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Abstract. Emission rates of greenhouse gases (GHGs) en-

tering into the atmosphere can be inferred using mathemati-

cal inverse approaches that combine observations from a net-

work of stations with forward atmospheric transport models.

Some locations for collecting observations are better than

others for constraining GHG emissions through the inver-

sion, but the best locations for the inversion may be inacces-

sible or limited by economic and other non-scientific factors.

We present a method to design an optimal GHG observing

network in the presence of multiple objectives that may be

in conflict with each other. As a demonstration, we use our

method to design a prototype network of six stations to mon-

itor summertime emissions in California of the potent GHG

1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a

multiobjective genetic algorithm to evolve network configu-

rations that seek to jointly maximize the scientific accuracy

of the inferred HFC-134a emissions and minimize the as-

sociated costs of making the measurements. The genetic al-

gorithm effectively determines a set of “optimal” observing

networks for HFC-134a that satisfy both objectives (i.e., the

Pareto frontier). The Pareto frontier is convex, and clearly

shows the tradeoffs between performance and cost, and the

diminishing returns in trading one for the other. Without dif-

ficulty, our method can be extended to design optimal net-

works to monitor two or more GHGs with different emis-

sions patterns, or to incorporate other objectives and con-

straints that are important in the practical design of atmo-

spheric monitoring networks.

1 Introduction

Greenhouse gas (GHG) emissions are difficult to measure

directly, which has led to the development of two indirect

methods to estimate their emission rates. “Bottom-up” meth-

ods stitch together data on economic activity, fuel consump-

tion, emission factors, and other disparate sources to form

GHG emissions inventories (e.g., EDGAR, 2009). Alterna-

tively, “top-down” methods estimate the emissions by com-

bining measurements of GHG concentrations in the atmo-

sphere from a network of stations with information about the

atmospheric transport of the gases from their source region

to the measurement location (e.g., Weiss and Prinn, 2011;

Nisbet and Weiss, 2010). Bottom-up and top-down methods

are both expected to play important roles in verifying GHG

emissions policies at the state, national, and international lev-

els (e.g., Ciais et al., 2010, 2014; National Research Coun-

cil, 2010; Jonietz et al., 2011; Prinn et al., 2011; Fischer and

Jeong, 2013).

The viability of using a top-down approach to constrain

GHG emissions hinges on the network of observing stations.

Measurements from the network are compared objectively to

simulations from an atmospheric transport model using in-

verse methods (e.g., Prinn, 2000; Enting, 2000). If the ob-

servations contain useful information, and the atmospheric

model provides an accurate representation of transport, in-

verse methods yield estimates of emissions that give the best

agreement between the simulations and observations. Inverse

methods often also provide an estimate of the uncertainties in
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the inferred emissions. Various details of the observing net-

work (e.g., station location, instrument precision, and mea-

surement frequency) can profoundly impact the quality of

the inversion. For example, if the stations in a GHG observ-

ing network are all located upwind of an emitting region of

interest, the inversion algorithm will not provide any infor-

mation on the emissions for that region.

Optimization techniques can be used to strategically place

stations and select sampling strategies in a network, in order

to maximize the information obtained for top-down inver-

sion systems. Quantitative methods for designing “optimal”

observing networks have been described for inferring car-

bon dioxide (CO2) emissions, improving weather forecasts,

collecting oceanographic data, and monitoring air quality

and climate change (e.g., Barth and Wunsch, 1990; Morss

et al., 2001; Patra and Maksyutov, 2002; Gloor et al., 2000;

Carmichael et al., 2008; Stuart et al., 2007; Mauger et al.,

2013). Ziehn et al. (2014) and Nickless et al. (2015) illustrate

recent applications of using optimization methods to design

GHG observing networks. Without requiring actual obser-

vations, so-called observing system simulation experiments

(e.g., Masutani et al., 2010) can be used to create synthetic

observations and assess the scientific value of adding new

observations at various locations and times.

Network optimization studies typically construct and op-

timize a single objective function, which is usually related

to the performance of the observing network (e.g., Mauger

et al., 2013; Ziehn et al., 2014; Nickless et al., 2015). Al-

though single objective optimization problems can consider

several aggregated quantities, they still reduce the problem

down to a single objective. Real-world observing networks,

however, are generally faced with multiple, potentially con-

flicting objectives. The networks may measure more than

one quantity, and there can be different strategies to opti-

mize the separate quantities. For example, the problem of

adding a new observing station to the Advanced Global At-

mospheric Gases Experiment network (AGAGE, Prinn et al.,

2000) inherently has multiple objectives. AGAGE measures

a large suite of GHGs, including 1,1,1,2-tetrafluoroethane

(CH2FCF3, HFC-134a), and uses these observations to esti-

mate GHG emissions on both global and regional scales. Be-

cause many trace gases measured by AGAGE have distinct

emissions patterns, it is not possible, in general and particu-

larly at the regional level, to find a single location for a new

station that will be best for monitoring all of the gases.

Economic and operational factors also heavily influence

the design of observing networks (Morss et al., 2005). With-

out cost or instrumentation constraints, the overall goal of

network design is to optimize the performance of the top-

down network. However, some locations that optimize per-

formance may be remote and may require new construc-

tion and infrastructure, which rapidly drive up costs. Al-

ternatively, existing observing locations could be leveraged

to make new measurements and keep costs low (e.g., us-

ing the AGAGE network), but these locations could be sub-

optimal for performance. Thus, there exists a natural tradeoff

between performance and cost in optimal network design.

Quantitative analyses of this tradeoff are needed to design

practical GHG observing networks.

We apply a multiobjective genetic algorithm to quantify

and optimize the performance-cost tradeoff curve for a pro-

totypical top-down GHG observing network. Multiobjective

optimization is a powerful generalization of standard, single

objective optimization methods (Schaffer, 1985; Kursawe,

1991; Fonseca and Fleming, 1993; Zitzler and Thiele, 1999).

Solutions to multiobjective problems are represented by a set

of optimal points known as a Pareto frontier (Pareto, 1896),

rather than a single point best case. Multiobjective meth-

ods have been used to solve many complex design and op-

timization problems (e.g., Jia et al., 2009; Jourdan et al.,

2009; Judy et al., 2009; Kasprzyk et al., 2009), but they

have been applied only sparingly to environmental monitor-

ing (e.g., Trujillo-Ventura and Hugh Ellis, 1991; Sarigiannis

and Saisana, 2008; Carnevale et al., 2012).

Extending the work of Yver et al. (2013), we design opti-

mal networks to monitor HFC-134a emissions in California

by combining the following three elements: forward atmo-

spheric transport simulations of HFC-134a (see Sect. 2), top-

down estimates of HFC-134a emissions using a Bayesian in-

version scheme (see Sect. 3), and multiobjective optimization

of network performance and cost using genetic algorithms

(see Sect. 4). We use this framework to quantify the perfor-

mance and cost tradeoffs between adding measurement sta-

tions at new locations in California vs. using existing stations

designed for other purposes.

2 Forward atmospheric simulations

2.1 Model configuration

The forward atmospheric simulations used in this study were

conducted as part of an effort to constrain HFC-134a emis-

sions in California using atmospheric measurements and an

inverse method (Yver et al., 2011, 2013). The network design

methods presented and demonstrated here require only an

archive of simulation output, not additional simulations. This

archive contains time series of HFC-134a simulated through-

out California over a 90-day period with an output frequency

of 2 h. The HFC-134a was emitted using an emissions inven-

tory and tagged by the region it originated from.

The archive was constructed using version 3.4 of the

Weather Research and Forecasting model with coupled

chemistry (WRF-Chem) (Grell et al., 2005), which uses the

Advanced Research WRF dynamical core (Skamarock et al.,

2005; Skamarock and Klemp, 2007). The model configura-

tion for our specific archive had 129× 159× 27 grid boxes in

the longitudinal, latitudinal, and vertical directions, respec-

tively, and did not use grid nesting. The domain was centered

over the western United States using a horizontal resolution
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of 12 km (see Fig. 1). Lateral boundary conditions were spec-

ified using ERA-Interim reanalysis data available from the

European Centre for Medium Range Weather Forecasting,

and the simulations were run over the period from May 2010

to the end of July 2010. All of the subsequent analysis utilizes

the simulations from the second vertical level in WRF-Chem,

which lies about 50 m above the surface. Air masses from this

level contain useful information about emissions from distant

regions and so are well suited for designing a network to con-

strain emissions through a top-down approach.

The HFC-134a time series in the archive were generated

using version 4.1 of the gridded emissions inventory from

EDGAR (EDGAR, 2009). The emissions, which are shown

on the right hand side in Fig. 1, emit 8.6 Gg yr−1 of HFC-

134a into California. To constrain the emissions through

inverse modeling, 15 spatially separated HFC-134a tracers

were emitted, tagged, and transported in WRF-Chem. These

tracers were emitted from different regions based on the

air basins defined by the California Air Resources Board

(CARB). These basins, which are shown and numbered in

the left hand side in Fig. 1, divide California into individual

regions based on meteorological and air quality characteris-

tics. A separate tracer for HFC-134a emitted from outside of

California is also included.

2.2 Synthetic HFC-134a observations

Candidate sites for new observing stations are assessed by

creating synthetic observations of HFC-134a from the for-

ward model simulations and then using the observations in

the Bayesian inversion scheme described in Sect. 3. The sym-

bols ξm and ξo are used to represent time series of HFC-134a

mole fractions at a candidate site from the forward model

and synthetic observations, respectively. Hereafter, the terms

“observations” and “synthetic observations” are used inter-

changeably, even though all of the observations are based on

WRF-Chem simulations and not on actual measurements.

The background air advected into our simulation domain

from the west (see Fig. 1) is typically well mixed in terms

of HFC-134a, so we ignore the background levels and cre-

ate synthetic observations of the enhancements of HFC-134a

above the background that result from the prescribed emis-

sions. For reference, background mole fractions of HFC-

134a measured at the remote coastal site of Trinidad Head,

California, ranged between 50 and 65 parts per trillion (ppt)

over the period 2008–2010 (Prinn et al., 2000). The removal

of the background level from our analysis has no effect on

our results.

In order to produce synthetic observations that are reason-

ably consistent with actual observations, we first uniformly

scale all of the simulated HFC-134a mole fractions using

ξ∗m = 0.7ξm, (1)

where ξ∗m represents the time series of the scaled modeled

mole fraction enhancements at a candidate site. The mole

fractions are reduced because version 4.1 of the EDGAR in-

ventory overestimates HFC-134a emissions in California by

about a factor of 1.4 (Yver et al., 2011). Noisy synthetic ob-

servations are then generated using the expression

ξo =

{
ξ∗m+ ρε if ε ≥−ξ∗m/ρ

ξ∗m if ε <−ξ∗m/ρ
, (2)

where ξo is the time series of “observed” mole fraction en-

hancements at a candidate site, ε is a set of random num-

bers drawn from a standard Gaussian distribution (one ran-

dom number per datum in the time series), and ρ is the am-

plitude of the noise. The conditions in the expression apply

to individual points in the time series, but these are not ex-

plicitly indexed to keep the notation compact. A noise am-

plitude of ρ= 20 ppt is prescribed that is constant in space

and time, and the noise is spatially uncorrelated by drawing

different random numbers for ε at different locations using

site-specific, unique grid cell integers (see Eq. 16) as input

seeds to a random number generator.

The purpose of the noise is to inject uncertainty into the

problem that can arise from a variety of factors, including im-

precise measurements, scale representation errors, model im-

perfections, and other sources. Depending upon the relative

magnitude of the noise amplitude (ρ) to the scaled mole frac-

tions (ξ∗m), the piecewise nature of Eq. (2) creates synthetic

observations with different characteristics. For cases with rel-

atively small noise levels (i.e., ρ� ξ∗m), most of the random

numbers drawn from ε satisfy the upper condition. This re-

sults in observation–model residuals that are approximately

normally distributed, and values for ξo that are generally less

than ξm because of Eq. (1). For cases with relatively large

noise levels (i.e., ρ� ξ∗m), many of the random numbers in

ε satisfy the lower condition, which filters out the negative

values (but keeps the positive values). The lower condition

therefore causes the distribution of observation–model resid-

uals to be highly non-Gaussian and skewed toward positive

values, and leads to situations in which ξo can be greater than

ξm.

Figure 2 compares examples of simulated and “observed”

time series of HFC-134a at Walnut Grove and Trinidad Head

using Eqs. (1) and (2). These sites are located at the south-

ern edge of basin 3 and along the coast in basin 2, as shown

in Fig. 1. The time series are displayed using a sampling

frequency of 1 sample day−1 to clearly show the model and

observation differences, though higher frequency sampling

strategies are also tested and evaluated (see Eq. 17). For the

reasons noted in the previous paragraph, the model tends

to overestimate the synthetic observations at Walnut Grove

because the noise amplitude is relatively small at that lo-

cation (i.e., ρ= 20 ppt is less than ξ∗m≈ 100 ppt). Further-

more, the model underestimates the synthetic observations

at Trinidad Head because the noise amplitude is relatively

large at that coastal location (i.e., ρ= 20 ppt is greater than

ξ∗m≈ 10 ppt). The synthetic observations in the figure also

appear qualitatively similar to actual observational time se-
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Figure 1. Both figures show the spatial domain and model grid used for the simulations of HFC-134a using WRF-Chem. The figure on the

left shows the 15 regions used for tagging the HFC-134a tracers (regions 1–14 in California, 15 outside of California), and the locations

of seven existing measurement sites (white dots). The figure on the right shows the spatial distribution of HFC-134a emissions from the

version 4.1 EDGAR inventory on the WRF-Chem model grid.
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Figure 2. The figure shows the HFC-134a time series from the forward model simulations (black lines, ξm) and synthetic observations (red

lines, ξo) at Walnut Grove (upper) and Trinidad Head (lower). Synthetic observations are generated using Eqs. (1) and (2). The time series

are displayed using 1 sample day−1 to clearly show the observation–model differences, though higher frequency sampling strategies are

available and tested.

ries (Yver et al., 2011) because they exhibit localized high-

concentration events that are not captured by the model and

EDGAR emissions.

These synthetic observations thus provide a realistic chal-

lenge for inversion algorithms. The skewed, non-Gaussian

component reflects model structural errors or systematic bi-

ases that can affect the source inversion (e.g., Baker et al.,

2006) and, consequently, the design of the observing net-

work. The presence of these errors implies that there is no

emission configuration in our setup that can simulate HFC-

134a to perfectly match the synthetic observations. Addi-

tional terms could be included in the inversion method in

Sect. 3 to estimate and account for biases, but these consider-

ations are outside of the scope of this work and do not impact

the network optimization methodology that is the main focus

of this report. Moreover, because the “true” emissions values

corresponding to the observations are known, the impact of

these errors on the performance of our inversion algorithm
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can be verified. As shown later (Sect. 5.2), these errors have

a small effect because our inversion algorithm successfully

retrieves both the true emissions and prescribed noise level.

3 Bayesian inversion

The surface emissions of HFC-134a (model inputs) are in-

ferred by solving an inverse problem that minimizes the dif-

ferences between observed and simulated mole fractions in

the atmosphere (model outputs). The target “observations”

are taken as the values from Eq. (2) (e.g., the red lines in

Fig. 2), while the simulations are the values produced by the

model and unscaled EDGAR emissions (e.g., the black lines

in Fig. 2). Differences between these values are used to es-

timate individual scaling factors (or weights) that apply to

the original emissions from the 15 spatial regions shown in

Fig. 1.

Due to the linear relationship between emission levels and

atmospheric mole fractions, the net time series of HFC-134a

simulated by the model is a weighted sum of the time series

of the individual HFC-134a tracers emitted and tagged from

the separate regions. This relationship is expressed as

ξm = Xmw, (3)

where the boldface notation is used to denote vectors and

matrices. The symbol ξm is a column vector containing the

data points in the net time series, Xm is a matrix with individ-

ual columns containing the time series of the corresponding

15 tagged tracers, and w is a column vector of scaling factors

(weights) for emissions from the 15 regions. The symbol ξo,

which is used in expressions below, is similarly defined as

the vector of the time series of synthetic observations. Equa-

tion (3) is applicable to the time series at a single site or, by

concatenating vectors together, at many locations in an ob-

serving network.

The goal of the inversion is to determine the values of the

emissions weights, w, that minimize differences between the

model ξm and observations ξo. Because there is uncertainty

in these quantities, a probabilistic Bayesian approach is

adopted that estimates the probability distribution of weights

by incorporating uncertainty (i.e., see the terms α and β in-

troduced below). Bayesian inversion schemes normally sup-

ply “prior” emissions up front (e.g., Patra and Maksyu-

tov, 2002; Gurney et al., 2003; Thompson et al., 2011), so

that the algorithm is constrained when the observations are

non-informative. The resulting “posterior” emissions can be

highly sensitive to the prescribed prior emissions. To circum-

vent this issue, we employ an iterative Bayesian technique

known as evidence approximation (MacKay, 1992; Bishop,

2007). Evidence approximation, which is described in more

detail at the end of this section, uses the data to estimate the

values of distribution parameters that are usually prescribed

in the inversion, resulting in posterior emissions that are in-

sensitive to the priors.

Given observations of HFC-134a, the probability distribu-

tion of weights for the emissions is obtained from Bayes’

rule,

p
(
w|ξo

)
∝ p

(
ξo|w

)
p(w), (4)

where p(a|b) denotes the conditional probability of a given

b, p(w) is the prior distribution for the emission weights,

p(ξo|w) is the likelihood that the simulation matches the ob-

servations for a given set of emission weights, and p(w|ξo)

is the posterior distribution of the weights.

The prior distribution of weights for the emissions is mod-

eled as

p(w)=N (w|m0,S0) , (5)

where N (w|m0, S0) denotes a normal distribution over vari-

able w with a mean of m0 and covariance of S0. The

prior distribution is further modified by setting m0= 1 and

S0=α
−1 I, though these settings do not lead to any loss in

generality. The latter setting yields prior emissions uncer-

tainties that are independent between the regions and have

variances of α−1. The range for α allows for prior emissions

distributions that are infinitely wide or narrow, or anything

in between (0<α<∞). The value of α is not prescribed, it

is determined from the data using evidence approximation as

described below.

For differences between simulated and observed mole

fractions that are normally distributed, the likelihood func-

tion is given by the product of probabilities,

p
(
ξo|w

)
=

Nd∏
i=1

N
(
ξo,i |ξm,i,β

−1
)
, (6)

where the product is over Nd data points in the time se-

ries at all of the stations, and β represents observation and

model uncertainty (i.e., β−1 is the variance). Because the

noise comes from Eq. (2), there is a relationship between β

and ε ρ. Instead of prescribing β from this relationship, we

also use evidence approximation to estimate the value of β

directly from the data.

Using these forms for the prior distribution and likelihood

function, the posterior distribution of weights for the emis-

sions is also Gaussian,

p
(
w|ξo

)
=N (w|mN ,SN ) , (7)

with a mean value (mN ) and covariance (SN ) given by

mN = SN

(
α1+βXTmξo

)
, (8)

S−1
N = αI+βXTmXm. (9)

Equations (8) and (9) constitute the solution to the Bayesian

inversion problem for the emissions of HFC-134a. The poste-

rior emissions, however, still require uncertainty information

about the prior fluxes (α) and observation–model noise (β).
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Evidence approximation is used to estimate α and β from

the simulations and synthetic observations. A detailed deriva-

tion of the method is given in MacKay (1992) and Bishop

(2007). The method is iterative, starting with initial guesses

for α and β. These are used to calculate mN and SN from

Eqs. (8) and (9), and to calculate the quantity

γ =

Nr∑
j=1

βλj

α+βλj
, (10)

where Nr is the number of regions (15 for our problem) and

the λj are the eigenvalues of XTm Xm. Equation (10) provides

a measure of the number of regions with constrained emis-

sions. In the limit of infinitely wide prior emissions and nar-

row observation–model uncertainties (α→ 0 and β→∞),

all of the regions can be constrained and γ =Nr. For in-

finitely narrow prior emissions and wide observation–model

uncertainties (α→∞ and β→ 0), none of the regions can

be constrained and γ = 0. After computing γ , the values for

α and β are updated using

α =
γ

mTNmN
(11)

and

β−1
=

1T
(
ξo−XmmN

)
Nd− γ

, (12)

where the differences between the observed and simulated

mole fractions use the posterior emission weights from the

current iteration. The updated values for α and β are then

used to re-calculate mN , SN , and γ . The process is re-

peated until convergence is achieved. Note that the eigen-

values λj only have to be computed once at the beginning of

the scheme. For convergence, we iterate through the proce-

dure until neither α nor β change by more than 5 %, which

usually requires only a few iterations. Using this procedure,

the uncertainty in the prior emissions (α) and observation–

model noise (β) are discovered from the data, and converge

on values that are close to their true values, given the skewed,

non-Gaussian nature of Eq. (2).

4 Multiobjective optimization for network design

A primary goal of network design problems is to determine

the best locations and sampling strategies for a collection of

instruments or sensors that optimize a given set of objec-

tives. In designing a wireless communications network, for

example, the objectives may be to achieve complete cover-

age over a given area using a limited number of transmitters

(e.g., Jia et al., 2009). Network design problems often involve

two or more conflicting objectives that need to be optimized

simultaneously (e.g., cost and performance), which falls into

a class of problems known as multiobjective optimization.

Multiobjective optimization problems are formulated

mathematically as

minimize
z

[
f1(z),f2(z), . . .,fn(z)

]
(n≥ 2)

subject to {g(z)= 0,h(z)≤ 0,z` ≤ z ≤ zu} , (13)

where z represents design parameters that need to be opti-

mized (e.g., measurement locations) and the fi(z) are the

multiple objectives of interest (e.g., inversion errors and mea-

surement costs). A set of constraints can be applied to the

design parameters, including lower and upper bounds that

are placed on the parameter values (z` and zu), and linear or

non-linear equality or inequality constraints that must be sat-

isfied (g(z)= 0 and h(z)≤ 0). There is usually not a single

set of z that minimizes all of the objectives in a multiobjec-

tive problem. Rather, there are multiple sets of optimal points

known as a Pareto frontier. The points along a Pareto frontier

are optimal in the sense that moving to other locations in the

design parameter space may improve one or more objectives,

but will worsen at least one of the other objectives and lead to

an overall less desirable solution (Pareto, 1896). Conversely,

for all design parameters that satisfy the constraints but that

are not on the Pareto frontier, there exist other points in the

design space that improve one or more of the objectives.

4.1 Simple multiobjective example

To better illustrate the concept of multiobjective optimization

and the Pareto frontier, consider the simple example given

below and shown in Fig. 3:

minimize
z1,z2

[
f1 = (z1− 0.35)2+ (z2− 0.35)2,

f2 = (z1− 0.65)2+ (z2− 0.65)2

]
(14)

subject to 0≤ z1 ≤ 1,0≤ z2 ≤ 1.

The goal of this problem is to determine the design points (z1,

z2) that minimize the two quadratic functions f1 and f2, sub-

ject to the constraint that z1 and z2 are bounded by 0 and 1.

As shown in the left and center panels of Fig. 3, there is not a

single design point (z1, z2) that minimizes both functions si-

multaneously. By inspecting Eq. (14), it is easy to see that f1

is minimized at point (0.35, 0.35), which yields function val-

ues of f1= 0.0 and f2= 0.18. In contrast, f2 is minimized at

point (0.65, 0.65), which yields function values of f1= 0.18

and f2= 0.0. Between these cases exist other design points

that are also considered to be “optimal” because they mini-

mize preferred combinations of f1 and f2. The Pareto fron-

tier is the set of function values plotted in the objective space

for the optimal design points.

The right panel in Fig. 3 displays the solution to Eq. (14).

The light blue shaded region shows non-optimal values of the

objective functions for feasible combinations of z1 and z2,

while the red line along the lower left edge shows the Pareto

frontier. For this simple example, an analytical expression for

the Pareto frontier can be derived by setting z1= z2 based on
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Figure 3. The figures illustrate the simple multiobjective problem described in Sect. 4.1. The figures on the left and in the middle show

contours and shadings of the two quadratic objective functions f1 and f2 as a function of design variables z1 and z2 (low and high values are

indicated by light and dark shades, respectively). The figure on the right shows non-optimal solutions (light blue shaded region) and optimal

points along the Pareto frontier (red line) for the problem given in Eq. (14).

the symmetry of the problem, and then eliminating z1 be-

tween f1 and f2. This leads to the following expression for

the Pareto frontier:

f2 = 2

(√
f1

2
− 0.3

)2

for 0≤ f1 ≤ 0.18. (15)

The points along the Pareto frontier are clearly optimal be-

cause there is no way to improve the combination of f1 and

f2 by moving to other points in the design space.

4.2 Designing a multiobjective HFC-134a observing

network

The goal for the multiobjective HFC-134a network design

demonstration problem is to select “optimal” locations for

placing six observing stations to monitor summertime emis-

sions of HFC-134a from California. Optimal locations are

determined by jointly maximizing the scientific performance

and minimizing the measurement costs of the observing net-

work. Seven “existing sites” are available that have related

measurement capabilities. Including any of these existing

sites in the network will reduce the costs, but may decrease

the performance. This section provides further mathematical

details of the optimization problem (design variables, search

space, and objectives) and describes the numerical algorithm

used to solve the problem. Given the size and complexity of

the problem, and the nature of the numerical optimization al-

gorithm, it is important to keep in mind that the resulting ob-

serving networks are not global optimal solutions. Instead,

they represent plausible local optimal designs that are sig-

nificantly better than a random selection of sites. Moreover,

we also caution against using these designs as a basis for

a real-world HFC-134a observing network, as many factors

were not included in this demonstration (e.g., biases in WRF-

Chem transport, inter-seasonal variations of HFC-134a, year-

to-year changes in meteorology and emissions, and terms not

represented in the idealized cost model).

4.2.1 Design variables and search space

Two types of design variables are considered for our HFC-

134a observing network test problem. We consider different

locations for placing the six observing stations (z1, . . . , z6)

and alternate frequencies for making measurements at the

sites (z7). The eligible locations for the observing network

(also referred to as candidate sites) are taken as the discrete

grid boxes in the WRF-Chem domain that fall within Cali-

fornia, excluding offshore sites (e.g., Catalina Island). At the

spatial resolution used for the WRF-Chem model runs, there

are 2921 eligible sites (see Fig. 1). The locations of candidate

sites are inherently two dimensional (latitude and longitude),

but we encode them as one-dimensional integer-valued de-

sign variables:

z1−6 ∈ {1,2, . . .,2921}. (16)

Candidate site 1 is set as the grid box at the southernmost and

westernmost part of the domain. The remaining candidate

sites are incremented moving from west to east, followed by

south to north. Candidate site 2921 therefore corresponds to

the northernmost and easternmost grid box. This encoding

scheme is straightforward but it loses information about lat-

itudinal gradients. For example, candidate sites 556 and 604

are adjacent in physical space, but not in design space. Better

methods can be used to encode multiple spatial dimensions

into one-dimensional design variables for optimization (e.g.,

using Hilbert space-filling curves; Sergeyev et al., 2013), but

these fall outside the scope of this paper. In future work we

plan to investigate the effects of using different spatial en-

codings on geophysical optimization problems.

As with the station locations, the daily measurement fre-

quency is also represented as an integer-valued design vari-

able, though we use the same frequency for all six of the lo-

cations. Measurement frequency is included as a design vari-

able because changing the number of measurements leads

to an interesting tradeoff between network performance and
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cost. This variable takes integer values 1–6 and maps them to

the six different ways of dividing 24 h into regular sampling

intervals using the 2-hourly WRF-Chem output:

z7 ∈ {1,2,3,4,5,6} 7−→
{

1,2,3,4,6,12samplesday−1
}
. (17)

Values of z7= 4 and 5, for example, correspond to 4 and

6 samples day−1. Note that a case involving 8 samples day−1

is not included because it involves 3-hourly measurements

that would require interpolation of the WRF-Chem output

archive.

These design variables are independent directions in a

seven-dimensional integer-valued search space. Brute force

search methods are impractical for searching through a space

this large. To illustrate, first consider the simple case of

choosing a location for just a single monitoring station with a

fixed measurement frequency. For this case, 2921 candidate

sites need to be assessed to optimize the objectives. Choos-

ing the locations for a pair of fixed-frequency stations, how-

ever, yields a search space containing roughly 4.2 million

design points. The number of ways of selecting r stations

out of s candidate sites is a combinatorial counting problem,

which is calculated from the binomial coefficient
(
s
r

)
. The

full search space for our problem therefore contains more

than 5× 1018 design points. Directly evaluating all of these

points is not feasible with current computers, so we apply

a global stochastic numerical optimization algorithm that is

effective for solving multiobjective problems in large search

spaces (Sect. 4.2.3).

4.2.2 Performance and cost objectives

Two objectives are jointly optimized in the network design.

These are to find design points that maximize performance,

f1, and minimize measurement costs, f2. These objectives

may be in conflict with each other in our demonstration and

in other network design problems. For example, a candidate

site may be well positioned to sample air masses from an

important emissions basin (e.g., downwind of Los Angeles),

but the site could be expensive to set up and maintain if it

requires new construction and is located in an isolated and

rugged area. The compromise of placing a station at an exist-

ing site with existing infrastructure would reduce the costs,

but may provide less information for the inversion, which

would decrease the performance.

Performance is optimized by minimizing

f1 = Tr(SN ) , (18)

which is the trace of the covariance matrix of the posterior

distribution of HFC-134a emissions. This objective is equiv-

alent to minimizing the mean squared estimation error (Hu-

ber, 2009). Alternate performance objectives based on the

covariance matrix could be formulated and applied, common

choices being the determinant of SN or weighted versions

of the trace or determinant (e.g., Huber, 2009). To keep the

discussion brief, we use only Eq. (18) in our demonstration.

For the cost objective, we assume that it is less expensive

to set up HFC-134a monitoring capabilities near sites where

infrastructure already exists and atmospheric measurements

or soundings are routinely taken (e.g., sites in the National

Oceanic and Atmospheric Administration’s Cooperative Air

Sampling Network). The following seven locations in Cal-

ifornia are considered as “existing sites” where costs can

be minimized: Trinidad Head, Chico, Walnut Grove, Sutro

Tower, Fresno, Los Angeles, and Scripps. The locations of

these sites are shown by the white circles in Fig. 1.

The total cost for the six-station observing network is cal-

culated using

f2 =

6∑
i=1

cs (zi)+ co (z7) , (19)

where cs(zi) denotes a one-time “setup” cost for adding a

station at location zi , and co(z7) is a continuing “operational”

cost for making measurements at all of the stations with a

frequency of z7. The total cost is normalized to the range

[0, 1]. A minimum cost of 0 coincides with a network that

uses only existing sites and that make one measurement per

day. A maximum total cost of 1 occurs with stations that are

far from existing sites and that make 12 measurements per

day, with half of the total coming from the setup cost and

half from the operational cost.

For a candidate site zi , the setup cost is assumed to vary

with the distance, d(zi), to the nearest existing site, up to a

maximum distance, dmax. This is expressed as

cs (zi)=
1

12
min

[
1,

(
d (zi)

dmax

)q]
for q > 0, (20)

where q is the distance dependency (e.g., q = 1 for linear,

and q = 2 for quadratic). If an existing station is used for

monitoring, d(zi)= 0 and there is no setup cost. If a can-

didate site is more than dmax away from the nearest existing

station, d(zi)> dmax and the setup cost is 1
12

. If all of the can-

didate sites are more than dmax away from existing sites, the

setup cost is 0.5. For the HFC-134a demonstration problem,

we set dmax= 150 km and q = 2. The former setting provides

a radial window of about 12 grid boxes around existing sites

over which candidate sites can “sense” the effects of existing

sites, while the quadratic dependency provides a spatial gra-

dient strong enough to drive candidate sites toward existing

sites to minimize costs.

The operational cost is assumed to depend linearly on z7

through the expression

co (z7)= 0.5(z7− 1)/5, (21)

where z7 is the design variable, as opposed to the mea-

surement frequency, given in Eq. (17). There is no oper-

ational cost for making the first measurement per day in

this formulation, and co is half of the maximum total cost

at the maximum measurement frequency. Embedded within
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this expression is the assumption that it is more cost effec-

tive to operate at higher measurement frequencies, because

the marginal cost of increasing from 1 to 3 samples day−1

(i.e., from z7= 1 to 3) is the same as increasing from 4 to

12 samples day−1 (i.e., from z7= 4 to 6).

Although the cost model described by Eqs. (19)–(21) is

idealistic and does not include specific prices for GHG mea-

surement instruments, site permits, personnel, and so forth,

it is still useful for demonstrating our multiobjective network

design methodology. If available, a realistic economic cost

model could be substituted and used to compute f2. With-

out a loss in generality, the same techniques would be used

to optimize cost and performance and quantify the tradeoffs

between the two.

4.2.3 Multiobjective genetic algorithms

Unlike the Pareto frontier that was derived analytically for

the simple example in Sect. 4.1, numerical algorithms must

be used for moderately complex multiobjective optimization

problems. We use a genetic algorithm to design the HFC-

134a observing network. Genetic algorithms (also known as

evolutionary algorithms) have only recently been adapted

to multiobjective optimization problems (e.g., Deb et al.,

2002; Zitzler et al., 2002), but they have already been shown

to be effective and efficient. Genetic algorithms have also

been used to optimize GHG networks for single objectives

(Rayner, 2004; Nickless et al., 2015).

Genetic algorithms evolve generations of a population of

potential designs through a search space using notions such

as survival-of-the-fittest and reproduction. Each loop of a ge-

netic algorithm represents one generation, and at each gen-

eration four genetic operations are applied: fitness assess-

ment, reproduction, crossover and mutation. The fitness step

is an evaluation of the objectives at the design points for each

member of the population. The members of the population

are ranked according to their fitness scores. In reproduction,

the members with the highest fitness rankings are given the

highest probability of remaining in the population and sur-

viving through subsequent generations. Crossover refers to

the process of mixing characteristics of similarly ranked par-

ents to produce offspring with potentially strong rankings.

The mutation step adds randomness to the designs that are

evolved.

For multiobjective problems, modern genetic algorithms

also apply niche operators to promote diversity of the designs

across the Pareto frontier. A genetic algorithm can there-

fore derive a diverse set of Pareto optimal solutions in a sin-

gle optimization run, which is a great advantage over other

methods that require multiple runs to characterize the mul-

tiobjective space. For our network design problem, we use

the multi-objective genetic algorithm (MOGA) (Eddy and

Lewis, 2001; Adams et al., 2010) to optimize performance

and cost, and a single objective variation with the same ge-

netic operators (SOGA – single objective genetic algorithm)

Table 1. Settings used in the genetic algorithms.

Setting SOGA MOGA

population_size 25 70

max_function_evaluations 6000 12 000

initialization_type unique_random unique_random

fitness_type merit_function domination_count

crossover_type shuffle_random shuffle_random

num_offspring 2 2

num_parents 2 3

crossover_rate 0.6 0.6

mutation_type replace_uniform replace_uniform

mutation_rate 0.3 0.3

replacement_type elitist below_limit= 6

niching_type – radial= 0.15, 0.15

Refer to Eddy and Lewis (2001) and Adams et al. (2010) for further details about these

settings and other available options.

to optimize only the performance. Table 1 lists the MOGA

and SOGA settings used for the network design. To our

knowledge, this work represents the first application of a ge-

netic algorithm to a multiobjective design of an atmospheric

monitoring network.

4.2.4 Incremental optimization

As a benchmark for referencing the algorithmic perfor-

mance of SOGA, we also employed the incremental opti-

mization (IO) strategy described and benchmarked by Patra

and Maksyutov (2002). These authors used IO to design a

surface network for constraining CO2 emissions. For their

problem, they showed that IO outperformed another popular

optimization method known as simulated annealing (Kirk-

patrick et al., 1983) that was used to design a CO2 network

in earlier work (Rayner et al., 1996). More recently, IO was

used to optimize single, scalar performance objectives for

CO2 measurement networks in Australia and South Africa

(Ziehn et al., 2014; Nickless et al., 2015). In the latter case,

the authors found that IO optimized the network more effi-

ciently than a single objective genetic algorithm, which runs

counter to our results in Sect. 5.1.

IO uses an intuitive, recursive approach to build up a net-

work of observing stations. Starting with the first station, all

of the candidate sites are evaluated and the station is placed at

the location that optimizes objective f1. This site is removed

from the set of candidate sites, and then the next station is

added at the location from the remaining sites that optimizes

the objective. This process is repeated until each station in the

network has been added. IO thus adds stations incrementally

to the network by including them at locations that maximize

the performance at each stage. This procedure requires

r−1∑
i=0

(s− i) (22)
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Figure 4. The figure displays the raw objective function evaluations during the evolution of a population of network designs using SOGA

to optimize performance. The horizontal black line shows the SOGA Best case. The SOGA Best, SOGA Efficient, and IO cases are also

displayed.

objective function evaluations for s candidate sites and r

network stations. IO collapses the search in a large r-

dimensional space into a series of trivial searches in one di-

mension, but the method does not account for potential syn-

ergistic benefits that can arise from adding two or more sta-

tions at the same time.

5 Network optimization results

5.1 Optimization of performance

SOGA is used to optimize only the performance of the

HFC-134a observing network for a fixed cost (i.e., mini-

mize f1 while keeping f2 constant). The daily measure-

ment frequency is set at 4 samples day−1 for this experi-

ment. Figure 4 displays the raw evaluations of the perfor-

mance objective from a population of network designs over

the evolution of the genetic algorithm. As shown, the algo-

rithm clearly evolves the population toward an optimal so-

lution. The population starts out with networks having per-

formance objectives ranging from about 5 to over 20. Fol-

lowing initialization, there is a period of rapid improvement

up through 300 objective function evaluations (and about

20 generations). Over this period, the weakest network de-

signs are excluded, while the strongest designs are signifi-

cantly improved. Between 300 and 1700 evaluations, the al-

gorithm continues to improve the best designs, albeit more

slowly, and still maintains a random search for potentially

better designs (i.e., the spikes in the figure). Somewhere

around evaluation 1700 (or 225 generations) there is a no-

ticeable drop in the minimum f1 as the genetic algorithm

finds a design that is close to the best overall design. A min-

imum value of f1= 1.217 is achieved on generation 727 and

objective function evaluation 5900 (referred to as “SOGA

Best” below). The algorithm terminates after 740 genera-

tions and 6000 objective function evaluations because the

max_function_evaluations limit setting is reached (see Ta-

ble 1). Note that a convergence criterion could be used in-

stead to terminate the algorithm.

Although 6000 objective function evaluations may appear

to be a large number, it is a tiny fraction of the number of de-

sign points that occupy the full six-dimensional search space

(recall that z7 is fixed for this experiment). A total of 6000

evaluations is also slightly more than twice the size of the

search space for adding only a single station (i.e., 2921 can-

didate sites). Moreover, the algorithm found a reasonably op-

timal design (f1= 1.340) after only 1652 objective function

evaluations (referred to as “SOGA Efficient” below).

To further put these results in perspective, we compare

SOGA to the IO method described in Sect. 4.2.4. Applied

to our problem, the IO strategy is indeed effective, yielding

f1= 1.233, but it uses 17 511 evaluations to get there, which

is almost 3 times as many evaluations as the total number

shown in Fig. 4. However, SOGA and IO should not be com-

pared only on the basis of the number of objective function

evaluations. The time to compute the objective function f1,

described here as the “evaluation time,” depends on the num-

ber of stations in the network because the sizes of ξm, ξo, and

Xm, and hence the time to solve SN , vary with the network

size. The “evaluation time” changes for IO because it adds

stations one-by-one to the network, whereas it remains con-

stant for SOGA because six stations are assessed during each

iteration. We derive a linear relationship between the “evalu-

ation time” and number of network stations, and use the re-

lationship to estimate the cumulative “evaluation time” over

the objective function evaluations for IO, SOGA Best, and

SOGA Efficient. This analysis shows that the SOGA Best

and SOGA Efficient cases are both more efficient than IO

because the larger number of objective function evaluations

for IO degrades algorithmic efficiency more than the increase

in the “evaluation time” for larger networks in SOGA.

There is an additional factor besides the “evaluation time”

that affects the efficiency of IO and SOGA. The “decision

time” is the amount time it takes for the algorithm to decide
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which station or stations to add to the network. For IO, the

“decision time” is negligible and is based on a sort/search

for the station with the smallest inversion variance at each

stage. The “decision time” for SOGA, on the other hand, is

tied to the four genetic operators (fitness assessment, repro-

duction, crossover and mutation) and varies from generation

to generation because the population changes. We estimated

an average “decision time” for SOGA and found that it is

much smaller than the “evaluation time” and does not hin-

der the performance of the algorithm. We therefore conclude

that, for our problem, SOGA is a more efficient algorithm for

network design than IO. By our estimates, SOGA is about 2–

7 times more efficient than IO, depending upon which design

is used (i.e., SOGA Efficient versus SOGA Best). These re-

sults counter the findings of Nickless et al. (2015), whose

analysis suggests that IO is more efficient than genetic al-

gorithms. Further work is needed to compare SOGA and IO

for network design under a variety of conditions (e.g., differ-

ent tracers and larger networks), though we expect SOGA to

scale well to larger networks with more candidate sites. By

enabling smarter location encoding schemes (as described by

the mapping in Eq. 16), we also expect to improve the search

efficiency of SOGA relative to the current implementation

used in Fig. 4.

Figure 5 displays three different HFC-134a observing net-

works resulting from the performance optimization. The fig-

ure shows the SOGA Best, SOGA Efficient, and IO network

cases. The three networks have sites that overlap or that are

in close proximity at four out of the six stations (in basins 1,

5 and 13, and near Los Angeles). For the two other stations,

the SOGA Efficient and IO networks have overlapping sites

in basins 5 and 8, while the SOGA Best case places the sites

in basins 3 and 9. It is notable that the SOGA Efficient and

IO networks are very similar, even though the latter requires

more objective function evaluations to determine the loca-

tions.

Given the spatial distribution of HFC-134a emissions

shown in Fig. 1, the positions of the stations in the three net-

works in Fig. 5 seem plausible. The three networks have sta-

tions surrounding or downwind of the three largest emitting

regions in California (Southern California, the San Francisco

Bay Area, and the Central Valley). The largest location dif-

ference occurs near the Bay Area and Central Valley, where

the SOGA Best network appears to find better locations for

constraining emissions from these regions. Recall that exist-

ing stations (white circles in Fig. 1) and measurement costs

were not factored in this single objective experiment. We can

therefore conclude that the best performing HFC-134a ob-

serving networks are not coincident with the assumed exist-

ing sites, implying that new measurement sites (with higher

costs) can be developed to maximize performance.

Figure 5. The figure shows the locations of observing stations in

the SOGA Best case (stars), SOGA Efficient case (squares), and IO

case (triangles). Reference locations of the seven existing observing

sites are also shown (white circles).

5.2 Verification of emissions inversion

Because the HFC-134a observations are synthesized using

Eqs. (1) and (2), the true weights for the emissions and the

observation–model noise level are known. This information

is used to verify the operation of the inversion algorithm. Fig-

ure 6 displays the posterior weights for the emissions esti-

mated using the SOGA Best, SOGA Efficient, and IO net-

works. Considering the mean values and uncertainty ranges,

and noting that covariances are excluded in the figure, the

posterior weights are consistent with the emissions-scale fac-

tor of 0.7 applied in Eq. (1) for all but a few of the regions.

The match is not expected to be perfect for all of the regions

because some of them are greatly affected by non-Gaussian

noise, are far from the stations in the networks, and have low

levels of emissions. The inversion algorithm has a difficult

time constraining the emissions in region 15, for example,

because this region lies outside of California and has emis-

sions that are not effectively transported to the network sta-

tions. The low-level emissions from regions 1, 2, 6, and 10

are also challenging for the inversion algorithm because they

are located in remote portions of the state. Overall, however,

the posterior weights are well estimated for the regions with

the heaviest emissions, which provides verification that the

algorithm is operating as desired.

The values of β inferred using evidence approximation

can also be verified. The inverse square root of β repre-

sents the observation–model noise in the inversion algorithm

and has units of ppt. The estimates of β−1/2 for the SOGA

Best, SOGA Efficient, and IO networks are 16.6, 16.2, and

16.1 ppt, respectively. These values are similar to each other
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Figure 6. The figure shows the posterior weights for the emissions from the 15 regions for the SOGA Best, SOGA Efficient, and IO networks

shown in Fig. 5. The posterior weights are presented as µ± 2σ , which excludes off-diagonal covariance contributions that are important for

some regions. The target value of 0.7 is shown by the horizontal black line.

and are strikingly similar to the noise amplitude of ρ= 20 ppt

set in Eq. (2). The inferred values are slightly lower than

20 ppt because the conditions used to add noise in Eq. (2)

truncate the negative values in the noise distribution and re-

duce the variance. From this comparison, we conclude that

our inversion scheme successfully retrieves the observation–

model noise from the data, and shows that this term does not

have to be prescribed or specified, as is often done in other

emissions inversion applications. For inversions with real ob-

servations, model errors generally dominate the noise and are

difficult to estimate. Evidence approximation provides a way

to account for these errors under approximate Gaussian as-

sumptions.

5.3 Optimization of performance and cost

MOGA is used to jointly optimize the performance and cost

of the HFC-134a observing network and to estimate the

Pareto frontier between the two objectives. In the previous

section, we showed that SOGA outperforms the IO optimiza-

tion scheme (Patra and Maksyutov, 2002), both in terms of

efficiency and effectiveness, for a single objective network

design. This comparison suggests that the genetic algorithm

will also perform well on the multiobjective problem. How-

ever, we cannot compare MOGA to IO in this section because

the IO method is not designed for multiobjective network op-

timization.

The plots in Fig. 7 show the evolution of the performance

and cost objectives in MOGA through 12 000 raw objective

function evaluations. Even though SOGA and MOGA share

many of the same algorithmic components, they solve differ-

ent problems and therefore evolve their populations in differ-

ent ways. Relative to the SOGA plots, the raw MOGA func-

tion evaluation plots appear noisier, have a periodic behavior,

and do not easily show convergence. These are, however, ex-

pected features because MOGA is co-evolving the designs in

two objective dimensions, trying to simultaneously optimize

combinations of performance and cost. Because the perfor-

mance and cost objectives are conflicting, these MOGA plots

do not show the same evolutionary changes as occurred in

the SOGA experiment. One of the key differences is the

periodic-like behavior in MOGA, which results from popula-

tion members that are evolved to span desirable combinations

of objectives through the niching operators. Close inspection

of the cost objective plot indicates that the oscillations do not

have a fixed period. The peak-to-peak spacing increases with

function evaluations. This occurs because more evaluations

are needed at later stages of the algorithm to improve the ob-

jectives, which provides an indicator of convergence.

Because it is difficult to ascertain convergence through

the raw objective function evaluation plots, Fig. 8 shows

the evolution of MOGA in terms of population generations.

The figure specifically shows the members of the popula-

tion with the lowest objective values at each generation from

initialization through 149 generations. Population members

that are not dominated by other members are carried for-

ward through subsequent generations. From this figure, it

is clear that MOGA is evolving networks to optimize per-

formance and cost. As with the SOGA experiment, there is

rapid improvement during the early phase of the optimiza-

tion from initialization through about 10 generations. This

period is followed by another period from about 10–60 gen-

erations with a slower rate of improvement. Cost is opti-

mized more quickly than performance over this intermedi-

ate period because cost is based on a relatively simple ex-

pression, while performance is based on a complex atmo-

spheric model. Around generation 60, the cost objective ob-

tains its overall minimum value during the displayed evolu-

tion (f2= 0.0094). The performance objective, on the other

hand, reaches its overall minimum value during the evolution

on generation 116 (f1= 1.126).

Figure 8 only shows the evolution toward the extreme

points of the Pareto frontier. To show the behavior along

the whole frontier, Fig. 9 displays the populations of six-

member observing networks for all of the generations in the

two-dimensional objective space. Because non-dominated

population members are retained from one generation to
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Figure 7. The figure displays the raw objective function evaluations during the evolution of a population of network designs using MOGA

to optimize performance (upper panel) and cost (lower panel).

Figure 8. The figure displays the minimum value of the perfor-

mance objective (blue line) and cost objective (red line) for each

generation during the evolution of a population of network designs

using MOGA.

the next, the figure contains more data points than the

max_function_evaluations limit. The circles in the figure are

color-coded by measurement frequency and have sizes based

on their generation number. The smallest and largest circles

correspond, respectively, to the earliest and latest genera-

tions. The sizes of the circles get progressively larger going

from the upper right portion of the figure to the lower left.

This provides a clear indication that the algorithm is evolving

a set of potential solutions toward the Pareto frontier, which

is represented by the approximate convex hull of large circles

at the leading edge on the lower left side (see points A–G in

the figure).

The tradeoffs between performance and cost in Fig. 9 are

obvious. Optimizing performance leads to high cost designs,

and vice versa. The cost objective therefore plays a very

strong role in determining monitoring locations in a mul-

tiobjective framework. The figure also shows a clear rela-

tionship between the sampling frequency and cost; low fre-

quency solutions (blue circles) are less expensive than high

frequency solutions (orange and red circles). The position

along the Pareto frontier controls the expected returns in

trading one objective for another. Networks with the poorest

performance (e.g., points F and G) can be improved signif-

icantly with only moderate increases in cost. For example,

networks near point G have monitoring stations that make

one measurement per day and are located close to existing

sites. By slightly re-positioning one or two of the stations,

networks near point F achieve large gains in performance

without incurring high costs. Further performance improve-

ments, however, face steeper cost increases. For example,

costs double between points E and D, and quadruple between

points D and A. This sharp increase in cost occurs for two

reasons. Minimizing the inversion errors requires (1) higher

sampling frequencies and (2) the construction of new mon-

itoring stations that are located far from existing sites. Us-

ing the measurement frequencies displayed in the figure, the

effective number of new monitoring sites for each network

can be determined by subtracting the operational cost from

the total cost. For instance, networks near points A and B

have operational costs of 0.4, and setup costs of about 0.35

and 0.18, respectively. Because each new, isolated site has a

cost of about 0.083 (i.e., sites with d(zi)> dmax), networks
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Figure 9. The figure displays the evolution the performance and

cost objectives over generations of observing networks using

MOGA. The stage of the evolution is denoted by circle size, with

the earliest and latest generations corresponding to the smallest and

largest circles, respectively. The measurement frequencies of the

networks are color coded. Late generation points along the lead-

ing edge represent the approximate Pareto frontier, and points A–G

are described in the text. The gray lines approximate the tangents

to the objective minima, and their intersection defines the “utopia”

point.

near points A and B create 4.2 and 2.2 effective new stations,

respectively.

The station locations for three representative networks

near points A, B and E along the Pareto frontier are shown

in Fig. 10. It is important to note that these examples are

only representative because networks that are adjacent in ob-

jective space can actually have stations that are far from each

other in physical space. This occurs because the “fitness land-

scape” for this problem is extremely noisy (see Fig. 7), and

the mapping from the design space to the objective space is

not one to one (i.e., many designs can have nearly the same

objectives). The point A and B cases are high cost, high per-

formance examples, while the point E example lies close to

the so-called “utopia” point, which is the point derived by

intersecting the lines tangent to the objective extremes. As

shown, network A has a high cost because it has only two sta-

tions that are nearby existing sites. Along with the high cost,

network A has an associated high performance because it

strategically places stations around large emitting regions but

surprisingly uses only a single station in Southern California.

Network B also has a relatively strong performance, but at a

reduced cost because it deploys only two stations far from

existing sites. The locations of the stations in networks A

and B shown on the map are consistent with the approxi-

mate effective number of new sites estimated in the previous

paragraph. The final example, network E, represents a design

that attempts to achieve a balance between the cost and per-

Figure 10. The figure shows the locations of observing stations in

three networks that lie near the approximate Pareto frontier (see

points A, B, and E in Fig. 9) using MOGA. Reference locations

of the seven existing sites are also shown (white circles).

formance objectives by avoiding the steep portions of each.

The resulting network has only one station far from an exist-

ing site (at the western edge of basin 13). It is also notable,

but not unexpected, that none of these networks has a station

near the existing sites at Trinidad Head and Scripps, Califor-

nia, which are used to monitor background GHGs through

AGAGE (Prinn et al., 2000). These coastal sites are not well

positioned to sample summertime HFC-134a emissions from

California, which creates a challenge for doing top-down in-

versions with AGAGE data (Yver et al., 2011, 2013).

6 Summary and conclusions

In this report, we demonstrate the use of single objective and

multiobjective genetic algorithms to design optimal observ-

ing networks to constrain GHG emissions through top-down

inverse approaches. In particular, we use the algorithms to

design a network of six stations to monitor HFC-134a emis-

sions in California. The genetic algorithms search for sta-

tion locations that optimize both the performance and cost

of the network. When used to optimize only the performance

of the observing network, the single objective genetic algo-

rithm outcompetes an incremental optimization scheme that

has previously been applied to CO2. The genetic algorithm

finds a better-performing network using fewer evaluations of

the objective function. The performance-optimized stations

are located relatively far from existing measurement sites,

which indicates that current measurement networks could be

improved to monitor HFC-134a or other GHGs with similar

patterns of emissions.
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Given a set of seven existing sites that could host observ-

ing stations at a minimal cost, the multiobjective genetic al-

gorithm jointly optimizes the performance and cost of an

HFC-134a observing network. The algorithm evolves differ-

ent network configurations toward the Pareto frontier (i.e.,

the optimal combinations of the two objectives). The Pareto

frontier is convex and clearly shows the tradeoffs between

performance and cost. Low performing networks can be im-

proved with minor increases in cost, but high performing

networks require substantial increases in cost to achieve fur-

ther improvements. The Pareto frontier thus provides a use-

ful quantitative guide for decision makers to understand the

tradeoffs in designing a GHG observing network. Because

multiobjective genetic algorithms can easily accommodate

additional, highly complex objectives that account for other

GHGs and measurement modalities, we expect our method

will provide a useful basis for designing practical GHG ob-

serving networks.

To better understand how the prototype GHG observing

network could be extended to a real-world network design,

we summarize below some of the key assumptions in our

analysis. We have also released a data set of simulation time

series to two public domain data repositories (Bache and

Lichman, 2015; Lawrence Livermore National Laboratory

Green Data Oasis, 2015). This data set can be used to test dif-

ferent inversion algorithms, optimization methods, cost func-

tions, noise characteristics, and other assumptions that may

impact the network design.

The structure of the noise used to generate the synthetic

observations could affect the network. Although the noise

differs from one location to another because different ran-

dom seeds are used in Eq. (2), the noise has a constant ampli-

tude and is spatially uncorrelated. These features are consis-

tent with data that is independent and identically distributed,

which is often a reasonable starting point for statistical anal-

ysis. In practice, however, GHG time series may be spatially

correlated and have noise variations that scale with mixing

ratio. By including spatially correlated noise in Eq. (2), we

expect that the genetic algorithms would penalize stations

that are close to each other because neighboring grid cells

would experience similar fluctuations. However, the spatial

correlation length scale is also expected to be relatively small

(e.g., less than 10–20 km) because California has rough sur-

face features and complex topography. The net effect of in-

cluding spatially correlated noise on our analysis is there-

fore anticipated to be minor. By relaxing our constant noise

amplitude assumption, on the other hand, we anticipate that

the uncertainty in the inferred emissions of large emitting re-

gions would increase, which would drive the optimization

schemes to prefer stations near to those regions.

As a matter of convenience, we used the same measure-

ment frequency at all of the stations in the network. Addi-

tional design variables could easily be introduced to optimize

the location and frequency of each station, though the com-

putational time to design the network would increase. We ex-

pect that such a change would result in a network with sta-

tions that collect measurements relatively more frequently in

locations that are far from important sources (e.g., regions 1

and 6) than locations that are nearby (e.g., regions 7 and 12).

Last, we reiterate that the cost function used in the network

design is idealistic. The form of the cost function is chosen

to illustrate the notion of competing objectives (performance

versus cost) and impart convexity to the Pareto frontier. Be-

cause we have more expertise on the performance aspects

of network design than the cost side, it is difficult for us to

extrapolate our results to situations involving realistic, de-

tailed cost models. We invite researchers to use the publicly

released data set to better explore the impacts of different

cost decisions and models on network design.
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