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Abstract. For energetic particle measurements whose spec-
tra follow a power law, it is often challenging to define a char-
acteristic (“effective”) energy of an energy channel. In order
to avoid time-consuming calculations, the geometric mean is
often used as an approximation for the effective energy. This
approximation is considered to be pretty good. It is, how-
ever, potentially inadequate in cases with wide energy chan-
nels and soft spectral slopes. In order to determine the limits
of the goodness of the approximation, we derive formulas to
calculate the deviation of the effective energy, phase space
density and energy density based on the geometric-mean ap-
proximation from those based on the power law. The results
show that the geometric-mean approximation is usually ad-
equate and that corrections are needed only in extraordinary
cases.

1 Introduction

Particle measurements for the study of space plasma physics
are provided in defined energy ranges by instruments on-
board satellites. Due to telemetry limitations the energy of
each measured particle is not transmitted to the earth. Each
particle measurement is allocated to an energy channel with
a certain width. Typically, a large number of particles with
different energies is recorded by the particle detector at each
energy channel. Therefore, it is not straightforward to decide
which energy is characteristic for the corresponding energy
channel. In practice, to avoid intricate calculations of the ef-
fective energy in case of a power law spectral shape, the
geometric mean is commonly used for calculations of such
physical quantities as, for example, the energy density or the
phase space density. In general, this approximation is con-
sidered to be pretty good. However, it is not a priori clear
to which extent it can be used. For wide energy channels,

the approximation is not necessarily always good. Also, soft
spectral slopes can lead to significant deviations.

In this paper, we start by showing how the effective energy
is derived for a power law spectrum. We then derive formulas
that can be used to assess the goodness of the geometric-
mean approximation for calculating the effective energy, the
phase space density and the energy density.

This can be especially helpful for the cases of the wide en-
ergy channels at soft power law spectral slopes. This method
can be in particular applied to the energetic ion data from the
Research with Adaptive Particle Imaging Detector (RAPID)
instrument (seeWilken et al., 2001) onboard the Cluster
satellites (Escoubet et al., 1997).

2 Effective energy

In practice what one measures is the integrated fluxJ within
an energy channel of limitsE1 andE2. The derived mean
differential fluxj = J/1E then needs to be assigned to some
energy value, which we callEeff, the effective energy. For a
power law spectrum this value will be

J

E2 − E1
= j (Eeff) = A · E

−γ

eff , (1)

whereγ is a spectral index andA is a normalization. How
does one calculate this energy? Here is a simple analysis. We
consider a non-relativistical case in this study. The integrated
flux is expressed as

J =

E2∫
E1

A · E−γ dE =
A

γ−1

(
E

−γ+1
1 − E

−γ+1
2

)
. (2)

Let Em = (E2 + E1)/2, 1 = (E2 − E1)/2 and we denote

δ =
1

Em
(3)
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then Eq. (2) can be transformed to

J

E2 − E1
=

A

γ − 1
·
(1− δ)−γ+1

− (1 + δ)−γ+1

2δ
E

−γ
m

≡ A · E
−γ

eff . (4)

Equation (4) leads to(
Eeff

Em

)−γ

=
(1 − δ)−γ+1

− (1 + δ)−γ+1

2δ(γ − 1)

' 1 +
γ (γ + 1)δ2

6
+ . . .

Eeff

Em
' 1 −

(γ + 1)δ2

6
+ . . . (5)

The spectral indexγ can be estimated by using fluxes for
two adjacent energy channels and their effective energies

γ =
ln(j1/j2)

ln
(
Eeff2/Eeff1

) . (6)

Let us look at an extreme case where the upper channel
threshold is double the lower one (very wide channel). In
this case, whereE2 = 2E1, 1 =E1/2, andEm = 1.5E1, we
getδ = 1/3. Requiring(γ + 1)δ2/6< 0.1 (i.e. 10 % accuracy
in Eeff), we obtain this accuracy whenγ < 5.6, which is usu-
ally the case. Thus the mean energy,Em is a good first ap-
proximation of the effective energy,Eeff (i.e.Eeff ' Em).

Therefore a first guess ofγ can be obtained from Eq. (6)
usingEeff ' Em, and then we can get a better estimate ofEeff
from the last expression in Eq. (5) and iterate again.

It is also possible to estimate the effective energy in a
simpler way assuming for example thatγ = 4 then calculate
the Eeff using the last expression in formula (5). The esti-
mations of the effective energy at differentγ (2–6.5) and
at δ = 1/3 show that the values of the effective energy are
different from each other to within less than 10 %, namely
Eeff/Em ' (0.95− 0.86). However, for wider channels this
method cannot be used.

3 Effective energy and geometric-mean energy

One can see that the calculation of the effective energy is
either time consuming and for every particle measurement
we get different values or if using a simpler approximation it
is not applicable for all cases.

An alternative is to use the geometric-mean energy
Eg =

√
E1 · E2 as an approximation of the effective energy.

This method is for example applied to generate a set of fixed
conversion factors between differential flux and phase space
density for the Cluster/RAPID particle data (seeKronberg
and Daly, 2013).

The geometric-mean energyEg defined above is in fact a
good approximation to the effective energyEeff. Let us recast

Eqs. (2) and (4) in terms ofEg:

J

E2 − E1
= A · E

−γ

eff

=
A

E2 − E1

E
−γ+1
g

γ − 1
×

[(
E1/Eg

)−γ+1
−

(
E2/Eg

)−γ+1
]
. (7)

We simplify this by settingr2 =E2/E1 > 1, from which
E1 =Eg/r andE2 = r Eg. Equation (7) then leads to(

Eeff

Eg

)−γ

=
1

γ − 1

rγ−1
− r−γ+1

r − r−1
→ 1 asr → 1. (8)

In order to test how good the geometric-mean approx-
imation is, we take once more the extreme example of
E2 = 2E1 andγ = 4; now we haver =

√
2 and Eq. (8) yields

Eeff/Eg = 0.96; this shows thatEg is a good estimate ofEeff
even for this “extreme” case.

We now examine how different measured particle quanti-
ties change when the geometric-mean approximation is used
for their calculation.

4 Phase space density with geometric-mean energy

The differential flux of particles with velocityv is given by

j (E, �)dE d� = f (v) v3dvd� (9)

where f (v)v2, dv d� is the number of particles per unit
volume with velocity between (vx , vy , vz) and (vx + dvx ,
vy + dvy , vz + dvz). From the Eq. (9) using relationship
dE =mv dv we get the standard relation between differential
flux and phase space density

j =
2E

m2
f (v). (10)

The phase space density can be written in units of km−6 s3

as

f = m2 j

Eeff
· 0.53707, (11)

wherem is the particle mass in atomic mass units,j recorded
in cm−2 s−1 sr−1 keV−1 andEeff the effective energy of the
energy channel in keV. Let us test if approximationEeff =Eg
for the phase space density calculations of Cluster/RAPID
measurements inKronberg and Daly(2013) is good enough.
Using Eq. (8), the deviation between the power-law phase
space density and geometric-mean phase space density is

devf = f/fg = Eg/Eeff =

(
1

γ − 1

rγ−1
− r−γ+1

r − r−1

)1/γ

.

(12)

For the previous example ofE2 = 2E1 andγ = 4, the devi-
ation, devf is 1.04. The difference between RAPID energy
channel thresholds is even smaller.
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4.1 Energy density with geometric-mean energy

Energy density,ε, for a finite channel should be

ε =

E2∫
E1

f E d3v, (13)

wheref is the phase space density of particles with velocity
v, E1 andE2 are the energy channel thresholds. The energy
density expressed through the omnidirectional flux will be
the following:

ε =

E2∫
E1

√
m

2

√
Ej(E)dE d� = 2π

√
m

2

E2∫
E1

√
Ej(E)dE, (14)

where� is the field of view. Here, phase space density,f ,
was converted into differential flux using Eq. (10). Therefore,
the simple formula to calculate the energy density for the
narrow energy channel will be

ε = π
√

2m
√

Ej(E)1E = π
√

2m
√

Eeff j (E)1E. (15)

The problem which becomes critical in the case of wide
energy channels is to decide what value ofE to use here. As
mentioned in Sect.3 for defining the effective energy,E, the
geometric-mean energy,Eg =

√
E1 · E2 is often used, rather

than a more precise definition from Sect.2. The question is
how reliable is this simplification, at which spectral slopes
and energy channel widths is it appropriate to use and how to
correct for this.

It is reasonable to assume that at, for example, RAPID
energies (> 30 keV), the differential fluxj =A · E−γ has a
power law dependence on energy. Therefore,

ε = π
√

2m

E2∫
E1

√
EA · E−γ dE

= π
√

2m
A

γ − 3/2

[
E

−γ+3/2
1 − E

−γ+3/2
2

]
. (16)

Let us test how well this exact power-law formula compares
with the “geometric-mean energy density” found by setting
E → Eg andj (E) → J/(E2 − E1) in Eq. (15). Recall that
the measured mean differential fluxJ/(E2 − E1) =A · E

−γ

eff
(from Eq.4), is expressed in terms of the effective energy.

Again we user2 =E2/E1 > 1, and thenE1 = Eg/r and
E2 = r Eg, Eq. (16) will take a form:

ε = π
√

2m
AE

−γ+3/2
g

γ − 3/2

[(
E1/Eg

)−γ+3/2
−

(
E2/Eg

)−γ+3/2
]

=

{
π

√
2m

√
Eg

(
A · E

−γ

eff

)
1E

}
×

1

γ − 3/2

Eg

1E

(
Eg

Eeff

)−γ (
rγ−3/2

− r−γ+3/2
)

=

{
π

√
2m

√
Eg (J/1E)1E

}
×

1

γ − 3/2

(
Eg

Eeff

)−γ (
rγ−3/2

− r−γ+3/2

r − r−1

)
= εg

1

γ − 3/2

(
Eg

Eeff

)−γ (
rγ−3/2

− r−γ+3/2

r − r−1

)
. (17)

Hereεg is the geometric-mean energy density, from Eq. (15)
with Eg in place ofE = Eeff andJ/1E for j (E).

We now apply Eq. (8) and get the deviation devε between
the power-law energy density and the geometric-mean en-
ergy density:

devε = ε/εg =
γ − 1

γ − 3/2

rγ−3/2
− r−γ+3/2

rγ−1 − r−γ+1
. (18)

Using our previous example ofE2 = 2E1 and γ = 4,
Eq. (18) yields devε = 0.949.

Note thatr > 1 and ideallyr → 1 for a narrow channel. In
this case devε → 1. However, in case of wide energy channels
or/and soft energy spectra one has to use the formula (Eq.18)
for calculation of the energy density deviation.

5 Example

In study of the ion abundance (O+/H+) in the terrestrial mag-
netosphere byKronberg et al.(2012) one of the aims was
a comparison of Cluster/RAPID results to those from other
missions. The energy density is commonly used for calcu-
lations of the abundance ratios. Therefore, it was necessary
to transfer the intensities used in theKronberg et al.(2012)
study in to energy density. There were doubts if one could
use the geometric-mean approximation in this case as the
width of the energy channels is large. Also protons and oxy-
gen have different spectral slopes. Using Eq. (18) we are able
to demonstrate the impact of this approximation.

We take an arbitrary plasma sheet crossing by Cluster SC4,
for example, from 11:30 to 24:00 UT on 2 September 2007
and the aim is to calculate the mean energy density ratio,
εO+/εH+ .

First, we calculate the mean values of the ion intensity at
different energies during this plasma sheet crossing and from
that we derive the spectral characteristics, namely, the effec-
tive energy for protons and oxygen and the spectral indexγ

using the method described in Sect.2, in particular formulas
(Eqs.5 and6). The same is done using the geometric-mean
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Table 1.Energy spectral indexγ , effective energy, deviations of phase space density and energy density.

Species Energy range 1 Energy range 2 γ /γg Eeff1/Eg1 Eeff2/Eg2 f 1/f 1g ε1/ε1g f 2/f 2g ε2/ε2g

Protons 160–374 keV 374–962 keV 4.86/4.77 225/245 546/600 1.08 0.91 1.1 0.89
Oxygen 274–414 keV 498–638 keV 3.28/3.32 334/337 562/564 1.01 0.98 1.003 0.99

approximation. For the protons we used the energy channels
at 160–374 and 374–962 keV and for the oxygen at 274–
414 and 498–638 keV. The deviations of the phase space den-
sity and the energy density between those two methods (from
Eqs.12 and18) are also calculated. The obtained values are
listed in Table1.

The geometric mean is a good approximation as the differ-
ence between two methods for all quantities is less than 10 %.
An exception is the 11 % deviation of the proton energy den-
sity which is seen for the widest RAPID energy channel with
E1 = 374 andE2 = 962 keV (r = 1.6).

In order to compare the proton and oxygen observations,
which do not have the same energy range, we construct from
channels above a wide energy channel with the same width
for both species (274–∼ 955 keV), see detailed description in
Kronberg et al.(2012).

Using Eq. (15) and the assumption that the effective en-
ergy is calculated as the geometric mean, the energy density
ratio of oxygen to protons will become a simple relation:

εO+

εH+

=
π

√
2mO ·

√
Eeff · J O+

1E

π
√

2mH ·
√

Eeff · J H+

1E
=

4 · J O+

J H+
. (19)

However, the energy channels are wide, the spectral indexγ

is different for oxygen and protons (in this case it is not clear
if one can use Eq. (19)), or the energy density ratioεO+/εH+

calculated in this way will significantly deviate from those
which are based on the geometric-mean assumption.

Assuming that the proton and oxygen distributions for
the constructed wide energy channel have the same spectral
slopes as derived above, we can estimate the deviation of the
effective energy from the geometric-mean energy. Effective
energy for the protons is 430 keV, for the oxygen 479 keV.
These are∼ 15 % and∼ 8 % different from the geometric-
mean energy, which is 511 keV. The corresponding energy
spectra with denoted effective energies are shown in Fig.1.
The phase space density deviationf/fg is 1.17 and 1.08 for
protons and oxygen, respectively. The energy density devi-
ation ε/εg is 0.83 and 0.89 for protons and oxygen, respec-
tively. The deviation of the energy density ratioεO+/εH+ due
to the different spectral slope of proton and oxygen in this ex-
ample is 6 %.

Assuming the range ofγ = 2–4.5 for O+ andγ = 3.5–6.5
for H+ we get the spread of the deviations of the energy
density ratio O+/H+ up to 19 % with the mean value∼ 7 %
which is less than the statistical error bar of the RAPID mea-
surements. Therefore, the Eq. (19) can be used as an approx-
imation of the energy density ratioεO+/εH+ . For this spread
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Fig. 1. Mean energy spectra (274–955 keV) for the protons and
oxygen for the time period from 11:30 to 24:00 UT on 2 Septem-
ber 2007, observed by Cluster, SC4. The effective energy,Eg, based
on geometric-mean assumption and its corresponding proton and
oxygen intensities are denoted by red colour. There is a mismatch
between original intensities and intensities which correspond to the
geometric-mean effective energy.

of γ , the energy density deviates∼ 12–20 % for protons and
∼ 5–16 % for oxygen. The phase space density deviates∼ 9–
25 % for protons and∼ 0–15 % for oxygen.

6 Conclusions

The geometric-mean approximation is a very good approx-
imation of the effective energy at the power law spectral
slopes. This can be used for the calculation of phase space
density and energy density from Cluster/RAPID ion mea-
surements with prescribed energy thresholds (Daly and Kro-
nberg, 2010). The derived correction is needed for rather
extraordinary cases of an energy channel width (as e.g. for
merged RAPID channels) and soft spectral slope.
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