2009), Roe and Stevens (2010), or Newby
and Morton (2008), made benchmarks with a focus on MPI
and network issues. Similar work was published lately in
two presentations with an additional focus on Intel versus
the GNU Compiler Collection (GCC) and Intel versus PGI
compilers by the HPC Advisory Council (December 2010)
and Sankaran (October 2010) respectively. Both benchmarks
were done on HPCs with Intel CPUs, the latter additionally
on AMD CPUs.

For this paper a benchmark suite was implemented on the
Tornado HPC which operates AMD CPUs of another series,
thus the results allow a relative comparison with the results
of Sankaran and the HPC Advisory Council only. As an ex-
tension to their presentations this paper compares three ma-
jor compilers instead of two on a single machine running
WRFv3, and documents the whole implementation process
in such a detailed way that other users should be able to con-
duct comparable benchmarks on their systems.

1.1 Introduction: important software influencing
WRFs performance

The compiler is the most important performance-related soft-
ware for any program which the user can compile. The
compilation process translates the source code written in a
programming language like C or Fortran into a machine-
readable binary format. This process enables the perfor-
mance optimization of the software for different hardware.

In case of software that can take advantage of HPCs due
to the time-parallel use of many CPUs (like WRF) the MPI
library is a second important software influencing WRFs per-
formance. MPI is responsible for the efficient communica-
tion between the CPUs, which often is a bottleneck due to a
limited transfer bandwidth of their connection. Hence, four
different MPI versions available on Tornado were compared
in this performance evaluation.

The third important software is WRF itself. It is not always
necessary to use the most recent version in regard of new fea-
tures or model accuracy because they may not be needed in
specific research questions. In this case one should always
just use the fastest version. One can expect older, less com-
plex versions to perform better, however, one may also ex-
pect newer versions to perform better because of source code
optimizations. Therefore the two ARW versions 3.1.1 and
3.2.1 were evaluated.

The fourth parameter influencing the performance is set in
the configuration file configure.wrf, which will be generated
right before the compilation. One can set in the configure.wrf
the option to compile WRF for single or multi-CPU hard-
ware. Since practical application cases of WRF running on
a single-CPU are rare – especially if an HPC is available –
only a multi-CPU option was of interest. WRF offers three of
them: The first multi-CPU option is named smpar, working

with an OpenMP shared memory thread paradigm, not to
be confused with MPI. Second option is dmpar and works
with an MPI task distributed memory paradigm. The third
approach is a hybrid one, that combines MPI and OpenMP,
where each MPI task spawns a number of threads to utilize
shared memory in a node. But as already shown by Morton et
al. (2009), by the HPC Advisory Council (December 2010)
and others for WRF the dmpar case often outperforms the
hybrid and the smpar cases clearly. However, referring to
Morton et al. (2009) there were groups that found opposing
results on other architectures and with other compilers, but
only with “slightly” and not clearly better performance of
the hybrid approach. So no emphasis is laid on hybrid versus
dmpar comparison within this paper.

In a nutshell, this software benchmark suite will consist
of an inter-comparison of compiler, MPI library, and WRF
version influencing WRFs performance. However, the focus
is on the compiler as the most important tool in performance
optimization of software.

1.2 Introduction: about the WRF model

WRF is a mesoscale numerical weather prediction system
and also a regional to global (experimental stage) climate
model allowing simulations reflecting either real data or ide-
alized configurations. It features a 3-dimensional variational
data assimilation system, and an open source software archi-
tecture allowing for computational parallelism and system
extensibility due to the modularity of its components (see
Fig. 1).

WRF can be run with two dynamical cores, the Nonhy-
drostatic Mesoscale Model (NMM) and ARW. ARW-only
features are regional climate and seasonal time-scale re-
search, coupled-chemistry applications, global and idealized
simulations – while both NMM and ARW are suitable to
do research on atmospheric physics/parameterizations, case-
studies, real-time NWPs and forecast systems, and data as-
similation (Dudhia, 2011).

Both are freely available via the same source code pack-
ages atwww.mmm.ucar.edu/wrf/srcfor versions 2.0 up to
3.3. Precompiled binaries are only available for version 3.1
and x86 CPUs via Robert Rozumalski of the US National
Weather Service athttp://strc.comet.ucar.edu/wrfems/index.
htm.

WRFs development is organized and promoted by the
National Oceanic and Atmospheric Administration consist-
ing of the National Centres for Environmental Prediction
(NCEP) and the Forecast Systems Laboratory, by the Air
Force Weather Agency (AFWA), the Naval Research Lab-
oratory, the University of Oklahoma, the Federal Aviation
Administration, and NCAR. WRFs advances in physics, nu-
merics, and data assimilation are contributions by a broad
and rapidly growing research community. It is in operational
use at NCEP, AFWA and other centres (WRF Homepage,
2011). Technical and physical details can be found in the

Geosci. Model Dev., 4, 611–623, 2011 www.geosci-model-dev.net/4/611/2011/

www.mmm.ucar.edu/wrf/src
http://strc.comet.ucar.edu/wrfems/index.htm
http://strc.comet.ucar.edu/wrfems/index.htm

T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3 613

Fig. 1. A schematic of the used model environment. Mainly the WRF Modelling System consists of the WRF Preprocessing System (WPS)
and the physical numerical core Advanced Research WRF (ARW). The NMM core is an alternative used in operational weather forecast
(from Wang et al., 2011).

user guide by Wang et al. (2011) and in the technical physi-
cal documentation by Skamarock et al. (2008).

2 The benchmark setup

After describing the benchmark goal, the environmental soft-
ware components, and the model to benchmark in the pre-
vious section, this section will document the detailed setup
of the benchmark suite, consisting of specifications of hard-
ware, environmental software, model software, and model
domain.

2.1 Hardware: specifications of Tornado

The Tornado HPC of the DKRZ is a 2048 core Linux cluster.
Core describes a subunit of today’s multi-core CPUs, which
is capable of processing one task at a time each. The 256
compute servers of Tornado consist of two quad-core CPUs
each (model AMD Opteron 2384, 2.7 GHz), including 4 gi-
gabyte RAM per core. Furthermore a single of the 256 com-
pute servers is referred to as a node (model Sun X2200 M2).
This multiplies up to 4 cores times 2 CPUs times 256 nodes
equals 2048 cores; and 4 gigabyte RAM times 8 cores times
256 nodes equals 8 terabyte RAM.

The nodes are interconnected via Gigabit Ethernet and
a low latency Infiniband DDR network. More details like

on storage and login nodes – which are in this case non-
crucial components concerning performance – see Fig. 2
and https://tornado-wiki.dkrz.de/farm/HardwareOverview.
(Note: In other scenarios with e.g. heavy write loads the
storage nodes might even be more important than the
compute nodes.)

2.2 Environmental software: operating system, grid
engine, MPI, and compiler

The operating system of Tornado is Debian GNU/Linux
compiled with Kernel 2.6.16.60–0.31 from March 2006.
Security updates and bugfixes are as current as Jan-
uary 2008. The performance of WRF is definitely influ-
enced by the old Kernel version and its’ included hardware-
drivers. Phoronix.com (2010), the biggest linux benchmark
site, tested the linux-kernels of the last 5 yr with a broad
benchmark-suite. E.g. one of the benchmarks (NASA’s NAS
Parallel Benchmarks – IS.C test) evaluates the performance
of parallel supercomputers. Phoronix shows a 4 % perfor-
mance degradation of 2.6.16 over the recent 2.6.3x versions
and also discusses the numerous kernel-changes which might
explain those. The other benchmarks differ more or less or
even not at all. However, because it is considered a run-
ning system the administrators will not touch the kernel,
thus no version-comparison was possible to quantifiy the

www.geosci-model-dev.net/4/611/2011/ Geosci. Model Dev., 4, 611–623, 2011

https://tornado-wiki.dkrz.de/farm/HardwareOverview

614 T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3

Fig. 2. A schematic of the used cluster hardware also known as “Tornado” of theDeutsche Klima Rechenzentrum(from the Tornado Wiki
Hardware Overview).

probably negative influence on WRF. The installed Sun Grid
Engine (SGE) software version 12.1 is responsible for sub-
mission and scheduling of jobs from Tornado’s login nodes
to its compute node queue. After a job submission to the
queue MPI starts distributing the job to the requested amount
of cores.

MPI libraries are available from different proprietary soft-
ware vendors like Intel. The preinstalled MPI on Tornado is
an open source implementation of MPI, named Open MPI.
The installation and benchmarking of another MPI, even of
only another version of Open MPI was successful for Open
MPI 1.5.1, but worked only for 8 cores. Altogether the
Open MPI versions 1.3.3, 1.4.0, 1.4.3, and 1.5.1 were eval-
uated. (Note: Open MPI should not in any way be confused
with OpenMP needed for smpar shared memory runs, see
Sect. 1.1)

The most straightforward compiler for WRF is the GCC.
It consists of the C compiler gcc, the Fortran compiler Gfor-
tran, and several more. Gfortran and gcc are both needed,
because WRFs framework connecting all parts of WRF is
written in C while all physical modules are written in For-
tran. However, only the latter significantly influences the ap-
plication’s performance (see Sect. 2.3).

Besides the open source GCC, proprietary Fortran and C
compilers of the manufacturers Intel and PGI were used. The
Sun compiler came without a proper Open MPI installation.
(Note: Open MPI should be compiled with the same compiler
as WRF to avoid complications; Until version 11 the Intel
compilers were free of charge for non-commercial use, since
the actual version 12 they are chargeable as those from PGI.)

There are more compilers supported by WRF (see Wang et
al., 2011), but they are not compatible with Tornado’s hard-
ware, with exception of the PathScale compiler, which was

not preinstalled. It would be worth testing it in future re-
search.

2.3 Model software: compiling of netCDF, WRF and
WPS

An important prerequisite to compile WRF is an installa-
tion of the Network Common Data Format (netCDF) used
as input and output format by WRF. Further prerequisites for
netCDF and WRF are numerous and usually shipped with the
Linux Distribution. Only the most important packages shall
be noted here: zlib, perl, a shell like bash or csh, make, M4.

A specialized version of netCDF that affects the perfor-
mance in combination with large domains is parallel netCDF
(pNetCDF, http://trac.mcs.anl.gov/projects/parallel-netcdf).
As discussed in Morton et al. (2010), in its most common us-
age WRF decomposes its domain in a number of patches or
tasks equal to the number of used cores. In this mode all tasks
will hold a roughly equal sized sub-domain, and “Task 0 will
have the additional responsibility to perform I/O operations
and coordinate scatter/gather operations” (Morton et al.,
2010, p. 4). This works until domain sizes of several hundred
million cells. Because a much smaller domain was used in
this case pNetCDF or one of its alternatives also described in
Morton et al. (2010) were not needed. As a consequence the
common netCDF version 4.01 was used and compiled – once
for every compiler manufacturer to avoid software conflicts.
The preinstalled Open MPI actually was available in versions
for every different main release of a compiler to avoid soft-
ware conflicts. (Note: to compile with a certain combination
of compiler, MPI and netCDF on a system where many of
those are available, one first manually has to set all the en-
vironmental paths to their installation directories. It is also

Geosci. Model Dev., 4, 611–623, 2011 www.geosci-model-dev.net/4/611/2011/

http://trac.mcs.anl.gov/projects/parallel-netcdf

T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3 615

wise to compile netCDF with “large file support” to access
bigger than 2 GB files. A detailed online tutorial on those
prerequisites and finally the compiling of WRF can be found
atwww.mmm.ucar.edu/wrf/OnLineTutorial/index.htm.)

The two WRF ARW versions 3.1.1 and 3.2.1 had to be
compiled with special MPI- and compiler-options. Those are
specific to this case and therefore not documented within the
WRF user’s guide (Wang et al., 2011) or in the online tutorial
just mentioned. The general compile-options, also known
as flags, can be altered in theconfigure.wrf , just like
the option that tells WRF to compile for single- or multi-
CPU usage (see Sect. 1.1). In most cases all flags are auto-
matically chosen correctly by the configure script. But be-
cause Open MPI did not recognize the flags-f90=$(SFC)
and -cc=$(SCC) , those had to be erased from the lines
DMFC and DMCC, on the one hand. On the other hand,
the flag -DMPI2 SUPPORThad to be added to the line
DMCC. Additionally the flag-ip had to be erased from
the line CFLAGSLOCAL for versions using an Intel com-
piler. For PGI and GCC compilers the auto-generated
configure.wrf was sufficient (see Appendix A).

There are also compiler-flags that influence the perfor-
mance of WRF-runs, but only for WRFs Fortran coded
part. This was verified by turning off all optimizations
for the C code compilation in theconfigure.wrf line
CFLAGSLOCALby setting-O3 to -O0 . As expected this
did not change the benchmark results. The Fortran code in-
stead is considerably faster with full optimizations (e.g.-O3)
or flags like -qhot, but this might crash the model while run-
ning or compiling (WRF Users Page 2008). In most cases
sticking to -O2 is sufficient, only one user reported in the
WRF User’s Forum (2009) that he had to fall back to -O0 to
compile WRF.

Further performance-flags were altered within this paper
to compare GCC with the unoptimized PGI. Thus the five
PGI optimization flagsfastsse , Mvect=noaltcode ,
Msmartalloc , Mprefetch=distance:8 , and
Mfprelaxed were deleted consecutively from
configure.wrf , line FCOPTIM, before the com-
pilation. This left six differently optimized WRF/PGI
configurations (full to no optimization).

There are also non value-safe optimizations that lead to
differing model outputs. Those are e.g. adding the flag
-IPF fp relaxed (Cisneros et al., 2008; Semenov et
al., 2005), or removing the-fp-model precise flag
from the lineFCBASEOPTSwhen using Intel compilers (for
reference and explanatory notes see the Intel-note in your
configure.wrf). Both optimizations were not consid-
ered worth testing. They should be used careful, only after
comparing the differences between a representative model-
output of the value-safe compiled model and the non value-
safe compiled one. If the errors are not relevant for ones
research target, one can use them.

2.4 Model domain: size, resolution, decomposition,
and duration

WRF developer John Michalakes (2010) offers two standard
benchmark domains for WRF version 3.0 atwww.mmm.
ucar.edu/wrf/WG2/benchv3, named CONUS, with resolu-
tions of 2.5 and 12 km. It is crucial to run those benchmark
cases exactly according to the instructions on that page if one
wants to compare different HPC hardware. Since CONUS
lays no emphasis on benchmarking software like compilers,
it was decided to evaluate the more up to date WRF ver-
sions 3.1.1 and 3.2.1 with an easily available domain of a
size somewhat between CONUS 2.5 and 12 km. Therefore
the already available Default January 2000 case1 of the WRF
online tutorial case studies2 was used. Only little modifi-
cations were made solely to resolution and duration via the
namelist configuration files (see Appendix B). This has two
advantages. The first one is that other users can implement
the same benchmark easily by following the detailed instruc-
tions and download locations of the online tutorial case stud-
ies. The second advantage is that in consequence there is no
new documentation needed.

The Default January 2000 case is a winter storm of 24 to
25 January over the east coast of North America with a hori-
zontal resolution of 30 km and 28 vertical levels. At this reso-
lution the domain comprises 74·61·28= 126 392 grid points.
On Tornado this relatively small grid turned out to slow down
the computation when using more than 8 cores. This can be
explained due to Tornado’s limitations in network resources
or the so called computations to communications ratio, which
was to small for more than 8 cores. To elaborate, the compu-
tations to communications ratio describes the phenomenon,
that the more cores share the computation of a domain, the
more they have to communicate about the physical fluxes be-
tween the sub-domains: “Computation is related to the local
domain’s volume, and communication is related to the local
domain’s boundary area” (Salapura et al., 2006).

Even though Tornado’s nodes have low latency Infini-
band interconnects, the time to communicate those processes
is longer than the time needed to process the sub-domain.
(Note: the intra-node communication between the 8 cores of
a node is much faster than the inter-node communication us-
ing Infiniband and thus represents no bottleneck.)

The problem with the computations to communications ra-
tio can be circumvented by raising the horizontal resolution
of the Default January 2000 case from 30.0 km to 3.333 km
or 10 237 752 grid points, and lowering the time step accord-
ingly to 20 s. Consequently, computation of the resulting do-
main scaled up to 32 cores, but 64 cores were sometimes
as slow as 8 cores. This performance hit may be unique to
Tornado. According to the administrators the cause may be

1www.mmm.ucar.edu/wrftmp/WRF OnLineTutorial/
SOURCEDATA/JAN00.tar.gz

2 www.mmm.ucar.edu/wrf/OnLineTutorial/CASES/index.html

www.geosci-model-dev.net/4/611/2011/ Geosci. Model Dev., 4, 611–623, 2011

www.mmm.ucar.edu/wrf/OnLineTutorial/index.htm
www.mmm.ucar.edu/wrf/WG2/benchv3
www.mmm.ucar.edu/wrf/WG2/benchv3
www.mmm.ucar.edu/wrf_tmp/WRF_OnLineTutorial/SOURCE_DATA/JAN00.tar.gz
www.mmm.ucar.edu/wrf_tmp/WRF_OnLineTutorial/SOURCE_DATA/JAN00.tar.gz
www.mmm.ucar.edu/wrf/OnLineTutorial/CASES/index.html

616 T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3

Fig. 3. Short term fluctuations of a WRF run at 64 cores with GCC. One clearly can see the short term fluctuations due to overall high
network load on Tornado where the time needed for the computation of one time step is 22.162 s maximum compared to 4.508 s minimum
what equals a span of 492 % where no span should exist at all.

that at high network loads Tornado falsely switches the use
of the lower latency Infiniband to the higher latency Giga-
bit Ethernet. A new MPI version did not fix the problem.
Thus, the problem was circumvented by evaluating results
from 32 cores at most.

An optional tuning parameter within the
namelist.input – not dependent on environmental
software – isnumtile . Like elaborated in Sect. 2.3, WRF
decomposes the domain into tasks or patches each assigned
to a core via a MPI process. Each patch can be further
decomposed into tiles that are processed separately, but by
default there is only one tile (numtile not set or= 1).
If the single tile is too large to fit into the cache of the
CPU and/or core it slows down computation due to WRF’s
memory bandwidth sensitivity (Roman, 2009). In order to
reduce the size of the tiles, it is possible to increase their
number vianumtile =x (see Appendix B). However the
optimal valuex heavily depends on the cache sizes of core
and CPU, the number of assigned cores, and the size of the
domain. Thus there is no other way than experimentation to
find what value gives the best performance. For reference
purposes, the best values found here were 64/32/16 for
8/16/32 cores, respectively. This lead to a speed up of
22 % for 8 cores rising to 26 % for 32 cores. Altogether,
a benchmark setup should not be expensive, speaking of
workload for the user and computing time for the CPU.
By minimizing the duration of a run instead of the default
12 h only 15 min of model time were computed equal to
45 time steps, 20 s each. Further, an intelligent matrix of

compiler/WRF/MPI-combinations instead of testing every
possible combination (see Table 1 and Sect. 4) leads to a
small test sample with a maximum of explanatory power.

3 Method of performance measurement

In most model benchmarks the performance metric is the av-
erage time per model time step over a representative period
of model integration, ignoring the additional time needed
for the model initialization. Alternatively the metric is just
the total runtime including initialization averaged over three
or more runs (Note: initialization of WRF needs longer the
more cores used).

Here instead, the performance metric used is the minimum
computing time needed for one of the 45 model time steps.
This was done because of large performance fluctuations on
Tornado between time steps within and across identical runs
like others have encountered before (Wright et al., 2009).
They sum up to large differences in computation time for
whole runs, as for averaged model time step performance.

Those fluctuations are supposed to be caused also by the
contention for network resources. But here they are not lim-
ited in regard to many cores communicating about the sub-
domains of a single job, what resulted in fluctuations for core
counts>32. Here they were limited in regard to many users
computing many jobs especially during rush-hours creating
short term performance fluctuations even for runs using only
2 nodes. Ideally a HPCs network should be able to handle
parallel computation on all its nodes without performance

Geosci. Model Dev., 4, 611–623, 2011 www.geosci-model-dev.net/4/611/2011/

T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3 617

Fig. 4. Data of Table 1, but for Open MPI 1.40/1.43 only. All results are minimal seconds needed for one of 45 model time steps of the
Default January 2000 case at 3.33 km horizontal resolution. The runs with 64 cores are strongly varying and were sometimes not reproducible
(>5 runs).

degradation. But in practice the processor within the Infini-
band network switch, handling the communication requests,
often is the bottleneck. Thus the network load due to users
leads to random performance fluctuations of up to 500 % for
64 cores (see Fig. 3), decreasing with less cores, due to in-
creasing computations to communications.

The only non-random picture of the fluctuations was that
especially before lunch-break and at Friday afternoons a
rush-hour of job-computations appeared, where the fluctu-
ation reached its peak.

Hence, on the one hand, with the random fluctuations in
mind, measuring the average time over many time steps or
whole runs would mask the optimal performance gain. This
optimal gain is possible with the optimal compiler on HPCs,
where the network is not the limiting factor, as shown by
Shainer et al. (2009) for 192 cores Or Newby et al. (2008)
for 16 384 cores, with WRFs’ performance scaling up almost
linear. Salapura et al. (2006) used 2048 cores with an effi-
ciency “a little higher than 50 %”.

On the other hand, regarding the rush-hour fluctuations,
one must run the model several times spread over a day, first
to detect if and when rush-hours appear on the system, and
second, to sort out rush-hour influenced measurements. As
conclusion model runs with an identical setup (of core count,
compiler, MPI, and WRF) had to be repeated at least twice
on different days with some distance to the rush-hours. They
had to be repeated more often, if the minimum time needed
for one time step was not reproducible.

Section 4 consequently shows only the reproducible min-
imum time needed for a time step. This method overcomes
the influence of the hardware (Infiniband switch) and shows
only the possible performance gain through the software
(compiler, WRF, MPI) as it was intended by this work in the
first place.

4 Results and conclusions

The benchmark results for WRF 3.2.1 are shown in Table 1
and Fig. 4. The main finding is that the Intel compilers gain
up to 26 % performance compared to GCC on Tornado, an
AMD CPU (model Opteron 2384) based system. In a conse-
quence, testing and then choosing the right compiler before
doing a big run is absolutely worth the work. While this
trend will be valid for different hardware, the percentage will
vary however. For example, if a HPC is equipped with In-
tel instead of AMD CPUs the Intel compilers are likely to
gain even more performance compared to GCC. This was
shown by the HPC Advisory Council (2010), which found
up to 92 % performance gain for Intel 12.0 versus GCC 4.4
on their Intel CPU (model Xeon 5670) based system; or by
Sankaran (2010), who found up to 37 % performance gain
for PGI 9 versus Intel 11.1 on an Intel CPU (Xeon 5500-
series) based system and 34 % on a AMD CPU (Opteron
2400-series) based system. But if a newer GCC version (cur-
rent 4.5.1) is available on your HPC, this already might re-
duce the performance gap a little bit. In the long run, even

www.geosci-model-dev.net/4/611/2011/ Geosci. Model Dev., 4, 611–623, 2011

618 T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3

Table 1. Results for WRF 3.2.1. All results are minimal seconds needed for one of 45 model time steps of the Default January 2000 case at
3.33 km horizontal resolution. The strongly varying and sometimes not reproducible (>5 runs) results of runs with 64 cores are marked *.
(To compare the results with other benchmarks like CONUS one may calculate the “simulation speed” (Michalakes, 2010). As example for
the Intel 12 compiler at 8 cores it is 20 s/10.5 s= 1.9, where 20 is the always identical simulation time step.)

Compiler GCC PGI Intel

Version 4.33 9.04 10.9 11.0.081 12.0.084 (2011)

8 cores

Open MPI 1.33 10.6
Open MPI 1.40 14.4 10.8 10.8 10.6
Open MPI 1.43 (1.51) 14.6 (14.3) 10.5

16 cores

Open MPI 1.33 5.7
Open MPI 1.40 7.6 5.8 5.8 5.7
Open MPI 1.43 7.8 5.8

32 cores

Open MPI 1.33 3.2
Open MPI 1.40 3.6 3 3 2.9
Open MPI 1.43 4 3

64 cores

Open MPI 1.33 4.4*
Open MPI 1.40 6* 5.3* 7.5* 2.4*
Open MPI 1.43 4.5* 5.5*

the trend shown by the results in Table 1 may change with
the advancements of hard- and software. Therefore it should
be considered testing available software combinations influ-
encing WRFs performance before submitting the main job,
if no comparable benchmark result not older than one or two
years is available.

Another major result is that there is almost no performance
difference between the costly Intel and PGI compilers on this
platform, or between different compiler release versions of
the same manufacturer. There is also almost no difference
between the different MPI release versions. (Note: while
the benchmarking with Open MPI 1.3.3, 1.4.0, 1.4.3 worked
seamlessly, the beta version 1.5.1 was able to compile and
run WRF only with GCC and worked only on a single node.)

Furthermore the gap between GCC and Intel/PGI de-
creases with increasing node numbers down to 20 % for four
nodes or 32 cores on this system. The cause might again
be the decreasing computation to communication ratio as ex-
plained in Sect. 2.4. (With more cores there is more commu-
nication needed at the same amount of computation, thus the
network limitations drain the potential performance gain.)
Table 2 shows the results for WRF 3.1.1. A maximum per-
formance gain over WRF 3.2.1 of 2.7 % was found with PGI
9.04 on two nodes, what almost lies within the range of

measuring accuracy3. It is unlikely that the performance gap
would increase with other compiler/MPI-combinations, thus
no further tests in case of different compilers for WRF 3.1.1
were done. But Table 2 additionally shows results between
WRF 3.1.1 versions compiled with different PGI compiler
flags, set within theconfigure.wrf . This shows which
flags are responsible for which percentage of performance
gain. Asked to the cause of the performance discrepancy
between GCC and PGI compilers Mathew Colgrove of PGI
wrote (e-mail of 12 January 2011) “It’s possible that it’s our
auto-vectorizer (SSE) but more likely a combination of many
optimizations”.

PGI and Intel are able to better optimize their compilers
because they are reduced to function on the x86 hardware
platform. GCC instead aims to support a broad range of hard-
ware and operating systems and thus has to focus more on
compatibility as on performance optimizations (GCC plat-
forms, 2011).

To compare GCC with PGI without optimizations, the five
PGI optimization flagsfastsse , Mvect=noaltcode ,
Msmartalloc , Mprefetch=distance:8 , and

3 The main changes between WRF 3.2.1 and 3.1.1 which may
have caused this performance gap are listed here:www.mmm.ucar.
edu/wrf/users/wrfv3.2/updates-3.2.html.

Geosci. Model Dev., 4, 611–623, 2011 www.geosci-model-dev.net/4/611/2011/

www.mmm.ucar.edu/wrf/users/wrfv3.2/updates-3.2.html
www.mmm.ucar.edu/wrf/users/wrfv3.2/updates-3.2.html

T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3 619

Table 2. Results for WRF 3.1.1. All results are minimal seconds needed for one of 45 model time steps of the Default January 2000 case at
3.33 km horizontal resolution. The strongly varying and sometimes not reproducible (>5 runs) results of runs with 64 cores are marked *.

Compiler GCC PGI (Fortran optimazation flags turned off)

Version 4.33 9.04 9.04 (fastsse) 9.04 (fastsse+Mvect)

8 cores Open MPI 1.40 14.2 10.6 12.7 17.5
16 cores Open MPI 1.40 7.4 5.7 6.6 9
32 cores Open MPI 1.40 3.6 3 3.4 4.7
64 cores Open MPI 1.40 3.3* 3.8* 2.7* 5.4*

Mfprelaxed were deleted consecutively from
configure.wrf , line FCOPTIM, before the com-
pilation. This left six differently optimized WRF/PGI
configurations (full to no optimization), but of which only
three left different results (see Table 2). The flagsfastsse
and Mvect were responsible for the biggest performance
gain, and without them PGI is slower than GCC. The other
flags had no effect. For information on them see reference
PGI flags (2011). The flagfastsse enables the use of
special instruction sets common in today’s x86-CPUs of
AMD and Intel and adds 17 % speed up at 8 cores. The flag
Mvect instructs the vectorizer to generate alternate code
for vectorized loops when appropriate (PGI flags, 2011).
This feature does not work with WRF since by default it is
set tonoaltcode , what adds performance. To verify this
Mvect was set to altcode, what resulted in a performance
degradation of 27 %. Since it is not the focus of this paper to
deal with the numerous other non default and non value-safe
optimizations of GCC, Intel and PGI, those benchmarks
were left out here.

Another further noteworthy result of the whole work was
the detection of three different performance fluctuations, dis-
cussed in Sects. 2.4 and 3. The first fluctuation appeared with
a too small computations to communications ratio, suspected
to be caused by the switching from Infiniband to the slower
Gigabit Ethernet under high network loads. It was temporar-
ily circumvented by rising the domains’ resolution and lim-
iting the study to 32 cores. The second fluctuation appeared
randomly due to the user-induced random load of the net-
work. The third and largest fluctuation appeared periodically

at specific rush hours before lunch and on Friday afternoons.
All three phenomena appeared in a different type of time-
fluctuation and were not easy to identify, but are important to
know about for accurate measurements. These findings may
help others occupied with benchmarking tasks in the future.

Summarizing, first testing and then choosing a compiler
is worth the work for WRF on a HPC, thinking of the many
WRF users which just stick to GCC compilers as the easiest
“out of the box” solution. In addition a careful monitoring
for exceptional performance fluctuations is also needed for
accurate benchmarking. Those are tasks which can’t be ac-
complished by every WRF user. Hence, more and continuous
publications of the professionals on this matter are important
to provide at least a rough overview on the performance of
the countless possible combinations of hardware and soft-
ware like the compiler.

Aspects particularly missing in this paper are performance
measurements with a sophisticated tool likeThe Vampir Per-
formance Analysis Tool-Set(Knüpfer et al., 2008), measure-
ments with larger core-counts, with a broader range of com-
pilers (PathScale, Sun/Oracle) and more MPI implementa-
tions (MPICH/MVAPICH/IntelMPI), and with the just re-
leased WRF version 3.3, April 2011.

Another important topic, especially of interest for
compiler-developers, turned out to be the effect of differ-
ent optimization flags. As a start PGIs value-safe flags were
benchmarked. Later work should include the general op-
timization levelsO0 to O3, the Profile-Guided Optimiza-
tion, and theInterprocedural Optimization(IPO) available
for GCC and Intel compilers.

www.geosci-model-dev.net/4/611/2011/ Geosci. Model Dev., 4, 611–623, 2011

620 T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3

Appendix A

configure.wrf architecture specific settings

Open MPI-specific lines

DMPARALLEL = 1 # 1 for dmpar and hybrid mode, 0 for smpar and serial (single-CPU)
OMPCPP = # -D OPENMP # like the next two only for smpar mode
OMP = # -mp -Minfo=mp -Mrecursive
OMPCC = # -mp

[...]

DMFC = mpif90 -f90=$(SFC)
DMCC = mpicc -cc=$(SCC) -DMPI2-SUPPORT

[...]

Compiler-specific lines

Settings for Linux x86 64, PGI compiler with gcc (dmpar)

[...]

SFC = pgf90
SCC = gcc
CCOMP = pgcc

[...]

PROMOTION = -r$(RWORDSIZE) -i4
ARCHLOCAL = -DNONSTANDARDSYSTEMSUBR
CFLAGSLOCAL = -w -O 3

[...]

FCOPTIM = -fastsse -Mvect=noaltcode -Msmartalloc -Mprefetch=distance:8 -Mfprelaxed
-Minfo=all=Mneginfo=all

FCREDUCEDOPT = $(FCOPTIM)
FCNOOPT = -O0
FCDEBUG = # -g $(FCNOOPT)
FORMATFIXED = -Mfixed
FORMATFREE = -Mfree
FCSUFFIX =
BYTESWAPIO = -byteswapio
FCBASEOPTSNOG = -w $(FORMAT FREE) $(BYTESWAPIO) $(OMP)
FCBASEOPTS = $(FCBASEOPTSNOG) $(FCDEBUG)
MODULESRCHFLAG = -module $(WRF SRCROOTDIR)/main

[...]

Settings for Linux x86 64 ifort compiler with icc (dmpar)

[...]

SFC = ifort
SCC = icc
CCOMP = icc
[...]

PROMOTION = -i4
ARCHLOCAL = -DNONSTANDARDSYSTEMFUNC
CFLAGSLOCAL = -w -O3

[...]

Geosci. Model Dev., 4, 611–623, 2011 www.geosci-model-dev.net/4/611/2011/

T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3 621

FCOPTIM = -O3
FCREDUCEDOPT = $(FCOPTIM)
FCNOOPT = -O0 -fno-inline

-fno-ip
FCDEBUG = # -g $(FCNOOPT)

-traceback
FORMATFIXED = -FI
FORMATFREE = -FR
FCSUFFIX =
BYTESWAPIO = -convert big endian
FCBASEOPTSNOG = -w -ftz -align

all -fno-alias
-fp-model precise
$(FORMATFREE)
$(BYTESWAPIO)

FCBASEOPTS = $(FCBASEOPTSNOG)
$(FCDEBUG)

MODULESRCHFLAG =

[. . .]

Settings for x86 64 Linux, gFortran compiler with gcc (dmpar)

[...]

SFC = gFortran
SCC = gcc
CCOMP = gcc

[...]

PROMOTION = # -fdefault-real-8 #
uncomment manually

ARCHLOCAL = -DNONSTANDARDSYSTEMSUBR
CFLAGSLOCAL = -w -O3 -c

-DLANDREADSTUB

[...]

FCOPTIM = -O3 -ftree-vectorize
-ftree-loop-linear
-funroll-loops

FCREDUCEDOPT = $(FCOPTIM)
FCNOOPT = -O0
FCDEBUG = # -g $(FCNOOPT)
FORMATFIXED = -ffixed-form
FORMATFREE = -ffree-form

-ffree-line-length-none
FCSUFFIX =
BYTESWAPIO = -fconvert=big-endian

-frecord-marker=4
FCBASEOPTSNOG = -w $(FORMAT FREE)

$(BYTESWAPIO)
FCBASEOPTS = $(FCBASEOPTSNOG)

$(FCDEBUG)
MODULESRCHFLAG =

[. . .]

www.geosci-model-dev.net/4/611/2011/ Geosci. Model Dev., 4, 611–623, 2011

622 T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3

Appendix B

Changes in the namelist configuration files (bold)

Within the namelist.wps:

&share
start date = ’2000-01-2412:00:00’,
end date = ’2000-01-2512:00:00’,
interval seconds = 21600,
prefix = ’FILE’,
wrf core = ’ARW’,
max dom = 1,
io form geogrid = 2,
/
&geogrid

parent id = 1, 1,
parent grid ratio = 1, 3,
i parent start = 1, 31,
j parent start = 1, 17,
e we = 666,
e sn = 549,
geogdata res = ’30s’,
dx = 3333,
dy = 3333,
map proj = ’lambert’,
ref lat = 34.83,
ref lon = -81.03,
truelat1 = 30.0,
truelat2 = 60.0,
stand lon = -98.0,
geogdata path = ’Your WPS GEOG data loca-

tion’
/

[...]

Within the namelist.input:

&time control
run days = 0,
run hours = 0,
run minutes = 15,

[...]

&domains
numtile = X # set a value for X, see Sect.

2.4
time step = 20,
max dom = 1,
s we = 1, 1, 1,
e we = 666,
s sn = 1, 1, 1,
e sn = 549,
s vert = 1, 1, 1,
e vert = 28, 28, 28,
num metgrid levels = 27
dx = 3333,
dy = 3333,

[...]

Supplementary material related to this
article is available online at:
http://www.geosci-model-dev.net/4/611/2011/
gmd-4-611-2011-supplement.zip.

Acknowledgements.The author thanks his colleagues for continu-
ing support and discussion around the coffee breaks. I especially
and greatly thank the whole DKRZ team pointing out Birgit Schüen
for the outstanding and sustained support during the compilation
process of WRF!

Edited by: P. J̈ockel

References

Cisneros, G., Dembek, S. R., Dudhia, J., and Kain, J.: Ef-
fect of non-IEEE-compliant optimizations on WRF numeri-
cal results, 9th WRF Users’ Workshop, Boulder, CO, avail-
able at: www.mmm.ucar.edu/wrf/users/workshops/WS2008/
abstracts/P11-06.pdf(last access: 25 May 2011), 2008.

Dudhia, J.: WRF Modeling System Overview, available
at: www.mmm.ucar.edu/wrf/users/tutorial/201104Korea/
01 WRF OverviewDudhia.pdf, last access: 25 May 2011.

GCC platforms: available at:http://gcc.gnu.org/install/specific.
html, last access: 1 February 2011.

HPC Advisory Council: Weather Research and Forecasting (WRF)
Performance Benchmark and Profiling, Best Practices of the
HPC Advisory Council, available at:www.hpcadvisorycouncil.
com/bestpractices.php, www.hpcadvisorycouncil.com/pdf/
WRF AnalysisandProfiling Intel.pdf (last access: 25 May
2011), 2010.

Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M.,
Mickler, H., Müller, M. S., and Nagel, W. E.: The Vampir Perfor-
mance Analysis Tool-Set, in Tools for High Performance Com-
puting Part 4, 139-155 – Proceedings of the 2nd International
Workshop on Parallel Tools for High Performance Computing,
July 2008, HLRS, Stuttgart, available at:doi:10.1007/978-3-
540-68564-79, 2008.

Michalakes, J.: WRF V3 Parallel Benchmark Page, available at:
www.mmm.ucar.edu/wrf/WG2/benchv3(last access: 21 January
2011), 2010.

Morton, D., Nudson, O., and Stephenson, C.: Benchmarking and
Evaluation of the Weather Research and Forecasting (WRF)
Model on the Cray XT5, Cray User Group Proceedings, Atlanta,
GA, 04–07, 2009.

Morton, D., Nudson, O., Bahls, D., and Newby, G.: Use of the
Cray XT5 Architecture to Push the Limits of WRF Beyond One
Billion Grid Points, PDF send by Morton via email dating 4 Jan-
uary 2011, in Cray User Group Proceedings, Edinburgh, Scot-
land, 24–27 May 2010.

Newby, G. B. and Morton, D.: Performance Evaluation of Emerg-
ing High Performance Computing Technologies using WRF,
AGU Fall Meeting Poster, available at:www.petascale.org/
AGUPoster2008.pdf(last access: 17 March 2011), 2008.

Geosci. Model Dev., 4, 611–623, 2011 www.geosci-model-dev.net/4/611/2011/

http://www.geosci-model-dev.net/4/611/2011/gmd-4-611-2011-supplement.zip
http://www.geosci-model-dev.net/4/611/2011/gmd-4-611-2011-supplement.zip
www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/P11-06.pdf
www.mmm.ucar.edu/wrf/users/workshops/WS2008/abstracts/P11-06.pdf
www.mmm.ucar.edu/wrf/users/tutorial/201104_Korea/01_WRF_Overview_Dudhia.pdf
www.mmm.ucar.edu/wrf/users/tutorial/201104_Korea/01_WRF_Overview_Dudhia.pdf
http://gcc.gnu.org/install/specific.html
http://gcc.gnu.org/install/specific.html
www.hpcadvisorycouncil.com/best_practices.php
www.hpcadvisorycouncil.com/best_practices.php
www.hpcadvisorycouncil.com/pdf/WRF_Analysis_and_Profiling_Intel.pdf
www.hpcadvisorycouncil.com/pdf/WRF_Analysis_and_Profiling_Intel.pdf
http://dx.doi.org/10.1007/978-3-540-68564-79
http://dx.doi.org/10.1007/978-3-540-68564-79
www.mmm.ucar.edu/wrf/WG2/benchv3
www.petascale.org/AGUPoster2008.pdf
www.petascale.org/AGUPoster2008.pdf

T. Langkamp and J. B̈ohner: Influence of the compiler on multi-CPU performance of WRFv3 623

PGI flags: available at:www.pgroup.com/benchmark/speccpu/
woodcrest/pgi701pre-cint2006.flags.html(last access 3 February
2011), 2006.

Phoronix.com: Five Years Of Linux Kernel Benchmarks: 2.6.12
Through 2.6.37, available at:www.phoronix.com/scan.php?
page=article&item=linux26122637&num=3(last access: 25
May 2011), 2010.

Roe, P. K. and Stevens, D.: Maximizing Multi-Core Performance of
the Weather Research and Forecast Model Over the Hawaiian Is-
lands, 2010 AMOS Conference Technical Papers, Maui, Hawaii,
available at:www.amostech.com/TechnicalPapers/2010/Posters/
Roe.pdf(last access: 5 July 2011), 2010.

Roman, D.: Performance hints for WRF on Intel® archi-
tecture, available at: http://software.intel.com/en-us/articles/
performance-hints-for-wrf-on-intel-architecture(last access: 9
February 2011), 2009.

Rozumalski, R.: NOAA/NWS SOO STRC WRF Environmen-
tal Modeling System, available at:http://strc.comet.ucar.edu/
wrfems/index.htm(last access: 21 January 2011), 2010.

Salapura, V., Walkup, R., Gara, A.: Exploiting Workload Par-
allelism for Performance and Power Optimization in Blue
Gene, in Micro, IEEE Sept.-Oct. 2006, 26(5), 67–81,
doi:10.1109/MM.2006.89, 2006.

Sankaran, L.: System Tuning and Application Op-
timization for HPC, Hewlett-Packard Company,
available at: www.cbtechinc.com/?LinkServID=
68BA8DCC-FD89-E9E2-D3AEFD4E23C4A410&showMeta=
0 (last access: 17 March 2011), 2010.

Semenov, A., Kashevarova, T., Mankevich, P., Shkurko, D.,
Arturov, K., and Panov, N.: WRF performance tuning
for platforms based upon the Intel Itanium Processor, Joint
WRF/MM5 Users’ Workshop, Boulder, CO, June 2005,
available at: http://www.mmm.ucar.edu/wrf/users/workshops/
WS2005/abstracts/Session3/46-Mankevich.pdf(last access: 25
May 2011), 2005.

Shainer, G., Liu, T., Michalakes, J., Liberman, J., Layton, J.,
Celebioglu, O., Schultz, S. A., Mora, J., and Cownie, D.:
Weather Research and Forecast (WRF) Model Performance and
Profiling Analysis on Advanced Multi-core HPC Clusters, The
10th LCI International Conference on High-Performance Clus-
tered Computing, Boulder, CO, available at:http://141.142.2.
101/conferences/archive/2009/PDF/Shainer64557.pdf(last ac-
cess: 11 November 2010), 2009.

Skamarock, W. C., Klemp, J. B, Dudhia, J., Gill, D. O., Barker, D.
M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.:
A description of the advanced research WRF version 3, NCAR
Technical Note, NCAR/TN-475+STR, 113 pp., 2008.

Tornado Wiki Hardware Overview: available at: https://
tornado-wiki.dkrz.de/farm/HardwareOverview(last access: 24
May 2011), 2010.

Wang, W., Bruỳere, C., Duda, M., Dudhia, J., Gill, D., Lin, H.-
C., Michalakes, J., Rizvi, S., Zhang, X., Beezley, J. D., Coen,
J. L., and Mandel, J.: ARW Version 3 Modeling System User’s
Guide 2011, available at:www.mmm.ucar.edu/wrf/users/docs/
userguideV3/contents.html, January 2011.

WRF Homepage: available at:www.wrf-model.org, last access: 19
January 2011.

WRF Users Page: WRF Model Version 3.0.1: UPDATES,
available at: www.mmm.ucar.edu/wrf/users/wrfv3/updates-3.0.
1.html(last access 25 May 2011), 2008.

WRF User’s Forum: Compilation failed for file dawrfvar top.f on
IBM, available at:http://forum.wrfforum.com/viewtopic.php?f=
5&t=1627(last access 26 May 2011), 2009.

Wright, N. J., Smallen, S., Mills Olschanowsky, C., Hayes,
J., and Snavely, A.: Measuring and Understanding Vari-
ation in Benchmark Performance, HPCMP Users Group
Conference, 2009 DoD High Performance Computing Modern-
ization Program Users Group Conference, available at:http:
//doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2009.72
(last access: 17 March 2011), 438–443,doi:10.1109/HPCMP-
UGC.2009.72, 2009.

www.geosci-model-dev.net/4/611/2011/ Geosci. Model Dev., 4, 611–623, 2011

www.pgroup.com/benchmark/speccpu/woodcrest/pgi701pre-cint2006.flags.html
www.pgroup.com/benchmark/speccpu/woodcrest/pgi701pre-cint2006.flags.html
www.phoronix.com/scan.php?page=article&item=linux_2612_2637&num=3
www.phoronix.com/scan.php?page=article&item=linux_2612_2637&num=3
www.amostech.com/TechnicalPapers/2010/Posters/Roe.pdf
www.amostech.com/TechnicalPapers/2010/Posters/Roe.pdf
http://software.intel.com/en-us/articles/performance-hints-for-wrf-on-intel-architecture
http://software.intel.com/en-us/articles/performance-hints-for-wrf-on-intel-architecture
http://strc.comet.ucar.edu/wrfems/index.htm
http://strc.comet.ucar.edu/wrfems/index.htm
http://dx.doi.org/10.1109/MM.2006.89
www.cbtechinc.com/?LinkServID=68BA8DCC-FD89-E9E2-D3AEFD4E23C4A410&showMeta=0
www.cbtechinc.com/?LinkServID=68BA8DCC-FD89-E9E2-D3AEFD4E23C4A410&showMeta=0
www.cbtechinc.com/?LinkServID=68BA8DCC-FD89-E9E2-D3AEFD4E23C4A410&showMeta=0
http://www.mmm.ucar.edu/wrf/users/workshops/WS2005/abstracts/Session3/46-Mankevich.pdf
http://www.mmm.ucar.edu/wrf/users/workshops/WS2005/abstracts/Session3/46-Mankevich.pdf
http://141.142.2.101/conferences/archive/2009/PDF/Shainer_64557.pdf
http://141.142.2.101/conferences/archive/2009/PDF/Shainer_64557.pdf
https://tornado-wiki.dkrz.de/farm/HardwareOverview
https://tornado-wiki.dkrz.de/farm/HardwareOverview
www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html
www.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html
www.wrf-model.org
www.mmm.ucar.edu/wrf/users/wrfv3/updates-3.0.1.html
www.mmm.ucar.edu/wrf/users/wrfv3/updates-3.0.1.html
http://forum.wrfforum.com/viewtopic.php?f=5&t=1627
http://forum.wrfforum.com/viewtopic.php?f=5&t=1627
http://doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2009.72
http://doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2009.72
http://dx.doi.org/10.1109/HPCMP-UGC.2009.72
http://dx.doi.org/10.1109/HPCMP-UGC.2009.72

