Geosci. Model Dev., 2, 111, 2009 7N .

www.geosci-model-dev.net/2/1/2009/ GG Geoscientific
© Author(s) 2009. This work is distributed under Model Development
the Creative Commons Attribution 3.0 License. -

gtcm 0.1.2: a Python implementation of the Neelin-Zeng
Quasi-Equilibrium Tropical Circulation Model

J. W.-B. Lin
Physics Department, North Park University, 3225 W. Foster Ave., Chicago, lllinois 60625, USA

Received: 23 September 2008 — Published in Geosci. Model Dev. Discuss.: 30 October 2008
Revised: 2 February 2009 — Accepted: 2 February 2009 — Published: 11 February 2009

Abstract. Historically, climate models have been devel- tures. Many climate models are still written in compiled
oped incrementally and in compiled languages like Fortranlanguages (primarily Fortran), and utilize the same program-
While the use of legacy compiled languages results in fastming structures familiar to a Fortran programmer of the
time-tested code, the resulting model is limited in its mod- 1970’s. On the positive side, this continued reliance on For-
ularity and cannot take advantage of functionality avail- tran results in very fast code that runs on almost all platforms,
able with modern computer languages. Here we describ¢he ability to reuse legacy code, and the availability of well-
an effort at using the open-source, object-oriented languagéested libraries, which have been optimized over decades of
Python to create more flexible climate models: the packageise.
gtcm, a Python implementation of the intermediate-level At the same time, the continued development of climate
Neelin-Zeng Quasi-Equilibrium Tropical Circulation model models in Fortran has made it difficult to utilize program-
(QTCM1) of the atmosphere. Thgtcm package retains ming language advances that increase the modularity and ro-
the core numerics of QTCML1, written in Fortran to optimize bustness of scientific code. Being mainly a procedural lan-
model performance, but uses Python structures and utilitieguage, Fortran has traditionally lacked the default program-
to wrap the QTCML1 Fortran routines and manage model exming structures to organize a model into truly self-contained
ecution. The resulting “mixed language” modeling packageunits, thus limiting modularity. Fortran subroutine function
allows order and choice of subroutine execution to be alterectalls may utilize long and unwieldy argument lists, its de-
at run time, and model analysis and visualization to be in-fault variables are not self-describing, and variables exist in
tegrated in interactively with model execution at run time. a [oosely controlled namespace; this can result in brittle code
This flexibility facilitates more complex scientific analysis where undetectable errors easily propagate. Finally, as a
using less complex code than would be possible using tradicompiled language, Fortran is non-interactive and requires
tional languages alone, and provides tools to transform theeparate compiling and linking steps. This hinders informal
traditional “formulate hypothesis> write and test code> small-scale testing, prevents users from interacting with the
run model— analyze results” sequence into a feedback loopmodel at run time, and can result in a longer development
that can be executed automatically by the computer. cycle. Recent versions of Fortran (e.g., Fortran 95, 2003)
have added some of these modern features to the language,
but scientific programs, in general, make limited use of these
new features.

Modern computer languages have constructs that over-

Although early weather and climate models, beginning withcome many of these difficulties, though at a penalty in per-
Richardson’s “Forecast Factory” in 192Edwards 2000, formance. These languages possess the tools to manage the
led the development of the field of scientific computing, over variable namespace that older procedural languages lack, and
the past few decades, climate models have not, in generathus modern languages can avoid lengthy hard-wired argu-

kept up with advances in computing languages and strucent lists through the use of dictionaries and the creation of
specialty data structures and classes that ensure the right vari-

_ ables are available and used when needed. Modern object-
Correspondence tal. W.-B. Lin oriented frameworks bind metadata to variables, as well as
BY (ilin@northpark.edu) the functions that act on the variables. Such contextualized

Published by Copernicus Publications on behalf of the European Geosciences Union.

1 Introduction

http://creativecommons.org/licenses/by/3.0/

2 J. W.-B. Lin: A Python implementation of QTCM1

variables make possible additional levels of modular de-benefits of a mixed language environment for climate mod-
composition. Object-oriented programming can also pro-eling. We finish with discussion and conclusions in SBct.
duce code of higher quality (e.glohnson20032, that more

closely emulates real-world entities (e.Bennington et al. .

1995. Some modern languages are also interpreted:; in thosé 1€ Neelin-Zeng QTCM1

languages, source q)de IS dir.ectlly executed at run time W.ith:rhe QTCM1 is a primitive equation-based intermediate-level
put sepgrate compmng and Imkmg steps, thereby enabllngatmospheric model that focuses on simulating the tropical
interactive debugging and execution.

One such modern language is Pythear Rossuni2008, atmosph_ereNeeIm et al, 2009. Being more comph_cateq
: . g : than a simple model, the model retains full non-linearity
an interpreted, object-oriented, multi-platform, open-source . . . L S
. . o : . “with a basic representation of baroclinic instability, includes
language used in a variety of software applications, including

as a robust scientific computing platfor®ljphant 2007, a radiative-convective feedback package, and includes a sim-

.) rPIe land soil moisture routine (but does not include topog-
In climate studies, Python has been used as the core la Faphy). The QTCM1 has been used in a variety of studies
guage for data analysis (e.®2CMDI, 2006, visualization pRy). y '

: including investigations of Madden-Julian oscillation main-
(e.g.,Hunter and Dalg2007), and modeling (e.gRyCCSM : ; . i
2008. Python’s object-orientation and higher-level data tenance mechanismé.if et al, 2000, stochastic convec

structures and tools (e.g., dictionaries, string and file utilities)t'Ve parameterl_zau_on_(n and Neelm_ 200 2002, El Nmp-
. . : Southern Oscillation teleconnection patternsughchina
permits numerous ways of decomposing a model into mod-

ular units. Its extensive suite of higher-level analysis toolset al, 2009, and vegetation-atmosphere interactiorier(g

- . o : . etal, 1999.
(e.g., statistics, visualization), accessible at run time, enables QTCM1 differs from most full-scale general circulation

modeling and analysis t(,) occur concurrently. As an mter_ models (GCMs) in that the vertical temperature, humidity,

preted language, Python's lack of a separate lengthy compile .

2 and velocity structures of the atmosphere are represented by

step greatly simplifies debugging and testing, and permits . Co) .

: . a truncated Galerkin expansion in the vertical, instead of
changes in the program to be made at run time.

While it is more difficult to write robust code in compiled finite-differenced pressure levels. The vertical basis func-

lanauages. the code is usually verv fast. Modern lanqua etions of the expansion are chosen based on analytical so-
guages, U . y very ' 9ua9% ions under convective guasi-equilibrium conditions, and
however, while producing much more robust and stable code,

. hus in the tropics, where convective quasi-equilibrium ef-
exact a cost in performance. Naturally, we want the best o : S .
o R » fects dominate, the solution is asymptotically exact. Away
both worlds, both speed and simplicity: “mixed language

environments@liphant 2007 are a solution. In such an en- from the tropics, the model behaves as a two-layer model.

X : S In principle, a Galerkin model can have any number of
vironment, the user-interface and calling infrastructure of the L : . o : -
. . . : baroclinic basis functions accompanying its barotropic basis:

model is written in a modern language while the performance

o . . . ; QTCML1 has a single baroclinic mode, and hence the “1” in
sensitive code is written in a compiled language. A wrap-

. . its name. In the horizontal, the model discretizes the domain
per generator automatically creates extension modules (as

shared object libraries) of the compiled language modules- o9 & staggered Arakawa C-grid¢singer and Arakawa

making them accessible to the modern language. A numbe:}976 and a default resolution of.625" longitude by 375

of wrapper generator packages exist for Python, includinglatltUde'

f2py_(Peterson2009 which wraps Fortran modules, and o2 218 &A% TR B0 o e com-
SWIG (Beazley 1997 which wraps C/C++ code. P

In the present work, we describe a Python implementa-pmational cost of a full-scale GCM. lIts relative simplicity

. :) N . also makes it far easier to diagnose than a full-scale GCM,
tion of an intermediate-level atmospheric circulation model

o . ; ; potentially resulting in greater understanding and compre-
originally written in Fortran. By wrapping the Fortran code . .

7 : hension of model resultdNeelin and Zend2000 presents
within a Python object structure, the packagegm, pro- . o ; :

. . . a comprehensive description of the model’s formulation, and
vides a modular and interactive model where the user ca

. . . I%eng et al(2000 describes the model’s climatology. A de-
alter order and choice of subroutine execution, and analyzz%ailed manual Neelin et al, 2002 describes the structure of

and visualize model results, all dynamically at run time. Thethe Fortran codeNeelin and Zeng2000) is based upon v2.0

o el o e on e o UaSOMf QTCML adzeng o1 (2000 ' based on QTN v2.1
P yp Theqtcm package is based on QTCM1 v2.3.

run model— analyze results” sequence into a feedback loop

that can be executed automatically by the computer.
Section 2 briefly describes the Neelin-Zeng Quasi- 3 The Pythonqgtcm package

Equilibrium Tropical Circulation Model (QTCM1). In

Sect.3, we describe the construction of a Python implemen-The gtcm package is an implementation of QTCM1 in

tation of QTCM1, thegtcm package. Sectiod gives ex- a Python-based object-oriented modeling framework, using

amples of the use of thgtcm package, which illustrate the f2py to create extension module versions of the Fortran

Geosci. Model Dev., 2, 1H1, 2009 www.geosci-model-dev.net/2/1/2009/

J. W.-B. Lin: A Python implementation of QTCM1 3

modules (as shared object libraries). At the package homehus a package is a directory of module files. A single mod-
page bttp://www.johnny-lin.com/pypkgs/qtcmy), the full ule can contain an unlimited number of objects, functions,
source code and a comprehensive user’s guide is availablend variables.

for download. The User’s Guide and source code for the ver-

sion of the model described in the present work is available as

a supplement atttp://www.geosci-model-dev.net/2/1/2009/ 3.2 Package and model structure
gmd-2-1-2009-supplement.zipnd are covered by licenses
separate from the present work. The User's Guida,(Th K . f hared obiect librari
2008 provides detailed information regarding installing, us- eqtem package consists of two shared object libraries

ing, troubleshooting, and adding code to the package. In thélnd four Tzﬂn SlémedUI?Sa The tv(\;o s_hared EbJeCF I|btra|1r|es
present work, we provide an overview gfcm ’s structure are compiled and generated t3py during package instal-

and function. Parts of this section are copied and/or adapte!]at'pn’ and will not need to be recompﬂgd prior _to model exe-
from Lin (2008). cution. Thedefaults submodule defines various defaults

for the model, thdield submodule defines clagseld
(key model variables and parameters are instances of this
class), theplot submodule defines routines used for quick

Because Python is an object-oriented language, the fundatisualization of model results, and tecm submodule de-
mental programming unit is not the subroutine, but insteadfines the clas®tcm (which defines model objects).

is the “object”. In a procedural language, data and functions A model in theqtcm package is defined as an instance
that operate on data are two separate entities. In an objechf the classQtcm. Because thetcm package wraps For-
oriented language, these two entities are bound together ifran routines with a Python layer, there are two types of
a single construct, the object. Because of this frameworkyariables associated withtcm model instances: those de-
functions are automatically considered in context with thefined at the Python-level and those defined at the Fortran-
data they operate on, and vice versa. This lessens the risk ¢ével. Some variables, while defined separately at both the
errors that occur when data is manipulated by functions thapython and Fortran levels (i.e., they do not share the same
were never intended to be used on that kind of data. memory space), have the same names and functions in both
Data bound to an object are called “attributes” of that jevels of the model. Those variables are known as “field vari-
object, and functions that operate on that data are callegples” and are considered to be defined at both the Python-
“‘methods” of that object. In Python, the attributes of an |evel and Fortran-level (an example of such a variable is
object are specified by a name that comes after a periodyc, the precipitation). Qtcm instances have public meth-
at the end of the object name. Thuapdel.runname ods get _gtcm1 _item andset _gtcml _item) for pass-

refers to therunname attribute of the model ob- ing the values of field variables back-and-forth between the
ject. Methods are similarly named; however, to call a python and Fortran levels.

method, a parameter list (even if empty) must be specified.
Thus,model.run _session() calls therun _session

3.1 Object-oriented programming

All field variables and most model parameters (such as
method bound to theodel object. time step, input and output directory names, etc.) are in-

In general, Python objects consist of two types of attributessu’lmcesf ?]f theF!eLtdl 'class. '%F'eld Instance stgres the
and methods: public and private. Public attributes and methY2/U€ of the varia Ie in an attribute na'l' miéje ’ ﬁn m_eta
ods are accessible to the general user. Private attributes afipta (_e.g., units, long name, etc.) relate to the variable as
methods, on the other hand, are designed to be accessed Orﬂgwer instance attributes. If the value of the field variable is

by developers. In Python, private attributes and method$! arnay, the value stored in the attributdue is.a N“”.‘PV
have names prepended by one or two underscores. (van der Walt 2008 array. Only the value of &ield in-
stance can be passed to its Fortran counterpart (when it ex-

Objects are created from a “template” that defines the at- .
tributes and methods that go into that object. The templatéStS)’ because standard Fortran variables cannot hold meta-

is known as a “class,” and individual objects that are deriveddata'
from a class are called “instances” of that class. Creating an All model parameters (e.g., time step, etc.) are attributes of
object that is an instance of a class is known as “instantiat-Qtcm instances. Field variables, at the Python-level, are also
ing” the object. In the example abowapdel is aninstance Qtcm instance attributes. Model parameter and field variable
of theQtcm class, which defines threnname attribute and values can be passed into the model instance on instantiation
run _session method. There is no limit to the number of via the input keyword parameter list, or set after instantiation
instances of a class, and all instances of a class have accelsg changing the instance attribute. If these parameters and
to the attributes and methods defined by the class. variables are not set manually, they are set to default values
Python’s highest level of organization is the package, a li-given in thedefaults ~ submodule. Tabld lists the key
brary of related modules. Modules, in Python, are individualinstance attributes and methods for fhield and Qtcm
files that define related objects, functions, and variables, andlasses.

www.geosci-model-dev.net/2/1/2009/ Geosci. Model Dev., 2112009

http://www.johnny-lin.com/py_pkgs/qtcm/
http://www.geosci-model-dev.net/2/1/2009/gmd-2-1-2009-supplement.zip
http://www.geosci-model-dev.net/2/1/2009/gmd-2-1-2009-supplement.zip

4 J. W.-B. Lin: A Python implementation of QTCM1

Table 1. Key public instance attributes and methodsF@ld andQtcm instances. Note that f@tcm instances, field variables are also
attributes, with attribute names corresponding to the ids of the fields.

Class Type Name and Description

Field Attributes id : A string naming the model parameter or field variable (e.g., “Qc”, “mrestart”).
value : The value of the field.
units : A string giving the units of the field.
long _name: A string giving a description of the field.
Methods rank : Returns the rank ofalue .
typecode : Returns the typecode oflue .

Qtcm Attributes compiled _form : Describes the form of the compiled Fortran version of the QTCM1 model.
coupling _day: Current value of the atmosphere-ocean coupling day.
init _with _instance _state : Initialize run session with th®tcm model instance state.
runlists : Lists of methods and other run lists that can be executed byuthelist method.
sodir : Name of temporary directory containing shared object files for@ésn instance.

Methods get _gqtcm1l _item : Get field from the compiled QTCM1 model.

make_snapshot : Make copy of the current state of the run session’s variables.
plotm : Plot mean output for a given model field.
gtcm : Run the atmosphere over a coupling interval step.
run _list : Run run list(s) and/or instance methods.
run _session : Runamodel run session.
set _qtcm1l _item : Set Python-accessible compiled QTCM1 model fields.
sync _set _py values _to _snapshot : Set Python attributes to a previomske_snapshot output.
varinit : Initialize model variables in a run session.

is configured to make an aquaplanet run (setdmdon),

from gtcm import Qtcm .
a port Q starting from November 1, Year 1 (set hgar0 , monthO ,

inputs = {}

inputs[runname’] = 'test’ and day0), running for 30 days (set blastday) from
inputs[landon] = 0 a newly initialized model state (set byrestart). The
inputs['year0] = 1 model's netCDF Unidatg 2007) output filenames will con-
inputs['month0’] = 11 tain the string given byunname . By default, the model
inputs['day0’] = 1 uses climatological sea-surface temperatures (SST) for the
inputs['lastday’] = 30 lower-boundary forcing over the ocean.

inputs['mrestart’] = 0

inputs[’compiled form"] = ’parts’ The keywordcompiled _form defines which of the two
model = Qtcm(** inputs) types of Fortran extension modules, derived from the For-
model.run _session() tran QTCML1 code, the model instance will link to. The

first type permits very little control over the compiled For-
tran routines at the Python level, and is selected by set-
ting compiled _form="full . The second allows a
user, from the Python-level, to control model execution
in the Fortran-level all the way down to the atmospheric
timestep level. This extension module is selected by setting
compiled _form="parts’ . In general, most users will
ﬁ?tcompiled _form="parts’ , and thus we assume this
setting for the rest of the present work. Sam (2008 for
details about this keyword.

Fig. 1. A simplegtcm run.

3.3 Creating a model instance and running the model

Figurel shows a simple example of a model instance being
created and run. Model instances are created using standa
Python syntax; in Figl, model = Qtcm(** inputs)
creates a model instanogodel . In this example, we make
use of a feature in Python where keyword parameter argu- Once the model has been instantiated, running the model
ment lists can be passed in as a dictionary (a set of key/valueequires just a call of theun _session method. In most
pairs), where the dictionary’s keys correspond to the namegases, no input parameters need to be passed at this call. In
of the keyword parameters, and the associated value in thEig. 1, this is given in the last line. At the beginning and end
dictionary corresponds to the input value of the keyword pa-of the run _session call, the values of all field variables
rameter; the variablmputs is such a dictionary. Based on at the Python and Fortran levels are synchronized to match
the values ofnputs shown in Fig.1, the model instance each other.

Geosci. Model Dev., 2, 1H1, 2009 www.geosci-model-dev.net/2/1/2009/

J. W.-B. Lin: A Python implementation of QTCM1 5

3.4 Run sessions inputs'year0’] = 1

. . . . inputs['month0’] = 11
Once we instantiate and configure a model instance, we Cafouts[day0’] = 1
use the instance for any number of runs. We call each ofypytspiastday] = 10

these runs using the same model instance a “run session.” lijputsmrestart] = 0

arun session, the model is run from day 1 of simulation to theinputs[’compiled form’] = ’parts’

day specified by théastday attribute. A run session is a

“complete” model run, at the beginning of which all Fortran- model = Qtcm(** inputs)

level field variables are set to the values given at the Pythonmodel.run _session()

level, and at the end of which restart files are written, themedel.ul.value = model.ul.value x 2.0
values at the Python-level are overwritten by the values fronf0delinit with _instance _state = True
the Fortran-level, and a Python-accessible snapshot is takefjodelrun - -session(cont=30)

of the model variables that were written to the restart file.

Before and after a run session, model variables are easilyig- 2. An example of twogtcm run sessions where the second
accessed from the Python level, and can be changed at wilUn session is a continuation of the first. Assumputs is a
just by changing the value of the pertinent model instanced'CF'onary asin Figl, gnd that earlier in the script the run name and
atiribute. The new values can then be used at the next ruﬁ” input and output directory names were added to the dictionary.
session of the model instance. To continue a second run ses-
zloor?t a;i;g?ﬂ'ggﬁ:siuo? ;isns[(;r;,szi%tnthemk;)k/]v(\)/grgaﬁ.arametershot of the model state is automatically taken and stored

Fi 2 ai le of t . here th as the instance attributenapshot . The snapshot in-
Igurez gives an example oT two run sessions, where €., yo¢ 1he date of the model and prognostic variables like

second run session is a continuation of the first, and with., You can store this attribute as another Python vari-
changes made to a field variable between the two run ses-, |

. The first ion lasts 10 d dis ai b thable for later use. Figur@ shows an example of sav-
slons. e irstrun session 1asts ays, and IS given by ﬁlg the model snapshot as the variabigsnapshot , and
setting of thdastday keyword parameter. Between these

. th | ¢ field variahi® (th | wind using that snapshot to initialize a later run session. The
run sessions, the value of field variahi& (the zonal win methodsync _set _py values _to _snapshot initializes

zssck;cl:lztedlwnh the flés-t b;ar.]I’OChnIC n&ode) is doluble_cli_,hand thl%qaqe model to the values ohysnapshot , and setting the
oubled valle IS used In Ihe Second run session. The SeCOGyinuteinit _with _instance _state to True prior to

rur_}ﬁessr:on Iastt)s 30 dayi. . i the simbpl callingrun _session the second time will force the model
echange eftwgent.e two run sessions in the SIMPIE €%4 se the current instance state as the run session’s initial
ample given in Fig2 is uninteresting, but the example illus- | -, <

trates how thejtcm Python framework opens up possibili-
ties of interactive analysis with the model. Because Pythorg g Creating multiple models
is an interpreted language, the code in Rgloes not have

to be written in a file, compiled, linked, and executed; the Creating multiple QTCM1 Fortran models requires maintain-
code can be typed in during run time. Between run sesing and operating on different sets of source code, as well as
sions, we can conduct and visualize more complex analysegompiling each set of source code separately to obtain the de-
of the model, and use the results of those analyses to Chan%ed mu|t|p|e executables. With tmm package, Creating
the model configuration for the next run session. And sincemultiple models is as easy as instantiating multiptem in-

Python is a complete programming language, we can als@tances. For instance, to create two Python QTCM1 models,
automate these analyses, without |eaVing the mOde”ng enVimode|1 andmodel2 , just enter in the fo”owing:

ronment. The important benefits of this feature are described
in Sect4. from gtcm import Qtcm

) . modell = Qtcm(** inputsl)
3.5 Passing restart snapshots between run sessions model2 = Qtcm(** inputs2)

Sometimes, we want to branch a number of model runs from whereinputsl andinputs2 are separate dictionaries

the same starting point. The QTCML1 writes restart files for specifying the input keyword parameters. Recall therly

that purpose, and@tcm instance can also make use of those anymodel variable or parameter can, in principle, be set via

files by setting themrestart attribute accordingly. This input keyword parameters. Thugputsl andinputs2

restart mechanism is straightforward to use, but becomes difeould be different in the number of days the model is inte-

ficult to manage when many restart files are involved. grated, whether the land scheme is on or off, the initial val-
Theqgtcm package provides a way to take, store, and ap-ues of the prognostic variables, etmodell andmodel2

ply restart snapshots at the Python-level, by storing a snapdo not have any variables in common, including in the ex-

shot as a dictionary. At the end of a run session, a snaptension modules holding the Fortran code, and thus the two

www.geosci-model-dev.net/2/1/2009/ Geosci. Model Dev., 2112009

6 J. W.-B. Lin: A Python implementation of QTCM1

model.run _session()

mysnapshot = model.snapshot

model.sync _set _py _values _to _snapshot(snapshot=mysnapshot)
model.init _with _instance _state = True

model.run _session()

Fig. 3. An example of using a snapshot from ajtem run session as the restart for a second run session.

model.run _session()

mysnapshot = model.snapshot

modell.sync _set _py_values _to _snapshot(snapshot=mysnapshot)
model2.sync _set _py_values _to _snapshot(snapshot=mysnapshot)
modell.run _session()

model2.run _session()

Fig. 4. An example of using a snapshot from agtem run session as the restart for run sessions in multiple other model instances.

>>> from qtcm import Qtcm

>>> model = Qtcm(compiled _form="parts’)

>>> print model.runlists[’atm _physics1’]

[__gtcm.wrapcall.wmconvct’, ’ __gtcm.wrapcall.wcloud’,
" __gtcm.wrapcall.wradiw’, ’ __gtcm.wrapcall.wsflux’]

__gtcm.wrapcall.wradsw’,

Fig. 5. Contents of run listatm _physicsl’ , the set of routines to execute to calculate atmospheric physics at one instant in time, as
displayed during a Python interpreter session.

instances are two truly independent models. Each instance Run lists are stored in a dictionary set to tQécm in-

automatically links to a separate copy of the extension mod-stance attributeunlists . The dictionary key for the run

ules, which are saved in temporary directories. list's entry is the run list name. Figure shows an inter-
active Python session that prints out the contents of run list

3.7 Passing restart snapshots between multiple models ’'atm _physicsl’ . This run list specifies the set of rou-

tines used to calculate atmospheric physics at one instant in
In Sect.3.5, we saw how a model snapshot can be saved tdime. Each entry of the list is a string and refers to the name
a separate variable and used to initialize a later run sessiorof the wrapped Fortran routine that calculates moist convec-
Of course, sincenysnapshot is anindependent dictionary, tion, cloud effects, shortwave radiative flux, longwave radia-
we are not limited to using it only with the model instance the tive flux, and surface fluxes, respectively.
shapshot originally came from. Figudeshows an example To change the order of the calculation, or to add, delete,
of using a snapshot to initialize run sessions in multiple mod-or replace the routines being called, just change the elements

els. of the list using any of the list methods provided by Python
(e.g.,append). For instance, to reorder the run list in Fig.
3.8 Runlists so that the convection scheme is called after all the other

physics schemes, type in:
Of all the features the Python infrastructure enables us to
create in our wrapping of the QTCM1 model, run lists may
be the most valuable. A run list in trgtcm package is a
Python list that specifies a series of Python or Fortran meth- In Fig. 5, all the routines given in the run list are Fortran
ods, functions, subroutines (or other run lists) that will be ex-subroutines and require no parameters to be passed in via an
ecuted when the list is passed into a call of@tem instance argument list. Run lists can, however, specify Python func-
methodrun _list . Since routines in run lists are identified tions and methods and other run lists. For both Python and
by strings (instead of, for instance, as a memory pointer toFortran routines, the run list feature can also accommodate
a library archive object file), and Python lists are mutable,routines that have argument lists. Figérehows the run list
run lists are fully changeable at run time. As a result, whatfor initializing the atmospheric portion of the model. The
routines the model executes are also fully changeable at rufirst two routines executed by the run list are Fortran subrou-
time. tines without any input parameters. The third is @&m

tmp = model.runlists['atm _physics1’].pop(0)
model.runlists['atm _physics1’].append(tmp)

Geosci. Model Dev., 2, 1H1, 2009 www.geosci-model-dev.net/2/1/2009/

J. W.-B. Lin: A Python implementation of QTCM1 7

>>> from gtcm import Qtcm
>>> model = Qtcm(compiled _form='parts’)
>>> print model.runlists['gtcminit’]

[' __gtcm.wrapcall.wparinit’, ’ __gtcm.wrapcall.wbndinit’, ’varinit’,
{’ __qtcm.wrapcall.wtimemanager’: [1] }, 'atm _physicsl’]
Fig. 6. Contents of run listgtcminit’ , the set of routines to execute to initialize the atmospheric portion of the model, as displayed

during a Python interpreter session.

[@ Grab File Edit Window Help 5 @ « ™ Z 4) BE Wed5:01PM JohnnyLin &]
""00 Terminal — vim — 70x21 000 ® gtem_w3bmUG.png o .
import user, os, utilities i O e *) = "]
from gtem import Qtcm E‘ 0 G H A Y '&' A Y “{\
Drawer | Rotate Left Rotate Right : ActualSize Zoom ToFit Zoom In Zoom Out _@4
rundirnome = 'test'
dirbasepath = utilities.prepare_outdirrundirname) Precipitation [W/m?| -4
inputs = {} 300 T T
inputs['bnddir'] = os.path.join{ os.getowd(), ‘bnddir', 'r&dzd2’) @
inputs['S5Tdir'] = os.path.join{ os.getowd(), ‘bnddir', 'rEdzd2", =
'SST_Reynolds' 250 L\J

inputs[‘outdir'] = dirbasepath Jﬂj
inputs[runname '] = rundirname o
inputs[yearg'] = 1 g
inputs[‘monthd'] = 11 o 200 @‘
inputs[‘daya] = 1] 5

= .
inputs['lastday'] = 181 =3 Ll
mputs[:ntout‘] =1 L ‘ § 150 \A]
inputs["compiled_form'] = "full]

£

e

model = Qtcm{**inputs)

model . run_session(ﬂ 100 i
Drawer Rotate Left Rotate Right Actual Size Zoom To Fit ZoomIn Zoom Out ‘Z’__p
50

]
surface zonal velocity [m/s| at Model Time 180 Days Since 1-11-01 Q
?5{) 155 160 165 170 175 180
Model Time [Days Since 1-11-01] a

writeM: Writing mean data to "/scral/testing/rundir/test/qm_test.nc”
Driver: Running for 188 days ot model dote G8620429
writeM: Writing mean data to "/scral/testing/rundir/test/qm_test.nc”
Driver: Running for 181 days ot model dote G8G20428
Restart file written at end of 00028430

$ | (TCM finished normally
180° 1355 W rPW g =3 model.plotm "us', time=180, tmppreview=True)
=3 model.plotm{ "Prec’, lon=@., lat=1.875, time=[158,180], tmppreview=True}
=>> model.ul.value = model.ul.value * 2.8
(REISP bee model.run,sesswn(comt%@)ﬂ

Fig. 7. Screenshot of an interactive modeling session usingjttra package. The upper-left panel shows the source code file specifying
the run. The lower-right panel shows the Python interpreter session making the run. The two plot windows display the plots generated by
theplotm calls from the Python interpreter command line.

instance methodarinit , also without input parametersin Python that can read and manipulate netCDF data, such as
the calling argument list. The fourth element of the run list the Climate Data Analysis Tool®CMDI, 20086.

is a Fortran subroutine, but with one input parameter in its The Matplotlib package Hunter and Dalg 2007 for
calling argument list. The final routine is not a routine at all, Python generates 1-D and 2-D plots using Matlab-like syn-
but another run list. Regardless of what kind of routine ortax. Qtcm instances have a methgdotm which reads

run list is specified, the syntax is still the same: a string or athe netCDF output files and uses Matplotlib to create line
one-element dictionary with a string as the ké&yn (2008 or contour plots of user-specified slices of the data. Figure

gives details about run lists. shows an interactive modeling session with ¢ftem pack-
age where the user has created visualizations of a variety of
3.9 Output, visualization, and analysis parameters at run time.

Because thgtcm package makes the Fortran-level vari-
The Qtcm model instance writes instantaneous and mearables accessible from the Python level, the user can use any
output to netCDF files. The netCDF data format is a plat-analysis tools at the Python-level on data from those Fortran-
form independent binary format that permits metadata to bdevel variables, in addition to the netCDF output, and send
saved with the data. There are a number of packages fathe values as desired back to the Fortran-level, all during run

www.geosci-model-dev.net/2/1/2009/ Geosci. Model Dev., 2112009

8 J. W.-B. Lin: A Python implementation of QTCM1

Table 2. Wall-clock times (sec) for the average of three 365 day mysnapshot is not defined (whichis the case the first time

aquaplanet runs using climatological sea surface temperature as tr?eround)-

lower boundary forcingl(in, 2008. All runs are executed as single If we implemented this science task using the pure-Fortran
threads. The “Pure” column refers to runs using the pure-FortranQTCML1 and shell scripts, we would probably have to write
QTCML1, while “Wrap” refers to the Python wrappetcm pack- a separate program (possibly in a separate data analysis lan-

age (v0.1.1) wittcompiled _form="parts’ . guage like IDL, Matlab, or NCL) to analyze model output.

Required parameters might be passed through an operating
System Pure Wrap system pipe, or through namelists and temporary files. Au-
Mac OS X: MacBook 1.83 GHz Intel 152.59 158.94 toma_lti_ng mo_de_ling with analysis in such an environment can
Core Duo running Mac OS X 10.4.10. be difficult, limited, and error prone. Thgtcm package al- _

lows us to take advantage of Python’s numerical computing
Ubuntu GNU/Linux: Dell PowerEdge 43.73 47.45 capabilities so that we can embed our traverse of parame-
860 with 2.66 GHz Quad Core In- ter space within avhile loop, thus automating the analysis
tel Xeon processors (64 bit) running task within the modeling environment.

Ubuntu 8.04.1 LTS.

4.2 Test alternative parameterizations

time. This enables the user to utilize the powerful analysisFigure9 demonstrates the following scenario. Assume we
tools provided by the Climate Data Analysis Tools, SciPy have nine different cloud physics schemes we wish to test
(Van der Wa'lzooa’ and other Python packageS, during as|n nine d|ﬂ:erent runs. The easiest Way to dO th|5 IS to

well as after run time. take advantage of Python’s object-oriented inheritance ca-
pabilities, creating a new clagéewQtcm that inherits ev-
3.10 Model performance erything fromQtcm, and to which we add the additional

cloud schemesc{oudO , cloudl , etc.). In thefor loop
Because the model's core numerics are written in Fortranin Fig. 9, we change the cloud model run list entry in the
with Python providing a sophisticated programmer/user-atm _physics1’ run list to whatever the cloud model is
interface, the performance penalty of tlggem pack- at this point in the loop.

age (withcompiled _form="parts’), compared to the Of course, we could do the same thing by running the nine
pure-Fortran QTCM1 is approximately 4-9% (the penalty models separately, but this set-up makes it easy to do hy-
for compiled _form="full is less). Table2 gives pothesis testing between these nine models as the models are
wall-clock values forgtcm running on two platforms, Mac running. For instance, we can create a test by which we will
OS X and Ubuntu GNU/Linux. choose which of the nine models to use: Within this frame-

work, the selection of those models can be altered by chang-
ing a string. If the same task were implemented with shell
scripts and makefiles, we would have to write our own se-

By wrapping the Fortran QTCM1 with a Python layer, the Iectpr routines (perhaps using file system functions) for se-
gtcm package permits us to accomplish science tasks thafCcting model(s) from amongst the possible executables. It
would otherwise require a labyrinthine set of shell scripts, 'S Much easier to use Python's built-in string manipulation
temporary input and output files, and source code versiongOUtines.

In this section, we describe a few such science tasks to il-

lustrate what the Python wrapping buys us. The examples in , . .

this section are taken frotrin (2008. 5 Discussion and conclusions

4 Example uses of thegtcm package

4.1 Conditionally explore parameter space In the present work, an intermediate-level atmosphere model
written in Fortran is wrapped with an object-oriented struc-
Figure 8 provides an example of code that explores differ- ture written in Python, which makes modern data abstraction
ent values of mixed-layer depthifnl) over a set of 30 day utilities available to a model written in a traditional proce-
runs, as a function of maximum zonal wind associated withdural language. The result is a model that can be used dy-
the first baroclinic modeull) magnitude, until it finds a case namically at run time, with the user able to change the order
where the maximum ofil is greater than 10 m/s. (The re- of subroutine execution at will, and able to analyze model
lationship betweeziml and the maximum of the speed of results within the modeling environment.
ul, whereziml=0.1 * maxul, is made up.) With each This flexibility, however, potentially provides more than
iteration, the new run uses the snapshot from a previous rujust convenience for the user. Theem package’s run time-
as its initialization (as well as the new valuezinl); the interactive tools, and tools like them, can transform the tra-
try statement is used to ensure the model works even iflitional analysis sequence used in modeling studies into a

Geosci. Model Dev., 2, 1H1, 2009 www.geosci-model-dev.net/2/1/2009/

J. W.-B. Lin: A Python implementation of QTCM1 9

import os
import numpy as N
maxul = 0.0
while maxul < 10.0:
iziml = 0.1 * maxul
iname = ’'ziml-" + str(iziml) + 'm’
ipath = os.path.join(’proc’, iname)
os.makedirs(ipath)
model = Qtcm(** inputs)
try:
model.sync _set _py _values _to _snapshot(snapshot=mysnapshot)
model.init _with _instance _state = True
except:
model.init ~ _with _instance _state = False
model.ziml.value = iziml
model.runname.value = iname
model.outdir.value = ipath
model.run _session()
maxul = N.max(N.abs(model.ul.value))
mysnapshot = model.snapshot
del model

Fig. 8. Example of an exploration of the effects of different values of mixed-layer depthinplsés dictionary is initialized similarly as
in Fig. 1.

import os

class NewQtcm(Qtcm):
def cloudO(self):

(-]

def cloudl(self):
(-]

def cloud2(self):
[-]

(-]

inputs['init _with _instance _state’] = False
for i in xrange(10):
iname = ’'cloudscheme-’ + str(i)
ipath = os.path.join(’proc’, iname)
os.makedirs(ipath)
model = NewQtcm(** inputs)
model.runlists['atm _physics1'][1] = ’'cloud’ + str(i)
model.runname.value = iname
model.outdir.value = ipath
model.run _session()
del model

Fig. 9. Example of using inheritance in Python to explore the effects of multiple cloud physics schemes in multiple ryng. Thelenote
the code of the different (hypothetical) cloud physics schemesirifhes dictionary is defined similarly as in Fig.

sequence with more capabilities. The traditional sequencesis to code), while others combine human reasoning with
begins with formulation of a hypothesis, then leads to im- computational tools (e.g., we can mostly automate the tran-
plementing a test of the hypothesis in model code, makingsition from code to model runs through the use of makefiles
model runs using the coded test, and ends with analyzingombined with shell scripts). The feedback part of the cycle,
the model results using various statistical and visualizationwhere analysis of the results modifies the original hypothe-
packages (FiglOa). Some transitions between the various sis, usually requires human input.

steps mainly make use of human input (e.g., from hypoth-

www.geosci-model-dev.net/2/1/2009/ Geosci. Model Dev., 2112009

10 J. W.-B. Lin: A Python implementation of QTCM1

Hypothesis |:> Code |:> Model Runs |:> Analysis ’
Q j o O (o]

@)

(b)

«00

More .
Hypothesis :> Code |:> Model Runs I:>Analy3|s

Fig. 10. Schematic of (a) the traditional analysis sequence used in modeling studies, and (b) the transformed analysis sequence using
gtcm -like modeling tools. Outlined arrows with no fill represent mainly human input. Gray-filled arrows represent a mix of human and
computer-controlled input. Completely filled (black)-arrows represent purely computer-controlled input.

In contrast, the tools provided lgtcm and similar pack- Program under grant ATM-0121028. Any opinions, findings and
ages open up the potential to automate substantially largesonclusions or recommendations expressed in this material are
portions of the analysis sequence. Figui@ shows a those of the author and do not necessarily reflect the views of the
schematic of how model analysis might be transformed. In-NSF. T_rademarks in the present work are the property of their
stead of being limited to a few hypotheses, the transformed€SPective owners.
sequence makes additional types of hypotheses accessibiglited by: O. Marti
without changing the complexity of the code required (see
Sect.4's examples as illustrations). Most importantly, the
Fig. 10b sequence enables model output analysis to automafiéferences
!cally control future mo_del runs. Instead of requiring human Beazley, D. M: SWIG 1.1 Users Manuaiftp:/Awww.swig.org/
intervention to determ_me future model runs, the computer Doc1.1/HTML/Contents.html1997.
can make that evaluation, and as a result, for the same CorTiEdwards, P. N.: A brief history of atmospheric general circulation

plexity of code, we can more intelligently explore the prob- mogeling, in: General Circulation Development, Past Present

lem’s solution space. and Future: The Proceedings of a Symposium in Honor of Akio
Thus, though the use of mixed language programming en- Arakawa, edited by: Randall, D. A., Academic Press, New York,

vironments for climate modeling has a modest cost in perfor- 67-90, 2000.

mance, these environments have the potential the pay backushchina, D., Dewitte, B., and lllig, S.: Remote ENSO forcing

substantial dividends in code simplicity, reliability, and ease- Versus local air-sea interaction in QTCM: A sensitivity study to

of-use. More importantly, such an environment, by provid- intraseasonal variability, Adv. Geosci., 6, 289—-297, 2006,

; P : : http://www.adv-geosci.net/6/289/2006/

ing a robust programming interface with capabilities tradi-

tiognal lan uapesgcannot egasil support ives researchers th'_éumer’ J. and Dale, D.: The Matplotlib Users Guidettp://
guag y support, 9 matplotlib.sourceforge.net/usegsiide 0.98.1.pdf 2007.

tools to Investlgate preV'OUSIY Inaccess_lble (o_r difficult t‘? ac- Johnson, R. A.: Object-oriented analysis and design — What does
cess) questions. The wrapping techniques illustrated in the ,a research say?, J. Comput. Inform. Syst., 42, 11-15, 2002.
present study for the Neelin-Zeng QTCM1 may be fruitfully in, 3. w.-B.: qtcm User's Guidenttp://iww.johnny-lin.com/py
deployed to other climate models, increasing their flexibility pkgs/gtcm/doc/manual.pd2008.
and scientific usefulness. Lin, J. W.-B. and Neelin, J. D.: Influence of a stochastic moist
convective parameterization on tropical climate variability, Geo-
AcknowledgementsThanks to David Neelin, Ning Zeng, phys. Res. Lett., 27, 3691-3694, 2000.
Matthias Munnich, and the Climate Systems Interactions GroupLin, J. W.-B. and Neelin, J. D.: Considerations for stochastic con-
at UCLA for encouragement and help. Thanks to Alexis Zubrow, vective parameterization, J. Atmos. Sci., 59, 959-975, 2002.
Christian Dieterich, Rodrigo Caballero, Michael Tobis, and Lin, J. W.-B., Neelin, J. D., and Zeng, N.: Maintenance of tropical
Ray Pierrehumbert for Python help. Comments by reviewers intraseasonal variability: Impact of evaporation-wind feedback
Charles Doutriaux and Sebastien Denvil were very helpful. Early and midlatitude storms, J. Atmos. Sci., 57, 2793-2823, 2000.
development ofjtcm precursors was carried out at the University Mesinger, F. and Arakawa, A.: Numerical Methods Used in Atmo-
of Chicago Climate Systems Center, funded by the National spheric Models, Vol. 1, GARP Publications Series No. 17, World
Science Foundation (NSF) Information Technology Research Meteorological Organization, 1976.

Geosci. Model Dev., 2, 1H1, 2009 www.geosci-model-dev.net/2/1/2009/

http://www.swig.org/Doc1.1/HTML/Contents.html
http://www.swig.org/Doc1.1/HTML/Contents.html
http://www.adv-geosci.net/6/289/2006/
http://matplotlib.sourceforge.net/users_guide_0.98.1.pdf
http://matplotlib.sourceforge.net/users_guide_0.98.1.pdf
http://www.johnny-lin.com/py_pkgs/qtcm/doc/manual.pdf
http://www.johnny-lin.com/py_pkgs/qtcm/doc/manual.pdf

J. W.-B. Lin: A Python implementation of QTCM1 11

Neelin, J. D. and Zeng, N.: A quasi-equilibrium tropical circulation PyCCSM: pyccsm: A Python version of the CCSM coupletp:
model — formulation, J. Atmos. Sci., 57, 1741-1766, 2000. /lcode.google.com/p/pyccsp2008.

Neelin, J. D.,, Zeng, N., Chou, C., Lin, J., Su, H., Unidata: The NetCDF Tutorial, Boulder, C@ttp://www.unidata.
Munnich, M., Hales, K., and Meyerson, J.: The Neelin-Zeng ucar.edu/software/netcdf/docs/netcdf-tutorial.h2@07.
Quasi-Equilibrium Tropical Circulation Model (QTCM1), Ver- van der Walt, S.: Documentation: NumPy and Scifyp://www.
sion 2.3, UCLA Department of Atmospheric Sciences, Los scipy.org/Documentatiqr2008.

Angeles, http://www.atmos.ucla.edutsi/qgtcmman/v2.3/gtcm van Rossum, G.: Python Tutorial: Release 2.5.2, Python Software

manv2.3.pdf2002. Foundationhttp://www.python.org/doc/2.5.2/tut/tut.htnH008.
Oliphant, T. E.: Python for scientific computing, Comput. Sci. Eng., Zeng, N., Neelin, J. D., Lau, K.-M., and Tucker, C. J.: Enhancement

9, 10-20, 2007. of interdecadal climate variability in the Sahel by vegetation in-
PCMDI: Climate Data Analysis Tool$ittp://cdat.sf.net2006. teraction, Science, 286, 1537-1540, 1999.

Pennington, N., Lee, A. Y., and Rehder, B.: Cognitive activities Zeng, N., Neelin, J. D., and Chou, C.: A quasi-equilibrium trop-
and levels of abstraction in procedural and object-oriented de- ical circulation model—implementation and simulation, J. At-
sign, Hum.-Comput. Interact., 10, 171-226, 1995. mos. Sci., 57, 1767-1796, 2000.

Peterson, P.: F2PY Users Guide and Reference Mahttpi//cens.
ioc.ee/projects/f2py2e/usersguide/index.ht2AI05.

www.geosci-model-dev.net/2/1/2009/ Geosci. Model Dev., 2112009

http://www.atmos.ucla.edu/~csi/qtcm_man/v2.3/qtcm_manv2.3.pdf
http://www.atmos.ucla.edu/~csi/qtcm_man/v2.3/qtcm_manv2.3.pdf
http://cdat.sf.net
http://cens.ioc.ee/projects/f2py2e/usersguide/index.html
http://cens.ioc.ee/projects/f2py2e/usersguide/index.html
http://code.google.com/p/pyccsm/
http://code.google.com/p/pyccsm/
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.html
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.html
http://www.scipy.org/Documentation
http://www.scipy.org/Documentation
http://www.python.org/doc/2.5.2/tut/tut.html

