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Abstract. We describe how to use multivariate analysis

of complex TOF-SIMS (time-of-flight secondary ion mass

spectrometry) spectra by introducing the method of random

projections. The technique allows us to do full clustering and

classification of the measured mass spectra. In this paper we

use the tool for classification purposes. The presentation de-

scribes calibration experiments of 19 minerals on Ag and Au

substrates using positive mode ion spectra. The discrimina-

tion between individual minerals gives a cross-validation Co-

hen κ for classification of typically about 80 %. We intend to

use the method as a fast tool to deduce a qualitative similarity

of measurements.

1 Introduction

The TOF-SIMS (time-of-flight secondary ion mass spec-

trometry) instrument Cometary Secondary Ion Mass Anal-

yser (COSIMA), on Rosetta provides high quality measure-

ments of chemically complex cometary dust (Kissel et al.,

2007). The instrument is designed to collect dust on target

substrates. An ion beam with the diameter of about 50 µm

bombards the collected dust by indium ions. The secondary

ions created are counted. The instrument is able to detect and

measure the mass of individual ions at an intermediate mass

resolution m/δm∼ 1400 at mass 100. The top few mono-

layers of the dust collected are probed by indium ions. The

instrument is sensitive enough to detect individual molecules

and is capable to even provide the molecular structure.

From the knowledge of composition of the dust from

cometary sources (Stephan, 2008), it seems that we will

encounter both inorganic and organic substances in mix-

tures. The dust-collecting substrates exposed at comet

67P/Churyumov–Gerasimenko are designed to catch dust

grains, impacting at low speed, with a high probability (Hor-

nung, 2014). The dust grain size is an a priori unknown

factor. Dust smaller than visible by the optical microscope,

Cosiscope, will be detectable by the TOF-SIMS instrument.

Therefore we need to establish methods by which we can

identify a grain on a visually seemingly empty background.

The optimum size of the dust grains to be measured would

be the same size as the beam diameter.

The purpose of this presentation is to investigate how well

we can identify a set of selected dust grains, from the sub-

strate background, using a few different sets of data and ap-

plying multivariate statistical analysis enhanced with the rel-

atively recent random projection method (Bingham and Man-

nila, 2001), and developed for our purpose (Varmuza et al.,

2011).

Traditional methods of analyzing mass spectra rely on

studying details of individual mass lines or groups of lines.

This type of investigation will be made by us only as a subse-

quent second step. In the early phases of the mission, when a

small number of spectra are available, we need to be able to
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46 J. Silén et al.: COSIMA data processing

establish a link between the observed spectra and those mea-

sured earlier in the laboratory. This task has to be based on

estimating the similarity between spectra and as it is a chal-

lenging task, we first present an overview of methods tradi-

tionally utilized for this purpose. Multivariate approaches in

most cases require a reduction of dimensionality by select-

ing specific features. We avoid doing this selection manually

either by using a peak list derived from a spectrum or by

applying the method of random projections. This technique

gives additional advantages as it reduces the computational

complexity of the classification task. We demonstrate how to

use the method and show that it is a useful tool.

1.1 Data analysis and classification

The lack of an overall applicable quantitative model for the

ionization processes in SIMS, Gross (2004), suggests that we

approach the data set in an exploratory manner. The inter-

est in data mining techniques is the subject of intense re-

search and the amount of published material is large (Dasu

and Johnson, 2003). Finding features and patterns in a set

of measurements, does not necessarily provide understand-

ing (Keogh et al., 2004). We therefore regard the chemomet-

rics methodology to be the only viable basis for our analysis

attempts (Varmuza and Filzmoser, 2009). The amount of in-

formation hidden in any given spectrum is large. Therefore

it is sometimes an advantage, and sometimes simply neces-

sary, to reduce the dimensionality of the data before applying

multivariate statistical tools (Varmuza et al., 2010).

From a general point of view, creating understanding im-

plies reducing dimensionality of observations. Commonly,

linear methods, like principal component analysis (PCA),

have been used to find structure in a data set. For our pur-

pose it is not clear how well this would be valid and ap-

plicable. A more general approach is provided by clustering

methods, which can be shown to cope even with non-linear

situations and embedded subspaces (Roweis and Saul, 2000).

In some sense this understanding is accessible best by using

some random sampling strategy (Candes, 2006).

Interestingly, it has been shown that the commonly used

tools like the bilinear PCA and K means clustering meth-

ods, can be understood from a common base (Ding and He,

2004). There is no guarantee that the data we collect are in

any sense linear. When measuring a mixture of two com-

pounds A and B and expressing the result in some suitable

abstract representation space, the results ought to be found

along the line joining these two observations in the space

containing both of them. This is an important issue when the

dimensionality of the data is large. Each of our mass spectra

contain some 105 numbers which can be reduced to a few

dozen to hundreds of meaningful mass lines. This is still a

large dimension where, in particular, clustering methods tend

to become hard to use as the computational task becomes too

costly.

When the number of parameters grows, the interpretation

gets even harder, the curse of dimensionality. This problem

has been investigated and quantitative bounds for the validity

of estimates of principal components have been established

(Nadler, 2008). This makes it possible to create a cluster-

ing representation in a space of sufficient dimension to make

the cluster reliable, i.e. contain all required information about

the cluster members. New observations are brought into this

map, and estimates are made about how of much the map

changes as the population distribution is modified. To learn

from the established representation, one needs to make a non-

trivial reverse mapping, where observations are related to the

interpretation. This task has also recently been studied (Mon-

nig et al., 2013).

Other multivariate statistical methods and techniques like

data mining can be added to these tools (Dasu and Johnson,

2003; Giudici and Figini, 2009). For the present presentation

we will not go further into this direction.

When operating the instrument, we will encounter mix-

tures (Stephan, 2008). Because quantitative absolute mea-

surements are not possible, we need to address the ques-

tion of precision and accuracy in the present investigation.

Bayesian methods (Broemeling, 2009) are robust and addi-

tionally provide knowledge about our possible ignorance of

the experimental setup. This method will later serve as a first

step in the data-processing chain of events (Lehto, 2014).

1.2 Considerations when operating the instrument

During the operational phase of the ROSETTA mission, mea-

surement strategy decisions have to be made on the fast track.

The TOF-SIMS device is an extremely sensitive instrument

providing measurements of ions from the dust grain surface.

Contamination, emerging through out gassing from the elec-

tronics and structural elements on the space craft, or other

unknown sources, is of great concern. Contamination tends

to be organic compounds that may migrate and cover the very

small size dust grains collected during the target exposure.

Repeating measurements at some time intervals does

therefore not necessarily give the same results. Some aspects

of this is covered in a separate article (Hilchenbach, 2014).

Contamination is a hard problem, as there are indications

that comets are surrounded by dust with a size distribution

such that small grains are much more abundant than large

ones (McDonnell et al., 1991; Kolokolova et al., 2004; Tuz-

zolino et al., 2004). This results in a “contamination-like” in-

fluence on the measurements which might show up as a real

measured signal. Being indeed of cometary origin it would

contaminate the entire surface being investigated. The con-

sequence of this is that contamination always is present and

will forever be an inseparable part of the measurement.

We do have information about cometary matter from

a number of sources (Tsou et al., 2004; Stephan, 2008;

Mumma and Charnley, 2011), but few data are collected in

a non-destructive manner in situ.
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Our approach is to construct maps of some laboratory

spectra based on multivariate statistical techniques. Standard

methods of principal component analysis are applied directly

to peak lists derived from full mass spectra. This list repre-

sents a first large dimensionality reduction, which is suffi-

cient for most purposes. It does not evaluate the influence

of the ever-present signal noise residing between individual

mass lines, or multiply ionized ions at fractional massesm/z.

As pointed out before, there are limits on dimensionality

reduction, which must not be exceeded. The dimensionality

reduction method, random projections (RPs), introduced a

decade ago (Bingham and Mannila, 2001), can be shown to

possess a number of universally attractive properties (Can-

des, 2006). The problem of outliers in a principal component

analysis as described by Filzmoser et al. (2009) is eliminated

by design in the method of random projections, which is in

some sense optimal (Candes, 2006).

It may be even possible to construct maps for nonlinear

cases, using this method (see Roweis and Saul (2000) or

Monnig et al. (2013) for a good overview of the mapping

and its inversion).

During the operational phase of the Rosetta mission, there

is a need to make fast decisions on what to measure, based

on possibly very limited information. In this context, a quick

analysis where measured spectra can directly be related to

any laboratory results or to previous in situ measurements is

important. Support for this kind of reasoning is an additional

goal for this work.

2 Method

Principal component analysis, PCA, is a well known bilinear

method. It simply establishes an orthogonal coordinate sys-

tem in which the measured data can be expressed in a clear

manner. Each direction established is independent of each

other. The principal components (PCs) each tell about what

features, in order of importance, are separating our individual

measurements.

When using the PCA method, it is important to centre the

data. For very high dimensional data it is reasonable to apply

the method in two steps where the random projection (RP)

method is first used; on the result, the PCA method is applied.

The properties of RP essentially whiten the data and removes

biases. It is important to use a dimensionality large enough

to correctly preserve the data structure under consideration.

In mathematical terms we can express these statements as

follows. We may regard each measurement as a row vector

d . The dimensionality is determined by the number N of pa-

rameters measured. The complete set of data is then given by

the matrix D. It consists of M measurements, rows, each N

dimensional vectors d .

A linear dimensionality reduction then consists of a pro-

jection of D using a transformation matrix R giving a trans-

formed data set X with dimension N ×K as

XM×K = DM×N ·RN×K .

Random projection is suitable to map even a very high di-

mensional data set into a reduced dimension which still re-

tains the most important features of the original data but is

small enough to be numerically tractable. The selection of

transformation matrix is of critical importance. If we by ad

hoc reasoning decide that only certain lines in the mass spec-

trum are important, we actually choose a very limiting sim-

ple form of projection. On the other hand, if we randomly

select different features from our data set multiple times, we

effectively ensure that we do not loose anything important.

This can be proven mathematically in a strict manner (Can-

des, 2006). This reduction can be understood relatively easily

by realizing that each projected dimension provides a view

of the full original data set viewed from some particular di-

rection. Therefore, a random projection into 10 dimensions

provides 10 complete views of the entire data. For our task

we select each element of R from a standard normal distribu-

tion N (0, 1). Using an optional normalization N (0, 1)/
√
N

makes the columns of R approximately unit length and the

average of X is approximately zero, fulfilling the statistical

requirements imposed by PCA.

The results for PCA obtained from the reduced space,

can be directly related to the original high dimensional data.

Therefore an advanced kind of information extraction is uti-

lized in a robust manner (Candes, 2006). We can actually

compute the PCA components reliably by first projecting the

data set by RP and then apply standard PCA.

When the number of samples, i.e. spectra, grows, the accu-

racy of the PCA method decreases. For this case, clustering

approaches for classification can be shown to perform better

than simple PCA (Varmuza and Filzmoser, 2009).

We describe a set of calibration measurements of 19 min-

erals measured by the instrument. A separate paper, (Krüger,

2014), will discuss the sample preparation and details of the

manual spectral evaluation. In this paper we are interested in

constructing a method which would accurately and rapidly

relate a new measurement to previously measured spectra.

It should ideally be able to indicate the presence of mineral

mixtures or clearly indicate nonconformity of something yet

not observed.

A typical measurement sequence consists of visually, us-

ing Cosiscope, identifying a grain or a substrate area to be

analyzed (Fig. 1). This is covered by a 5× 5 matrix of mea-

surements (Fig. 2). In most cases some of the measurements

will hit a mineral grain and in some cases the substrate only.

From the 25 spectra collected, we can derive typical prop-

erties of individual spectra and their variability. A principal

component analysis loading vectors also pinpoint the typical

features identifying the spectra. In some cases the discrimi-

nating signatures can be very small. Often therefore heuristic

arguments are used to look at selected subsets of the spec-

tra. This selection process effectively increases the signal to
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Figure 1. A substrate to collect dust. This one contains multiple

mineral samples. In the middle at the top the albite mineral is de-

posited and a 5× 5 matrix of closely spaced measurements is made.

At the bottom is a straight vertical matrix of measurements on a

clean area of the substrate which serves as a background reference.

noise ratio. In this work we rather rely on using the full spec-

tral data and a dimensionality reduction by random projec-

tion. This method being in some sense quite optimal, man-

ages to reduce the dimensionality of the data studied. The

resulting reduced data set is made small enough to be able to

apply standard multivariate techniques.

We perform this analysis for two sets of data. First for

a substrate with several deposited minerals of which we

study 4, to establish what the reliability is of separating back-

ground and minerals. As an option we may use a set of

40 background additional spectra measured at the substrate

in a position free from contamination.

For the second set we use all data as one uniform data

set. To be able to compare spectra, we normalize spectra by

taking the square root of the ion counts of individual bins

or mass peaks and then normalize the result into unit vec-

tors using an L2 norm, i.e. Euclidean norm. This corresponds

to scaling spectral components by their standard deviations.

Computations using the methods described in Nadler (2008),

show that typical noise levels in signals are so small that sev-

eral dozens of principal components are statistically signifi-

cant and exceed the signal noise power. Therefore we may in-

deed utilize even relatively high order principal components

if the particular component responds to a proposed question.

As the principal components are statistically orthogonal, we

can in some sense treat them as independent probes into the

data set. This corresponds to the popular technique of man-

ual feature selection like using specific mass line amplitudes

or ratios between amplitudes.

Figure 2. Picture showing the position of measurements at the min-

eral albite. The beam radius corresponds to the distance between the

indicated positions. The marked squares indicate the hand picked

positions on the edge of the mineral sample. As the sample is placed

by wet deposition, it is likely that the other positions are contami-

nated by the same mineral substance in a possibly diluted form.

It can be shown that computing PCA components from the

data projected by a random projection gives the same results

as doing it from the original data. The RP technique makes it

possible to compute the clustering of even the complete set

of calibration measurements. For the sake of demonstration

we have used it only on a few thousand spectra investigating

the properties of wet deposited minerals.

The probabilities for a correct identification are computed

by the octave program (Eaton et al., 2009), function xval

(Duda et al., 2001; Schlogl et al., 2007). It allows a wide va-

riety of classification methods to be used. It also provides a

statistically valid cross validation. Linear discriminant anal-

ysis of various flavours give comparable results.

During the interactive discussion of this paper, one of the

reviewers pointed out several additional useful facts rele-

vant to this presentation. The PCA method being a bilin-

ear method, connects the data and the parameter spaces. The

properties of this connection in the presence of signal noise

has been described in in Paatero and Tapper (1993) and

Paatero and Hopke (2003) and it may open up some addi-

tional research opportunities.

3 Data sources

For this study, we use two separate sets of data.

The first set is peak lists derived from complete positive

ion mode spectra using a heuristic method providing a sepa-

ration of mass peaks into inorganic and organic components.

This minimal peak-list data set is produced on board the
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spacecraft by the instrument software and is transmitted to

ground regardless of telemetry constraints.

The instrument autonomously estimates mass line intensi-

ties for integer masses up to 300 Da. For higher values, an

additional 30 numbers describe integrals of mass line inter-

vals. For the mass range 301 to 400, intervals of 10 masses

are used. The next 401 to 600 gives intervals of 20 followed

by intervals of 50 up to mass 1000. The last two ranges are

masses from 1001–1200 and finally above 1200. For each

interval the total count of ions is given.

A further useful feature is introduced by a heuristic divi-

sion of masses into organic and inorganic components based

on an empirical rule commonly used in mass spectrometry

(F. Krüger, personal communication, 1992). The method is

based on the fact that hydrogen is a common element in or-

ganic compounds that has a mass slightly above 1 Da. This

causes the organic ions to generally have a total mass slightly

larger than the closest integer mass while the inorganic com-

pound tends to stay below this value.

The second set of data is complete positive ion mode mass

spectra, each containing 217 numbers of ion counts in bins

representing ion flight times.

This selection of data is motivated by the fact that it is

generated autonomously in the instrument and transmitted to

ground before the full spectrum. In addition a refined analysis

of the full spectrum could later support this approach in more

quantitative manner (Lehto, 2014).

Finally it is worth mentioning that a random projection

could be used on the full spectrum and serve as a compres-

sor or whitening step followed by the methods used in this

presentation. The advantage of this approach is that a cross

validation of the clustering results is possible between the

full spectra and the limited mass line driven representations.

Database

A database provides fast and easy access to the data. Three

different instrument models are accessible, namely the lab-

oratory reference model, the flight model at the comet and

a second laboratory reference model in France. More than

a hundred thousand spectra are available. A wide variety of

substances, both organic and inorganic, have been measured

in positive and negative ion modes.

For the purpose of this study we use data from the database

covering the substrates and minerals as shown in Table 1.

The samples studied in this presentation are listed in Ta-

ble 2. Calibration experiments validating the measurements

of organics are also described separately in Le Roy (2014).

4 Constructing maps

We use multivariate analysis to construct a relation between

observations and represent them projected on a map. As an

example of constructing a map, we take a subset of mea-

Table 1. Layout of minerals on substrates. In particular we use

substrate 496 to validate classification of four minerals and back-

ground.

SUB Minerals deposited

4AF Calcite Dolomite Sphalerite

4B0 Corundum Ilmenite Magnetite Richterite

41D Clinopyroxene

41E Orthopyroxene

41F Olivine

48B Plagioclase

420 Forsterite

421 Sulfide

422 Smectite

496 Albite Fayalite Hyperstene Orthoclase

sured peak-list data shown in Fig. 1 visually on a substrate.

A 5× 5 matrix of measurements has been made and they are

in the circle as shown in the figure. The layout of the TOF-

SIMS measurements, for this particular measurement matrix,

albite, in detail shown magnified in Fig. 2. The events marked

by ×:s are spectra assigned manually as mineral calibration

samples. The rest are regarded as “background”. The miner-

als are deposited as a droplet of suspension; thus, it is proba-

ble that the sample is not sharply distributed, as anticipated,

but rather as diffuse, spread-out contamination. This might

be analog to the dust collection at the comet where a size dis-

tribution of dust is encountered and statistically distributed

over the collector substrate. For convenience, the average of

eight peak-list spectra for albite is shown in Fig. 3.

There are other minerals deposited locally on the target as

well, measured using a similar matrix scan. At the bottom of

the substrate is a vertical set of 40 spectra in a region that

should be devoid of any mineral samples (see Fig. 1).

The final set of measurements in positive ion mode consist

of 25 spectra each for albite, fayalite, hypersthene and ortho-

clase to which a background reference of 40 spectra is added.

We use the peak lists of this set of data consisting of 300 mass

lines each of inorganic and organic ions. We make no fea-

ture identification of any kind. Our data therefore consists of

a 140× 600 matrix, 140 (= 25× 4+ 40) spectra each with

600 mass lines. From this we compute the principal compo-

nents. The score plot for the first two PCs is shown in Fig. 4.

As is evident from the 3-D presentation of the first three PCs

in Fig. 5, the clustering is not confined to any simple plane.

Each of the four minerals nicely separates into independent

clusters, despite their pairwise chemical similarity (see Ta-

ble 2).

It is instructive to look at the cross validation of a classifi-

cation analysis of the minerals without using the background

as a reference. Taking our four minerals, 4× 25 spectra, we

postulate that they consist of two groups. The first group

seems to originate from the visually observable mineral and

the second group seem to come from a background of the
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Table 2. Table showing the names, composition and substrates used for this investigation. Minerals are deposited on blank Ag or Au substrates

either by suspension (S), by pressing (P) or heterogeneous (H), see last column. ID refers to substrate ID fond in the COSIMA data base.

Fayalite is a heterogenous suspension. For calcite and dolomite, carbon was not measured. For richterite and smectite, hydrogen was not

measured; for magnetite, oxygen was measured as FeO. Details on the measured compositions and target preparations are discussed in

Krüger (2014).

Mineral Formula Measured Target ID Dep.

Albite NaAlSi2 O2 NaAlSi3O8 Ag blk 496 S

Calcite CaCO3 Ca3O3 Ag blk 4AF S

Corundum Al2O3 Al2O3 Ag blk 4B0 S

Clinopyroxene CaMgSi2O6 Mg0.9, Fe0.1, Al0.1Ca0.7Si1.8O6 Au blk 41D P

Dolomite (Ca, Mg)(CO3)2 (Ca3, Mg2.5, Fe0.5)O6 Ag blk 4AF S

Fayalite Fe2SiO4 Fe1.9Si1.0O4 Ag blk 496 S, H

Hyperstene (Mg, Fe)2Si2O6 (Mg0.91, Al0.06, Fe0.36)Si1.29O3 Ag blk 496 S

Ilmenite FeTiO3 (Fe0.8Mg0.2)TiO3 Ag blk 4B0 S

Magnetite Fe3O4 Fe2.5O4 (O measured as FeO) Ag blk 4B0 S

Nepheline (Na, K)AlSiO4 (Na0.6, Ca0.3), Al1Si1O4 Ag blk 497 S

Olivine Mg2SiO4 (Mg1.8, Fe0.2)Si1.0O4 Au blk 41F P

Orthopyroxene (Mg, Fe)2Si2O6 (Mg0.9, Fe0.1, Al0.1)Si1.9O6 Au blk 41E P

Orthoclase KAlSi3O (Na0.3, K0.6, Al1.0)Si3O8 Au blk 496 S

Plagioclase (Na, Ca)(Si, Al)4O8 (Na0.5, Ca0.5)(Si2.5, Al1.5)O8 Ag blk 48B P

Richterite Na[CaNaMg5][(OH)2[Si8O22]] Na0.9Al0.3Ca1.6(Mg4.7, Fe0.4)[Si8.2O24] Ag blk 4B0 S

Smectite Ca0.25(Mg, Fe)3((Si, Al)4O10)(OH)2nH2O Ca0.2(Mg0.1, Fe2.7)[(Si4.3, Al0.2)O12] Au blk 422 P

Forsterite Mg2SiO4 Mg2SiO4 Au blk 41F P

Sphalerite (Zn, Fe)S ZnS Ag blk 4AF S

Sulfide Fe2S2 FeS2 Au blk 421 P

Background Ag blk 496

Figure 3. Example of peak lists. This is the average of peak lists for albite spectra. Organic and inorganic components are separated.
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Figure 4. Score plot using the two first PCA components. The

events represent the four minerals and the background for sub-

strate SUB496. The scores from peak lists and RP results are es-

sentially identical.

Figure 5. Score plot using the three first PCA components. The

events represent the four minerals and the background for sub-

strate 496.

“not contaminated” substrate. For this scenario applied to the

complete set of 19 minerals, we arrive at a picture (Fig. 6).

The Cohen κ ∼ 0.4± 0.03 clearly indicates that we do not

obtain a correct interpretation of the ingoing data set (Co-

hen, 1960). (An observation is assigned a value between 0

and 1, indicating the probability of correct identification.)

The Cohen κ coefficient shows a far too low probability for

a correct classification. When including the background ref-

erence measurements made separately, the results are much

improved as can be seen in Fig. 7.

Now κ becomes 0.88± 0.03 and the multivariate approach

is valid. Binary mixtures are a little easier to classify and only

Figure 6. Cross validation accuracies showing the Cohen κ value

computed for the data projected to a 100 dimensional space using

random projections. For this case, background is regarded as those

visually identified spectra surrounding measured minerals, marked

as “environment”.

Figure 7. Cross validation accuracies showing the Cohen κ value

computed for the data projected to a 100 dimensional space using

random projections. For this case, a separate reference background

measurement is made. When included the Cohen κ ∼ 0.88± 0.04.

one or two spectra out of a hundred are assigned an incorrect

group. The background effectively serves as an additional

constraint, which directly improves the overall performance.

A very similar result, as far as peak lists are concerned, can

be achieved at much lower computational effort by first com-

puting a random projection of the spectrum (either the full

spectrum with 105 bins or the peak lists with some 600 peaks)

and then continue with PCA. Because the RP reduces the

dimensionality greatly, the PCA becomes much faster. The

speed depends primarily on the dimensionality. The reduc-

tion of it therefore speeds up the repetitive computations re-

quired for the cross validation. The process is difficult when

www.geosci-instrum-method-data-syst.net/4/45/2015/ Geosci. Instrum. Method. Data Syst., 4, 45–56, 2015
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full spectra are considered because of the high dimensional-

ity.

The selection of random number sequences used in the RP

has a small and insignificant influence on the results, as long

as the same projection matrix is used for the entire data set

studied. The transformation matrix establishes an approxi-

mately orthonormal coordinate system in which the data is

represented. The clustering can be directly computed from

the RP projected data set but alternatively also be made by

other methods, which we do not discuss here any further.

We finally estimate the number of valid signal carrying

components using the method of Nadler (2008). For the de-

scribed 4+ 1 classification of 140 spectra we get ∼ 60 PC

components larger than the noise. This indicates that we need

to use this number of degrees of freedom to catch all phenom-

ena hidden in the data. Some information can already be ex-

tracted at lower dimensionalities. A dimensionality of ∼ 10

is already sufficient to get the Cohen κ estimates to within

one % of what the full data shows. This can easily be under-

stood by realizing the speed of decline of the eigenvalues in

the principal component estimate.

Because the RP is a linear method, it is natural that it

is compatible with principal component analysis. It can be

shown that the results of a PCA of a RP data set is approx-

imately the same as the result computed directly (Seitola

et al., 2014). The results are very similar as long as the di-

mensionality of the RP is sufficient to contain the informa-

tion of the original data.

Classification

Establishing classification in a lower dimension is much less

costly than directly doing it in a data volume of high dimen-

sionality. Classification can in many cases be achieved using

only a small number of PC components. In the general case

we need to include a number large enough to represent all

aspects of the data.

The RP technique makes it possible to compute a full cross

validation of the classification of a large data set. We can eas-

ily in a few minutes establish the classification of the data set

consisting of peak-list spectra from 19 minerals and 40 back-

ground spectra. We process a total of about 880 peak lists.

The data matrix is 880× 600 numbers. It is important to note

that for this relatively large number of spectra and the like-

wise many parameters (peaks) the PCA in general is quite

noisy. Therefore it is essential to ask how many components

are actually meaningful and exceeding a noise background.

Applying Nadler (2008) to our data set again shows

that we have about 90 meaningful components when com-

puted from the peak-list data directly from the set of over

800 events. Therefore the maximum dimensionality needed

for the RP would be of that same order of magnitude. The

number of components required scales weakly with the num-

ber of spectra and parameters in the data. Analysing the

previously discussed smaller data set of 140 spectra for

four minerals and a background set, would require about

50 components and the same subset when projected to 100-

dimension reduces the set to about 25. A small variation in

the numbers is present and depends on details in the be-

haviour of the least significant components responsible for

information at the 10−3 level of the total variance.

Using the RP for the purpose of performing the full cross

validation of the data set classification is rewarding. The RP

is able to pick out the discriminating features in a very ben-

eficial manner. Using different projection matrices makes it

possible to apply the methods multiple times and establish

proper error estimates (sensitivity analysis).

5 Results

We have developed a technique of classifying measured

TOF-SIMS mass spectra from the COSIMA instrument us-

ing multivariate statistical analysis of data projected by ran-

dom projections into a lower dimensional space. A man-

ual visual inspection and identification of spectra originating

from mineral or background does not correctly identify the

class memberships, while the task is performed well by the

methods presented above. This fact demonstrates the useful-

ness of our approach.

The Cohen κ probability of correct classification varies

from useless to reasonable (0.2–0.8) when using manual vi-

sual identification to derive class memberships as compared

to almost complete success when using an additional refer-

ence background measurement. These results show the im-

portance of measuring several reference spectra prior to ex-

posing targets for dust. It is found that even peak lists are

sufficient to determine class membership to a high degree of

confidence.

We have found that using the random projection method

of reducing the data dimensionality, classification results are

obtained at a cross validation level very similar to what can

be achieved using the full spectrum data set. The variation

in scores is smaller when utilizing the random projection

method, than when using full spectra.

The results of classification and cross validating four min-

erals and a background, is shown in Table 3. The classifica-

tion is in this case computed from peak-list data, on which

we optionally have applied random projections to validate

the computational method. The variation in classification er-

rors when changing the random projection dimensionality is

of the order of 3 % as estimated by the Cohen κ . The vari-

ability in the κ estimate between individual cross validation

runs when keeping the dimensionality fixed is of the order of

0.5 %.

The random projection method also makes it possible to

compute the classification directly from full size spectra (see

Figs. 8 and 9). From a spectrum truncated to 100 000 bins,

we reduce the dimensionality for instance to 300 to catch

even subtle features. This data set consists of 113 spectra. We
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Table 3. Cross validation results for four minerals and background

residing on the same substrate SUB-496. Classification accuracy

shown at bottom computed from the average of several cross val-

idations. Two albite spectra are incorrectly classified as fayalite and

one orthoclase spectrum as albite, shown for one particular realiza-

tion.

Alb Fay Hyp Ort Bak

Albite 23 2 0 0 0

Fayalite 0 25 0 0 0

Hypersten 0 0 25 0 0

Orthoclase 1 0 0 24 0

Background 0 0 0 0 40

sACC 0.939 0.962 1.00 0.980 1.00

Figure 8. Score plot using the two first PCA components from RP

projection of full spectra. The events represent the four minerals and

the background for substrate 496. The circled region is magnified in

Fig. 9.

compute the principal components from the 300-dimensional

data and from the full spectra by limiting the number of com-

ponents. As the PCA method is sensitive to outliers and large

dimensions, the expected match between the two results,

shows resemblance but not a complete match. The full spec-

tra provide a much larger spread in scores than the RP result

does. Also more details and repeated features are retained in

the random projection results. An example is shown in Fig. 8

which should be compared to Figs. 4 and 5 above. The im-

proved quality of the PCA from the projected full spectra is

demonstrated by the enlarged rightmost cluster of points in

Fig. 8 shown in Fig. 9.

A similar result can be obtained for the measurements

treated as pairs of a binary mixture of mineral on back-

ground. The results for that case are very good with few er-

rors in classification. A more demanding case is to classify

all 19 minerals with the background. When applying the ran-

Figure 9. Score plot using the two first PCA components from RP

projection of full spectra. The region shown is zooming into the

cluster at far right in Fig. 8.

dom projection method to the data, the task is solved quickly

and cleanly. Comparing the classification solution from the

direct method operating on the full set of data and the case

using the RP gives similar results. The Cohen κ is similar to

within a few % and the classification results essentially iden-

tical. The compute time is one to several orders of magnitude

lower with the RP providing results in only a few minutes.

Furthermore the RP seems to yield a computationally more

stable solution.

The classification and cross validation for the full data

set using the RP method for computations is shown in Ta-

ble 4. The number of PC values exceeding the noise level is

about 90 for the peak-list data set. Decreasing the RP dimen-

sion to correspond to the data set in Table 4 only slightly

changes the κ , decreasing it by less than 1 %. The corre-

sponding score plot for the first two principal components

is shown in Fig. 10. It represents the heart of the instrument

performance. The shape is due to the fact that we view a point

set (spectra) distributed on a unit sphere. We assume that we

will be able to distinguish between the measured minerals

quite well.

6 Conclusions

We have successfully applied the method of random projec-

tions to the classification of a set of TOF-SIMS spectra com-

plete and alternatively represented by peak lists derived from

full spectra. The reduced data set has been used directly or by

first applying a random projection. For both cases we obtain

very similar results. The computational cost and usefulness

of the latter being superior.
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Table 4. Cross validation results for all 19 minerals and background.

alb cal cor cpx dol fay hyp ilm mag nep oli opx ort pla ric sfo sme sph sul bak

alb 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cal 0 22 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

cor 2 0 12 0 0 0 0 10 1 0 0 0 0 0 0 0 0 0 0 0

cpx 0 0 0 18 0 0 0 0 1 0 2 13 0 0 1 0 0 1 2 0

dol 0 0 0 0 20 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0

fay 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

hyp 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

ilm 0 0 6 0 0 0 0 55 2 0 0 0 0 0 2 0 0 0 0 0

mag 0 0 6 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0

nep 3 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0

oli 0 0 0 4 0 0 0 0 0 0 60 1 0 0 0 0 0 0 0 0

opx 0 0 1 1 0 1 1 0 0 0 9 43 0 0 0 1 3 0 1 0

ort 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0

pla 0 0 0 0 0 0 0 0 0 0 0 0 2 26 0 0 0 0 0 0

ric 0 0 1 0 2 0 0 0 9 0 0 0 0 0 51 0 0 0 0 2

sfo 0 1 0 0 0 0 1 1 0 0 0 2 0 0 1 36 0 0 0 0

sme 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0

spa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0

sul 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 47 0

bak 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

Figure 10. Classification of 19 minerals and background of a sub-

strate. The PC components show only the most pronounced fea-

tures. The classification matrix is shown in Table 4. Each sample is

represented by a marker. The colours and markers represent indi-

vidual classes. The elements are the same as in Table 4. More quan-

titative details are seen only when rotating a 3-D image of suitably

chosen principal components.

The RP compressed data is an unbiased and a very robust

tool to acquire information that is hidden in the data. This

technique opens up a very powerful and general way of find-

ing global taxonomy of observations.

The instrument provides us a peak list at very low teleme-

try cost. This data is shown to be sufficient for several tasks

of discriminating between minerals. This makes the method

well suited to make assessments on measurement strategies

during the scientific phase of the mission.

Future work will include deriving peak lists using

Bayesian methods to establish statistically strict quantitative

information about spectra. This reduced set can then be an-

alyzed by the method described here to achieve even better

results.
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