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Abstract. Recent observations of astrophysical magnetic

fields have shown the presence of fluctuations being wave-

like (propagating in the plasma frame) and those described as

being structure-like (advected by the plasma bulk velocity).

Typically with single-spacecraft missions it is impossible to

differentiate between these two fluctuations, due to the inher-

ent spatio-temporal ambiguity associated with a single point

measurement. However missions such as Cluster which con-

tain multiple spacecraft have allowed for temporal and spatial

changes to be resolved, using techniques such as k filtering.

While this technique does not assume Taylor’s hypothesis it

requires both weak stationarity of the time series and that

the fluctuations can be described by a superposition of plane

waves with random phases. In this paper we test whether the

method can cope with a synthetic signal which is composed

of a combination of non-random-phase coherent structures

with a mean radius d and a mean separation λ, as well as

plane waves with random phase.

1 Introduction

Understanding plasma physics processes in three dimensions

is one of the major goals of the Cluster mission (Escou-

bet et al., 2001). The tetrahedral arrangement of the four

identical spacecraft allows the disentanglement of tempo-

ral and spatial changes unambiguously in three dimensions.

This property is essential to be able to distinguish between

the two competing ideas for plasma heating in astrophysical

plasmas: that of wave damping and that of dissipation in co-

herent structures. In this regard, single-spacecraft measure-

ments can be quite limiting, and Taylor’s hypothesis needs to

be invoked (Taylor, 1938).

The k-filtering technique (Pinçon and Lefeuvre, 1991) is

a multi-spacecraft analysis technique, with the advantage that

Taylor’s hypothesis is not required. Here we use the term “k

filtering” to refer to all techniques which are based on the

same mathematics (Pinçon and Motschmann, 1998), e.g. the

wave-telescope technique (Neubauer and Glassmeier, 1990)

or the multi-point signal resonator technique (Narita et al.,

2011). The method takes the magnetic field (or magnetic and

electric fields) measurements from the four spacecraft and is

able to determine the full three-dimensional power spectral

density P(ω,k). A filter bank approach is used and the mea-

sured signals are filtered such that the only powers that pass

through the filter correspond to a plane wave at the chosen

frequency ω, and wave vector k, with all other powers in the

signal being eliminated. The filtering can be performed for

a number of points in wave space k = (kx,ky,kz) and a fully

three-dimensional estimation of the power spectral density

P(ω,k) in wave number space can be constructed.

The method itself has been tested extensively for a su-

perposition of plane waves with random phases (e.g. Pinçon

and Lefeuvre, 1991, 1992; Motschmann, 1996; Pinçon and

Motschmann, 1998; Sahraoui et al., 2010), and the effects

of noise, time synchronisation inaccuracies, spacecraft po-

sition inaccuracies and poor tetrahedral configurations are

well understood. However, the random-phase approximation

is an assumption that has not been discussed thoroughly. The

key assumption for this method is that the measured fluctua-

tions can be described as a superposition of plane waves with

random phases (Capon, 1969; Pinçon and Lefeuvre, 1991,

1992; Motschmann et al., 1998; Tjulin et al., 2005). Here

the term “random-phase plane waves” refers to waves with

randomised (non-fixed) phase difference at each consecutive

wave period. Practically, for the application of the k-filtering
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method, this requires that waves with different wave vectors

be incoherent at each frequency.

The k-filtering method has been used in several near-Earth

plasma environments with input coming exclusively from

magnetic field measurements (e.g. the magnetosheath, the

foreshock and the solar wind; Glassmeier et al., 2001; East-

wood et al., 2003; Sahraoui et al., 2003, 2004; Roberts et al.,

2013), and has also been applied using a combination of both

magnetic and electric field measurements (Tjulin et al., 2005,

2008).

A recent study which applied the k-filtering technique to

the solar wind was performed by Roberts et al. (2013), in

which it was concluded that the solar wind may be pop-

ulated by linear kinetic Alfvén waves (KAWs), as well as

coherent structures which are advected by the bulk velocity

(e.g. monopolar Alfénic vortices (Alexandrova et al., 2006;

Alexandrova, 2008), pressure balanced structures (Burlaga

and Ogilvie, 1970)) or those propagate with a small veloc-

ity v� Vsw in the plasma rest frame (e.g. dipolar Alfvén

vortices; Petviashvili and Pokhotelov, 1985, 1992). In other

plasma environments such as the magnetosphere, bulk ve-

locity is typically smaller than the solar wind. In this case we

may expect that fluctuations have a significant component of

the velocity to be along the direction of the magnetic field

along in addition to the typical velocity due to the advec-

tion. This study concluded that techniques such as k filter-

ing may need to be further validated for analysis of a signal

which is composed of a superposition of coherent structures

and random-phase plane waves. In relation to the signal we

use the term “coherent structure” to denote a coherent wave

packet, i.e. a coherent signal windowed by an envelope of

limited extension. Coherent structures are characterised by

a radius and a mean spacing between them. It is important

to note that, within the radius of a structure, the variation

of the signal (magnetic field) is known and the phases are

not random. This makes it similar to a coherent wave packet.

However with respect to other structures they are likely to be

incoherent, and a key goal of this work is to determine the ef-

fect of coherency on the determination of the power of waves

or structures when the k-filtering technique is adopted.

Here we quote the comments of Pinçon and Lefeuvre

(1991) when the k-filtering method was first designed: “Mea-

surements of the electric and/or magnetic field in space plas-

mas commonly show fluctuations in time and/or space on all

observed scales; such fluctuations are mostly random in ap-

pearance and therefore are considered as turbulent phenom-

ena”. While we would expect waves in a turbulent plasma

to have random phases, it is unclear whether this is satisfied

for a population of coherent structures being advected past

the spacecraft or for a signal with a coexistence of random-

phase plane waves and coherent structures (including short-

lived coherent wave packets). The paper is also motivated

by studies in which discrete waves were indeed observed in

the solar wind (Jian et al., 2009, 2010) and in which discrete

waves were able to survive in a turbulent environment for

a limited time, at least theoretically (Ghosh et al., 2009).

The goal of this work is to provide such a validation for the

technique using synthetic magnetic field data. The k-filtering

method will be presented in Sect. 2. Then we will present

the various signals which we will input to the method, and

how they were defined, in Sect. 3, followed by the results

and conclusions.

2 The k-filtering method

Here we will provide a brief introduction to k filtering, fol-

lowing the notation given in Pinçon and Motschmann (1998)

and Tjulin et al. (2005). Regarding the array of detectors, in

our case we have the Cluster spacecraft and the magnetome-

ter measurements, which yield 12 time series (in our case

four satellites yield three measurements each). We can repre-

sent our data as the following vector:

A(rα, t)=


A(r1, t)

...

...

A(r12, t)

 . (1)

These time series are then transformed into frequency space

by using a windowed Fourier transform (Eq. 2). The size

of the window determines the frequency resolution. When

we have a window of a single data point (window size

is zero), no frequency information can be obtained. In the

other extreme case where we only have one window for

an interval, we are unable to resolve any temporal vari-

ations (Motschmann, 1996). Typically windows of 1024

points (which corresponds to 45 s for nominal mode Clus-

ter FGM data sampled at 22 Hz; Balogh et al., 2001) are

used (Sahraoui et al., 2003, 2006). This corresponds to a fre-

quency resolution of∼ 0.024 Hz (Sahraoui et al., 2003), suit-

able for studying inertial and dissipation scales in the solar

wind. It should also be noted that a key limitation due to the

use of a windowed Fourier transform is the requirement that

the time series be at least weakly stationary so that the goal

of achieving ensemble average, a key requirement of the k-

filtering method, can be realised by using time averages. This

is an important restriction when selecting intervals for anal-

ysis. Intervals are chosen such that the magnetic field time

series are devoid of shocks, discontinuities or any trends so

that the quality of the results are not impaired.

A(rα,ω)=


A(r1,ω)

...

...

A(r12,ω)

 (2)

This is a 12× 1 column vector containing three components

of the Fourier-transformed magnetic field for four satellites.
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Figure 1. Schematic of a number of structures with a mean sepa-

ration λ and diameter d (or thickness) of the structures. These are

being advected over the spacecraft with the solar wind bulk velocity.

From this the correlation matrix can be found, which is the

ensemble average of the matrix product of the Fourier trans-

formed time series, and its Hermitian adjoint (transposed and

complex conjugated denoted by the superscript plus) can be

written as

M(ω)= 〈(A(ω)A+(ω)〉. (3)

If a time series is weakly stationary and spatially homoge-

neous, then we can replace the ensemble average in Eq. (3)

with a time average. This is an important limitation of the

method, as the time series is not stationary; for example, if

there are trends in the data, then the ensemble average and

the time average will not be the same, and we will not be

able to use a time average.

We now need to constrain the data such that no unphys-

ical results are obtained. This is done by ensuring that the

distances between the spacecraft (and the associated phase

difference) are accounted for in the estimation from k filter-

ing. To account for the relative spacecraft positions and the

differences in phase in relation to this, we define a matrix H,

H(k)=


Ieik1r1

...

...

Ieik4r4

 , (4)

where I is the identity matrix. When working solely with

magnetic field data, a second condition is also used, where

we enforce the solution to be divergence-free. When using

both electric and magnetic fields Faraday’s law can be used

instead to constrain our solutions. We can ensure that the

divergence-free condition is satisfied by the estimated solu-

tions by making k · δB= 0, and this is implemented by us-

ing the constraining matrix C, where the matrix is given by

(Pinçon and Motschmann, 1998)

C(ω,k)= I+
kk+

|k|2
. (5)

Figure 2. (a) Typical time series made up of structures with a mean

spacing λ= 1000 time steps and d = 250 time steps. (b) Time series

of structures which have been modulated by a Gaussian envelope.

(c) Time series with λ= 1000, d = 2000. The values of λ and d

vary with Poisson statistics, where the mean value is equal to the

variance.

It follows that the full k-filtering equation is given by

P(ω,k)= T r

{[
C+(ω,k)H+(k)M−1(ω)H(k)C(ω,k))

]−1
}
. (6)

3 Simulated magnetic field data

To simulate magnetic field data, we begin with a superposi-

tion of eight plane waves with equal power as described by

δB=

8∑
i=1

[
−kiy

ki
ex +

kix

ki
ey

]
[sin(ki · r −ωi t −φi)+Ni ] , (7)

where ki = kixex + kiyey is the wave vector of the ith wave,

ω is the angular frequency, ki =
√
k2
ix + k

2
iy is the wave num-

ber defined, and ex and ey are two unit vectors along the

x and y axis in a Cartesian coordinate system. A uniform

background magnetic field can be in any direction. Ni is the
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Figure 3. Estimated P(ω,k) for (a) eight random-phase plane waves, (b) seven random-phase plane waves and one fixed-phase plane wave

(red cross), (c) six random-phase plane waves and two fixed-phase plane waves. The contours denote 0.1, 0.5, 1, 10, 25, 30, 50, 80 and 90 %

of the maximum power, which cover the large range of powers estimated from the method well.

noise term, which is set at the 1% level and is required to en-

sure that there is a solution to the k-filtering method (Pinçon

and Lefeuvre, 1991). Here all waves are given a frequency of

0.2 Hz. The signal is divergence-free. Spacecraft are at dis-

tances r in a perfect tetrahedral configuration such that the

planarity and elongation (see Robert et al., 1998, for details

of the Cluster tetrahedral configuration) are P ∼ E ∼ 0. The

phase term φ is randomised between ±2π in each wave pe-

riod in the case of a random-phase plane wave. The randomi-

sation process is a “jump” in the phase and not a continuous

variation as a function of time φ(t). A continuous variation

in the phase is not expected over short timescales. For a se-

ries of unrelated wave trains made up of wave packets (or

a number of coherent structures) we would expect the phase

to jump with each new wave packet in the train. We do not in-

vestigate changes in phase in the spatial domain, since these

are assumed to be small on the scales of spacecraft separa-

tion.

This gives perhaps the simplest case we can investigate of

a superposition of random-phase plane waves.

We use a superposition of eight plane waves at a single

frequency, since we are theoretically limited to recoverNL−

1, waves where N is the number of spacecraft and L is the

number of components we can resolve (Tjulin et al., 2005).

Therefore, we are theoretically limited to 11 waves; however

the resolution is too low to uniquely be able to identify more

than eight waves.

To test the method we will define three different signals,

and investigate the properties of the estimated power spectral

density for each of the input signal. The first case we will

test consists of a pure superposition of random-phase plane

waves. This case has been extensively tested previously, with

both electric and magnetic field measurements (Pinçon and

Motschmann, 1998), as well as only magnetic field measure-

ments (Motschmann, 1996).

The next case we will test is that of a signal composed

of both random-phase plane waves and non-random-phase

plane waves. This is implemented as a result of some of the

waves in Eq. (7) having a constant phase, so they are not

randomised in each wave period.
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Figure 4. Estimated P(ω,k) for (a) six random-phase plane waves (green crosses) and two coherent structures (red crosses), (b) eight

coherent structures (λ= 1000, d = 250 in both cases) and (c) eight coherent structures (Gaussian modulated wave packets). The contours

denote the same relative powers as in Fig. 3.

The final cases to be tested will consist of various com-

binations of structure-like signals and random-phase plane

waves.

To model the advection of coherent structures past the

spacecraft, we define them as having a characteristic mean

radius d and a mean spacing between them λ as shown in

Fig. 1. Both of these parameters vary with Poisson statis-

tics about a mean for each structure advected over the space-

craft. It is important to note for Poisson statistics that the

mean and the variance are equal. The fluctuations due to the

structure can be thought of as a “wave packet”; these fluc-

tuations have a mean distance and separation, d and λ. The

fluctuations themselves are defined as plane waves (Eq. 7),

each wave packet always begins at the same phase, and only

the specific d and λ are random. One typical time series

for a series of structures being convected across the space-

craft is shown in Fig. 2a. We can also investigate the case

for when the fluctuations are modulated by a Gaussian enve-

lope, which would make the fluctuations stronger closer to

the centre, which is the case with coherent structures such as

the MHD Alfvén vortex (Petviashvili and Pokhotelov, 1992;

Alexandrova et al., 2006; Alexandrova, 2008). This scenario

is shown in Fig. 2b.

The total signal is given by the summation of the i indi-

vidual components, where the summation can contain com-

ponents that are random (or non-random) phase plane waves

or coherent structures.

The requirement of the k-filtering technique that waves

have random phases is illustrated here. For instance, two

waves similar to those in Eq. (7) are given by sin(k1 · r −

ω1t−φ1) and sin(k2 ·r−ω1t−φ2); the combined wave field

will be

2sin

[
(k1+ k2) · r − 2ω1t − (φ1+φ2)

2

]
× cos

[
(k1− k2)− (φ1−φ2)

2

]
. (8)

If φ1−φ2 is fixed (the two waves are coherent), then the

above equation basically produces a new wave field with

a wave vector at (k1+ k2)/2 at the same frequency ω1, very

different from the original two waves. However, if φ1−φ2
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Figure 5. Estimated P(ω,k) for eight coherent structures for a variety of ratios of d/λ. Note that the estimation is broadened as the d

becomes very small relative to λ. The contours denote the same as in Fig. 3.

is randomised (at each wave period), the ensemble aver-

age of the k-filtering technique will recover the two original

random-phase waves.

4 Results

The results for the case of random and non-random plane

waves are shown in Fig. 3, where the green crosses denote the

random-phase plane waves and the red the non-random com-

ponents; the contours denote the estimation P(ω,k) from

k filtering. Note that, mathematically, the power of an in-

dividual wave is a singular point located at the crosses. As

can be seen, the method can easily recover eight random

plane waves, and when we introduce one non-random wave

the method can recover both random and non-random com-

ponents. However, when more than one component in the

time series is non-random, k filtering has difficulty resolv-

ing the non-random fluctuations. This is due to the require-

ment of random phases, since two or more waves (of the

same frequency) with fixed-phase differences will superpose,

which will result in a periodic resultant amplitude. In pre-

vious tests of the method, the need for incoherent signals

was recognised (Capon, 1969; Pinçon and Lefeuvre, 1991;

Motschmann et al., 1998). A key point is that recovery of

random-phase components is unaffected by the presence of

non-random components in the time series. This result gives

confidence that, provided that the phases of some waves are

random, the method can recover the random component.

Following this test we now seek to understand the effects

that intermittent coherent structures have on the estimation

of P(ω,k). We introduce some structure elements into the

signal as shown in Fig. 2. Figure 4a shows the cases where

we have a combination of random-phase plane waves (green)

and coherent structures (red). The method succeeds in iden-

tifying all components of the defined signal, alleviating the

issues which were pointed out by Roberts et al. (2013). Fig-

ure 4b shows a case where the signal contains only coherent

structures, while Fig. 4c shows the case where the structures

are modulated with a Gaussian. We note that while the tech-

nique can identify all of the structures present, the estimation

P(ω,k) is broadened in wave space. This implies that the

errors associated with a signal consisting mainly of coher-

ent structures are larger than when the signal only consists of
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random-phase plane waves. We also note that there is very

little difference in the estimation of P(ω,k) when we modu-

late the structures using a Gaussian function, as was demon-

strated in Fig. 2b.

To explore the issue of broadening associated with a sig-

nal composed of structures, we investigate the choice of

the structure parameters λ and d, and what effects these

have on the estimation from k filtering. If d � λ, a struc-

ture and a random-phase plane wave will produce very sim-

ilar fluctuations as seen by the satellite. Figure 5 shows the

power spectral density P(ω,k) for various values of λ and d.

A salient feature of these plots is that the estimation improves

(contours are closer together) when d � λ, and declines as

λ� d, but the peaks in all cases correspond well to where

the structures are launched in k space. We suggest that a rea-

sonable limit for k filtering to be able to resolve these struc-

tures is that d/λ≥ 0.1. When λ becomes very large there

will be fewer structures present in a given interval. The nec-

essary statistics required for the ensemble average of the k-

filtering technique will not be met for such a interval. On

the other hand, as d increases the structures will be similar

to non-random-phase waves, and cannot be identified as we

have discussed at the end of Sect. 3. These criteria are of-

ten met in space plasmas, for example, in the Earth’s mag-

netosheath (Alexandrova et al., 2006; Alexandrova, 2008),

where Alfvénic vortices were identified and the parameters

d and λ were derived from their spectral shapes, and were

shown to be approximately d = 600 km and λ= 1000 km re-

spectively.

5 Conclusions

By investigating synthetic magnetic field data we have

demonstrated that the k-filtering technique can be used

to analyse a signal which consists of random-phase plane

waves and coherent structures. The presence of any non-

random plane wave does not affect the ability to resolve

random-phase components, and can even resolve a random

component when it is a minority. In the limit d � λ, there

is very little difference between the wave and the structure

paradigm and k filtering has no difficulty in resolving

structures in this limit. As λ� d , the estimation of P(ω,k)

is broadened, making errors in estimating k larger. We have

also tested for a signal where the parameters are similar

to those observed in the Earth’s magnetosheath, and the

method resolves the structures with comparable accuracy to

the random-phase plane wave case. We have demonstrated

that waves at any frequency are required to be incoherent,

since the k-filtering technique is unable to resolve two

waves with a fixed-phase difference. Nevertheless a series

of randomly located coherent structures arranged with

characteristic mean radius and spacing can be assumed to be

incoherent and can be resolved by means of the k-filtering

technique. While they are “coherent” within their radius,

they are incoherent with respect to each other due to their

random locations. For turbulent environments such as the

solar wind, where waves and structures are both present, the

incoherency of the signal is likely to be satisfied, and the

application of the technique justified. We conclude that there

should be no issues in using this technique on a signal which

contains both random phases and non-random phases.

Edited by: L. Vazquez
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