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Abstract. For energetic particle measurements whose specthe approximation is not necessarily always good. Also, soft
tra follow a power law, it is often challenging to define a char- spectral slopes can lead to significant deviations.

acteristic (“effective”) energy of an energy channel. In order In this paper, we start by showing how the effective energy
to avoid time-consuming calculations, the geometric mean igs derived for a power law spectrum. We then derive formulas
often used as an approximation for the effective energy. Thighat can be used to assess the goodness of the geometric-
approximation is considered to be pretty good. It is, how-mean approximation for calculating the effective energy, the
ever, potentially inadequate in cases with wide energy chanphase space density and the energy density.

nels and soft spectral slopes. In order to determine the limits This can be especially helpful for the cases of the wide en-
of the goodness of the approximation, we derive formulas toergy channels at soft power law spectral slopes. This method
calculate the deviation of the effective energy, phase spacean be in particular applied to the energetic ion data from the
density and energy density based on the geometric-mean afResearch with Adaptive Particle Imaging Detector (RAPID)
proximation from those based on the power law. The resultsnstrument (seéVilken et al, 2001) onboard the Cluster
show that the geometric-mean approximation is usually adsatellites Escoubet et 811997).

equate and that corrections are needed only in extraordinary

cases. .
2 Effective energy

In practice what one measures is the integrated.flwthin
1 Introduction an energy channel of limit&; and E>. The derived mean
differential fluxj = J/AE then needs to be assigned to some

Particle measurements for the study of space plasma physi&nergy value, which we callef;, the effective energy. For a
are provided in defined energy ranges by instruments onpower law spectrum this value will be

board satellites. Due to telemetry limitations the energy of  j ' .

each measured particle is not transmitted to the earth. Eacm =Jj(Eef) = A- Eg , @)
particle measurement is allocated to an energy channel with

a certain width. Typically, a large number of particles with wherey is a speciral index and is a normalization. How

different energies is recorded by the particle detector at eacﬂoes one calculate this energy? Here is a simple analysis. We

energy channel. Therefore, it is not straightforward to decideconS|der a non-relativistical case in this study. The integrated

which energy is characteristic for the corresponding energ)ﬂux is expressed as

channel. In practice, to avoid intricate calculations of the ef- Ep

fective energy in case of a power law spectral shape, thef — | A. E~7dE = A (E*VH_ E*VH), 2)
geometric mean is commonly used for calculations of such y—1\"1 2

physical quantities as, for example, the energy density or the
phase space density. In general, this approximation is conLet Em = (E2+ E1)/2, A = (E2 — E1)/2 and we denote
sidered to be pretty good. However, it is not a priori clear A

to which extent it can be used. For wide energy channelsfS = Em ®)

1
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then Eq. R) can be transformed to
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Equation §) leads to
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The spectral indey can be estimated by using fluxes for
two adjacent energy channels and their effective energies
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Egs. @) and @) in terms of Eg:
J
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We simplify this by setting= E»/E1 > 1, from which
E1=Eg/r andEz=r Eg. Equation 7) then leads to

(%)

In order to test how good the geometric-mean approx-
imation is, we take once more the extreme example of
E>=2E1 andy =4; now we have =+/2 and Eq. ) yields
Eeft/ Eq=0.96; this shows thaky is a good estimate dfeft
even for this “extreme” case.

We now examine how different measured particle quanti-
ties change when the geometric-mean approximation is used
for their calculation.
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Let us look at an extreme case where the upper channe} phase space density with geometric-mean energy

threshold is double the lower one (very wide channel). In
this case, wher&>,=2F;, A=E1/2, andE,=1.5E1, we
gets = 1/3. Requiring'y + 1)82/6 < 0.1 (i.e. 10 % accuracy
in Eeff), we obtain this accuracy when< 5.6, which is usu-
ally the case. Thus the mean enerfy, is a good first ap-
proximation of the effective energ¥ies (i.€. Eeff >~ Em).

Therefore a first guess of can be obtained from Eqg6)
usingEeft >~ Erm, and then we can get a better estimat&gf
from the last expression in Ecp)(and iterate again.

It is also possible to estimate the effective energy in a
simpler way assuming for example that 4 then calculate
the E¢ff using the last expression in formul&)( The esti-
mations of the effective energy at differept(2—6.5) and
at § =1/3 show that the values of the effective energy are
different from each other to within less than 10 %, namely
Eefi/ Em > (0.95— 0.86). However, for wider channels this
method cannot be used.

3 Effective energy and geometric-mean energy

The differential flux of particles with velocity is given by

©)

where £ (@) v2, dvdQ is the number of particles per unit
volume with velocity betweenu(, vy, v;) and @, + duy,

vy +dvy, v, +dv;). From the Eq. §) using relationship
dE =mv dv we get the standard relation between differential
flux and phase space density

J(E, QdEdQ = f @) v3dvdQ

2E . _
j==fw. (10)
m
The phase space density can be written in units of ks
as

f= szL . 053707 (11)

eff
wherem is the particle mass in atomic mass unjtsecorded
in cm2s 1srlkeV—1 and Eef the effective energy of the
energy channelin keV. Let us test if approximatiBgyr = Eg

One can see that the calculation of the effective energy idor the phase space density calculations of Cluster/RAPID

either time consuming and for every particle measuremen
we get different values or if using a simpler approximation it
is not applicable for all cases.

measurements iKronberg and Daly2013 is good enough.
Using Eg. 8), the deviation between the power-law phase
space density and geometric-mean phase space density is

An alternative is to use the geometric-mean energy

Eq=+/E1 - E> as an approximation of the effective energy.

This method is for example applied to generate a set of fixeleM = f/fg = Eqg/Eeff =
conversion factors between differential flux and phase space

density for the Cluster/RAPID particle data (S€mnberg
and Daly 2013.

The geometric-mean enerdiy defined above is in fact a
good approximation to the effective enerfjy;. Let us recast
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ryfl _ r7y+l
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(12)
For the previous example df; =2 E; andy =4, the devi-
ation, dey is 1.04. The difference between RAPID energy
channel thresholds is even smaller.
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4.1 Energy density with geometric-mean energy

Energy densityg, for a finite channel should be

E>

I3 =v/fEd3v,

Eq1

(13)

where f is the phase space density of particles with velocity

v, E1 and E; are the energy channel thresholds. The energy

density expressed through the omnidirectional flux will be
the following:

E> E3
e = f\/g\/fj(E)dEdQ = 271\/%/ VEj(E)dE, (14)
Eq E;

where( is the field of view. Here, phase space density,
was converted into differential flux using EQQ). Therefore,

the simple formula to calculate the energy density for the

narrow energy channel will be

e =n~2mvE j(E)AE = nv2m/Eett j(E) AE. (15)

The problem which becomes critical in the case of wide
energy channels is to decide what valuetatfo use here. As
mentioned in SecB for defining the effective energy,, the
geometric-mean energiy = «/ E1 - E> is often used, rather
than a more precise definition from Se2t.The question is
how reliable is this simplification, at which spectral slopes

259

Again we user?=E/E1 > 1, and thenEy = Eg/r and
E>=r Eg, Eq. (16) will take a form:

AEq
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Heregg is the geometric-mean energy density, from Bd) (
with Eg in place ofE = Eef andJ /AE for j(E).

We now apply Eq.&) and get the deviation dewetween
the power-law energy density and the geometric-mean en-
ergy density:

y — 1 ry—3/2 _ r—y+3/2
y —3/2

dey, = ¢g/eg = (18)

ry—l _ r—y+l

Using our previous example of>=2E1 and y =4,
Eqg. (18) yields dey =0.949.

Note that- > 1 and ideally- — 1 for a narrow channel. In
this case dev— 1. However, in case of wide energy channels
or/and soft energy spectra one has to use the formulal@q.
for calculation of the energy density deviation.

5 Example

In study of the ion abundance {CH™) in the terrestrial mag-
netosphere bKronberg et al.(2012 one of the aims was

and energy channel widths is it appropriate to use and how ta comparison of Cluster/RAPID results to those from other

correct for this.

missions. The energy density is commonly used for calcu-

It is reasonable to assume that at, for example, RAPIDlations of the abundance ratios. Therefore, it was necessary

energies £ 30 keV), the differential flux; =A - E~Y has a
power law dependence on energy. Therefore,

E;
s:nVmeﬁA-E_ydE
E1
A
[E

:nVZmy ~ 32

132 —yt3)2
1 - E,

|

(16)

to transfer the intensities used in tKeonberg et al(2012
study in to energy density. There were doubts if one could
use the geometric-mean approximation in this case as the
width of the energy channels is large. Also protons and oxy-
gen have different spectral slopes. Using B®) (ve are able

to demonstrate the impact of this approximation.

We take an arbitrary plasma sheet crossing by Cluster SC4,
for example, from 11:30 to 24:00UT on 2 September 2007
and the aim is to calculate the mean energy density ratio,
Eot/Ey+-

First, we calculate the mean values of the ion intensity at

Let us test how well this exact power-law formula comparesdifferent energies during this plasma sheet crossing and from

with the “geometric-mean energy density” found by setting
E — Egandj(E)— J/(E2 — Ep) in Eq. (15). Recall that
the measured mean differential flux(E; — E1)=A - Ee_ﬁ’/
(from Eq.4), is expressed in terms of the effective energy.
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that we derive the spectral characteristics, namely, the effec-
tive energy for protons and oxygen and the spectral index
using the method described in Sez;tin particular formulas
(Egs.5 and6). The same is done using the geometric-mean
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Table 1.Energy spectral index, effective energy, deviations of phase space density and energy density.

Species Energyrangel Energyrange?2 y/yg Eeit/Eqr Eefi2/Egqe  f1/flg el/elg  f2/f2g e2/e2y

Protons  160-374 keV 374-962 keV 4.86/4.77 225/245 546/600 1.08 0.91 11 0.89
Oxygen 274-414keV 498-638 keV 3.28/3.32 334/337 562/564 1.01 0.98 1.003 0.99

approximation. For the protons we used the energy channels  100.00f ' ' T T T
at 160-374 and 374-962 keV and for the oxygen at 274— '
414 and 498-638 keV. The deviations of the phase space den-

sity and the energy density between those two methods (from I
Egs.12 and18) are also calculated. The obtained values are 10.00 \ Geometric mean intensities J
listed in Tablel. %l 3 i H are not the same as original ]
The geometric mean is a good approximation as the differ- -5
ence between two methods for all quantities is less than 10 %. &
An exception is the 11 % deviation of the proton energy den- Ng 100 ]
sity which is seen for the widest RAPID energy channel with 5, e ]
E1=374 andE;=962keV ¢ =1.6). > -
In order to compare the proton and oxygen observations, %

which do not have the same energy range, we construct from g
channels above a wide energy channel with the same width ~  0.10}
for both species (274-955 keV), see detailed description in ;
Kronberg et al(2012).

Using Eqg. (5) and the assumption that the effective en-

ergy is calculated as the geometric mean, the energy density 0.01 . L
ratio of oxygen to protons will become a simple relation: EeqH’ E, 1000
N . Energy, keV
got 7/2mo - VEes - JO AE _ 4 Jo (19) _
ey = 7 /2Zmp - /et - JH AE i Fig. 1. Mean energy spectra (274-955keV) for the protons and

oxygen for the time period from 11:30 to 24:00UT on 2 Septem-
However, the energy channels are wide, the spectral ipdex ber 2007, observed by Cluster, SC4. The effective endigybased
is different for oxygen and protons (in this case it is not clearon geometric-mean assumption and its corresponding proton and
if one can use Eq1Q)), or the energy density ratigy+ /ey+ oxygen intensities are denoted by red colour. There is a mismatch
calculated in this way will significantly deviate from those between_original intens_ities and intensities which correspond to the
which are based on the geometric-mean assumption. geometric-mean effective energy.

Assuming that the proton and oxygen distributions for
the construct_ed wide energy channe_l have the same spectrg} y, the energy density deviates12—20 % for protons and
slopes as derived above, we can estimate the deviation of the . ;

. ; .~ ~5-16 % for oxygen. The phase space density deviates
effective energy from the geometric-mean energy. Effectlvezs% for protons anek 0—15 % for oxygen
energy for the protons is 430 keV, for the oxygen 479 keV. '
These are~ 15 % and~ 8 % different from the geometric-
mean energy, which is 511 keV. The corresponding energys Conclusions
spectra with denoted effective energies are shown inFig.
The phase space density deviatiffyy is 1.17 and 1.08 for  The geometric-mean approximation is a very good approx-
protons and oxygen, respectively. The energy density deviimation of the effective energy at the power law spectral
atione/eg is 0.83 and 0.89 for protons and oxygen, respec-slopes. This can be used for the calculation of phase space
tively. The deviation of the energy density ratig+ /e+ due  density and energy density from Cluster/RAPID ion mea-
to the different spectral slope of proton and oxygen in this ex-surements with prescribed energy thresholisly and Kro-
ample is 6 %. nberg 2010. The derived correction is needed for rather

Assuming the range of =2-4.5 for O" andy =3.5-6.5  extraordinary cases of an energy channel width (as e.qg. for
for H™ we get the spread of the deviations of the energymerged RAPID channels) and soft spectral slope.
density ratio G/H* up to 19 % with the mean value 7 %
which is less than the statistical error bar of the RAPID mea-
surements. Therefore, the Eq9) can be used as an approx-
imation of the energy density ratig,+ /sy+. For this spread
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