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Abstract. As the Martian atmosphere is observed in ever
greater detail, more realistic computer models are required to
interpret these measurements. Physical exchange processes
between the atmosphere’s lower boundary and the surface
are often simplified. This is because the atmospheric calcu-
lations can describe the behaviour of the atmosphere accu-
rately in many cases and simplifying the boundaries saves
computing resources. However, the vertical heterogeneity of
the subsurface (such as the presence of dust and ice lay-
ers) will interact via heat and mass transfer with the atmo-
sphere. Here a new realistic numerical thermal conductivity
scheme is introduced for use with a 1-D atmospheric col-
umn model useful for investigating the subsurface for lay-
ered material and to provide more accurate modelling of the
Martian atmosphere. The model with the updated scheme
produces results that are identical to the previous versions
of the model in identical (non-layered) conditions. The up-
dated model fits well to Viking 1 temperature data from the
atmosphere using realistic thermal parameters. Introducing
layered material, with different thermal properties, produces
noticeable changes in the maximum and diurnal temperatures
when changing the thickness of its top layer. The time of
maximum surface temperature is only significantly changed
when the thickness of the top layer is a moderate fraction of
the top layer’s skin depth.

1 Introduction

In the early days of Martian research, before the days of
robotic space exploration, the planet received a lot of atten-
tion due to its dynamic surface features as observed through

telescopes as reviewed by Sheenan (1996). We now know,
from spacecraft observations, that these changing features
are due to clouds and dust in the atmosphere (Ruff and Chris-
tensen, 2002). These are driven by the thermal and mechani-
cal coupling between the atmosphere and surface (Sagan and
Pollack, 1967) and not, for example, by vegetation (Sinton,
1958). It is important to determine the processes that drive
the coupling between the surface and atmosphere to under-
stand the water cycle, habitability, evolution of the climate
and hazardous conditions for in situ exploration (Interna-
tional Medusa Team et al., 2011). The surface–atmosphere
interactions are driven by the solar insolation together with
the atmosphere whose properties, such as pressure and tem-
perature, vary on daily and seasonal time scales much more
than on Earth (e.g. Harri et al., 1998). Investigations of
these Martian surface–atmosphere interactions call for tight
coupling of in situ observations and modelling efforts (e.g.
Paton, 2012; Harri, 2005).

Layered subsurface thermal schemes have been incorpo-
rated in atmospheric models to study the coupling of the
Martian atmosphere and it subsurface. These have been used
for a variety of purposes such as to understand the global
distribution of subsurface water ice, the role of the regolith
in controlling the abundance of water vapour in the atmo-
sphere and the constraining of the horizontal/vertical hetero-
geneity of the Martian surface (Putzig and Mellon, 2007).
The models have been used to investigate large scale prop-
erties and trends of the subsurface and atmospheric proper-
ties using mostly spacecraft observations from orbit around
Mars. With an increasing number of in situ surface and near
surface temperature measurements by landers (Harri et al.,
1998) it will be possible to characterise the thermal response
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18 M. D. Paton et al.: High-fidelity subsurface thermal model

of a variety of surface and subsurface types. This will be
useful for interpreting local heterogeneities on near-surface
atmospheric measurements, for improving the accuracy of
forecasts and as ground truths for interpreting measurements
made from orbit.

To more effectively investigate the coupling of the at-
mosphere and subsurface, we have updated the University
of Helsinki (UH) 1-D column atmospheric model. This has
been successfully used for characterisation of local atmo-
spheric behaviour from in situ measurements by landers on
Mars (Savij̈arvi, 1999; Savij̈arvi and Kauhanen, 2008). The
model has been used extensively for simulating the Mar-
tian atmosphere. It includes predictive equations for the wind
components, temperature, specific humidity and ice mixing
ratio (Savij̈arvi, 1999). It includes a long-wave and a short-
wave radiation scheme and can take in the effect of CO2-H2O
and dust in the atmosphere. A turbulence scheme is included
based on Monin–Obukhov and mixing-length approaches for
the lower layers and higher layers, respectively. The thermal
diffusion within the subsurface utilises originally a five-layer
Crank–Nicholson method and the energy balance at the sur-
face to predict the surface temperature. Sublimation and con-
densation is modelled from the surface only using a constant
soil moisture fraction.

Here a high fidelity numerical thermal conductivity
scheme is added that allows thin layers to be modelled each
with individual thermal properties. The scheme is designed
in such a way that temperature dependent thermal proper-
ties can also be simulated. The numerical properties of the
thermal scheme and the validation of the column model are
investigated for the Viking 1 landing site. This is because the
Viking 1 site is well characterised and a long time series of
temperature measurements were made at this location.

2 Thermal properties of the Martian subsurface

The temperature of the Martian surface is controlled by the
energy balance at the surface. Heat is transferred upwards
and outwards into the environment above the surface, i.e. the
“sky”, that includes the atmosphere and perhaps obscuring
objects that may be in the vicinity (e.g. rocks or parts of a
spacecraft structure). The temperature will also be dependent
on heat transferred downwards into the subsurface that may
be composed of materials that vary in their thermal proper-
ties with depth gradually, as with a mixture of materials, or
change abruptly, as with layered material. On Mars the domi-
nant heat transfer mechanisms into the “sky” are the emission
and absorption of radiation because convection is a relatively
inefficient mechanism for the transfer of heat away from the
surface due to the low density of the Martian atmosphere. At
the Pathfinder site it was found the wind-dependent sensible
heat flux was found to be only a few percent of the net out-
going heat flux from the surface (Savijärvi and M̈aätẗanen,
2010). At the Viking 1 landing site convection was found

to be three times more vigorous than on Earth but still only
around 15 % of the net outgoing heat flux from the surface
(Sutten et al., 1978). These figures are for relatively calm
conditions. However, under certain conditions, such as dur-
ing dust storm formation, localised convective activity may
be more vigorous and large wind speeds, in places, would
increase the convective transport of heat from the surface
(Fernandez, 1998).

The dominant heat transfer mechanism into the subsurface
will be conduction although other mechanisms (like convec-
tion and latent heat) will also contribute, depending on the
subsurface porosity and the amount of volatiles present. The
surface energy balance equation we use is then as follows:

S (1− a)cos(i) − εσT 4
0 +

kT ,zdT

dz

+L
dm

dt
− ρcvh(T0 − Ta) = 0 (1)

whereS is the incoming solar flux at the current Mars–Sun
distance,a is the albedo,i is the solar incidence angle,ε is the
surface emissivity,σ is the Stefan–Boltzmann constant,T0 is
the surface temperature,kT ,z is the temperature and depth
dependent thermal conductivity, dT /dz is the vertical tem-
perature gradient at the surface,L is the latent heat of CO2
frost, dm/dt is the CO2 frost deposition/sublimation rate,ρ

is the density of the atmosphere at the surface,c is the heat
capacity of the atmosphere,v is the velocity of the wind and
Ta is the temperature of the atmosphere.

The efficiency of radiative heat transfer is dependent on the
optical properties of the surface, such as albedo and emissiv-
ity in Eq. (1), which are in turn dependent on the regolith
physical properties such as composition and microstructure
(e.g. Pitman, 2005). The efficiency of heat conducted into
the subsurface will depend on the thermal properties, such
as conductivity and volumetric heat capacity, which in turn
depends on regolith composition and microstructure (e.g. Pa-
ton et al., 2012). The structure of the surface material can be
consolidated (rock) or granular (sand), which may contain
a large amount of voids. In granular material heat transfer
may be inhibited or enhanced by material filling in the voids
such as gases and liquids (Seiferlin et al., 2008). It is also
possible cementing agents could bond the grains together in-
creasing the heat transfer by thermal conductivity (Seiferlin
et al., 2003; Piqeux and Christensen, 2009).

The thermal inertia of the regolith is a key parameter that
drives the surface–atmosphere exchange processes. It is de-
fined as follows,I = (ρck)0.5, whereρ is the density,c is the
heat capacity andk is the thermal conductivity. The thermal
inertia has been found to be strongly correlated to terrain type
(Mellon et al., 2000). In Fig. 1 the surface temperatures are
plotted versus the corresponding thermal inertia on the Mar-
tian surface calculated using UH 1-D atmospheric model at
the location of the Viking 1 site. The daily and seasonal vari-
ations of insolation will cause a planetary surface tempera-
ture to vary. On Earth the diurnal temperature variation may
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Figure 1. Maximum, minimum and mean annual surface temperatures at the Viking 1 site 19 

plotted against a range of thermal inertia in SI units of J m
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ranges, represented by A, B and C, correspond approximately to terrain types (r). The main 21 

terrain types on Mars are fine dust with few rocks (A), coarse loose particles with scattered 22 

rocks (B), coarse sand with strongly crusted fines, abundant rocks and scattered bedrock (C). 23 
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Fig. 1.Maximum, minimum and mean annual surface temperatures
at the Viking 1 site plotted against a range of thermal inertia in SI
units of J m−2 K−1 s−1/2. The thermal inertia ranges, represented
by A, B and C, correspond approximately to terrain types (r). The
main terrain types on Mars are fine dust with few rocks(A), coarse
loose particles with scattered rocks(B), coarse sand with strongly
crusted fines, abundant rocks and scattered bedrock(C). Above
a thermal inertia of about 1500 J m−2 K−1 s−1/2 the terrain type
would most be probably continuous bedrock or ice.
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Figure 2. Control volumes for modelling the heat transfer in the subsurface. 9 
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Fig. 2. Control volumes for modelling the heat transfer in the sub-
surface.

vary a few degrees in regions, surrounded by ocean, and up to
50 K in desert regions (Price, 1977). On Mars, where much of
the planet is covered by a desert, the daily temperature vari-
ations are larger than on Earth because of the thinner atmo-
sphere. Daily variations in temperature of around 100 K have
been measured at an altitude of 1.5 m above the surface at
the Mars Pathfinder site (Savijärvi, 1999). The ground, con-
sisting of dust, sand, rock and ice, will experience a similar
range of temperatures, if not larger.

The thermal inertia is the square root of the product of con-
ductivity and volumetric heat capacity and is a thermal prop-
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Figure 3. Diagram showing results for temperature of the subsurface with time obtained from 12 

the new scheme. On the left the entire subsurface is made of dust. On the right the first 5 mm 13 

is dust with the rest being rock. 14 
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Fig. 3. Diagram showing results for temperature of the subsurface
with time obtained from the new scheme. On the left the entire sub-
surface is made of dust. On the right the first 5 mm is dust with the
rest being rock.

erty that can be estimated remotely from orbiting spacecraft.
It is a measure of how quickly and by how much the temper-
ature of a material can be changed for a given amount of en-
ergy input. A high thermal inertia indicates a material whose
temperature is difficult to change, i.e. it takes a long time to
reach a maximum temperature which is relatively low. Con-
versely, a low thermal inertia indicates a material whose tem-
perature is easy to change, i.e. it takes a short time to reach
a maximum temperature which is relatively high. A single
temperature measurement can be used to derive the thermal
inertia by fitting the points to reference curves from climate
models (Fergason et al., 2006). The thermal inertia of the
Martian surface shows a clear temperature dependence (e.g.
Piqueux and Christensen, 2011).

The temperature dependence of the conductivity of partic-
ulate basalt in a Lunar environment is significant, however on
Mars the gas phase tends to reduce this effect (Fountain and
West, 1970). The variation of heat capacity at low tempera-
tures for basalt is significant in a Lunar environment (Rob-
bie et al., 1970). The gas phase will have a negligible ef-
fect in the Martian environment so will contribute more to
the temperature dependence of the thermal inertia in a Mar-
tian environment. This may cause errors in interpretation of
observations of surface temperatures on Mars (Piqueux and
Christensen, 2011).

The Martian surface is covered by dust and sand that is
composed largely of a silicate framework that is combined
with carbonate, sulphate, pyroxene and olivine. Water and
carbon dioxide ices dominate the surface in the polar regions.
The thermal inertia of the surface of Mars ranges from 30 to
3000 J m−2 K−1 s0.5 (Jakosky et al., 2000) which represents
surface types, in order of increasing thermal inertia, of dust,
sand, solid rock and ices. Over seasonal time scales the heat
will be conducted into the surface down to maybe 50 cm for
dust and several metres for ices. It is known that the near
sub-surface of Mars is not vertically homogeneous as evident
from excavations by the Viking landers, the MER rovers and
Phoenix. For example the Viking lander dug trenches with
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Figure 4. The sensitivity of the surface temperature to variations in the depth of the fixed 18 

temperature lower boundary condition (left) and the sensitivity of the model on the thickness 19 

of the layers (right). The difference in surface temperature for the left hand figure was 20 

calculated by running the model with different boundary depths and subtracting the results 21 

from a control simulation whose boundary temperature was set at a depth of 2 m. The right 22 

hand figure was calculated by subtracting the results from runs of different level thicknesses 23 

from a control simulation with a thickness set at 2 mm.   24 
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Fig. 4. The sensitivity of the surface temperature to variations in the depth of the fixed temperature lower boundary condition (left) and the
sensitivity of the model on the thickness of the layers (right). The difference in surface temperature for the left hand figure was calculated
by running the model with different boundary depths and subtracting the results from a control simulation whose boundary temperature was
set at a depth of 2 m. The right hand figure was calculated by subtracting the results from runs of different level thicknesses from a control
simulation with a thickness set at 2 mm.

depths up to 23 cm and encountered cross bedding, layers
of crusts and blocky slabs during excavations (Moore et al.,
1982). The MER rover dug trenches with depths of between 6
and 11 cm with its wheels exposing sulphate deposits (Wang
et al., 2006). The Phoenix lander dug trenches to depths of
a few centimetres in a polygon and dug a trench down to
18 cm in a trough between polygons. Trenches in the poly-
gon uncovered water-ice bearing soils under crusty to cloddy
soils but no icy soils were found in the trough between poly-
gons (Ardvidson et al., 2009). Both Phoenix and Viking 2
(48◦ N) observed thin layers of frost forming on top of the re-
golith (Svitek and Murray, 1990; Smith et al., 2009). It may
be possible that the topmost surface layer, such as dust on
rock, masks the underlying material when using remote ther-
mal measurements to determine the bulk surface composi-
tion. Water ice is believed, from interpretation of orbital ob-
servations, to exist under the surface beyond the polar regions
and to within 25◦ of the equator (Vincendon et al., 2010).

3 A numerical scheme for thermal modelling of the
subsurface

Here the numerical thermal conductivity scheme for the sub-
surface, in the UH 1-D atmospheric model, is updated to
enable the modelling of composite materials. The ability to
take into account the temperature dependence of their ther-
mal properties is also included. The new scheme is based on
the control volume method, described in Patankar (1980). A
schematic of the control volumes is shown in Fig. 2.

Each control volume can have unique thermal properties of
density (ρ), heat capacity (c) and conductivity (k) assigned
to them. The thermal conductivity through the boundaries
of the control volumes is calculated using a floating mean.
For example the thermal conductivity of the upper wall of
the control volume centred onzP in Fig. 2 is defined as
kN = 2kPkN/(kN + kP) wherekP is the conductivity in the
centre of the control volume centred onzP, kN is the conduc-
tivity at the centre of the upper control volume andkS is the
conductivity at the centre of the lower control volume. The
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Figure 5. Comparison of surface temperature calculated with and without the atmosphere. The 10 

dotted line shows the surface temperature when there is an atmosphere present. The solid line 11 

shows the surface temperature for when there is no atmosphere present. 12 
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Fig. 5.Comparison of surface temperature calculated with and with-
out the atmosphere. The dotted line shows the surface temperature
when there is an atmosphere present. The solid line shows the sur-
face temperature for when there is no atmosphere present.

1-D heat conduction equation solved by our scheme is the
following:

ρc
∂T

∂t
=

∂T

∂z

(
k
∂T

∂z

)
+ S. (2)

Equation (2) withS = 0 is integrated over the control vol-
umes to obtain the following expression:

ρc
1x

1t

(
T 1

P − T 0
P

)
= f

[
ke

(
T 1

N − T 1
P

)
(δz)n

−
kw

(
T 1

P − T 1
S

)
(δz)s

]

+(1− f )

[
ke

(
T 0

N − T 0
P

)
(δz)n

−
kw

(
T 0

P − T 0
S

)
(δz)s

]
. (3)

The fully implicit version (f = 1) is chosen over the explicit
(f = 0) scheme and Crank–Nicholson (f = 0.5) scheme as
it allows for larger time steps. It is also easier to imple-
ment composite materials and temperature dependent ther-
mal properties. Withf = 1 Eq. (3) becomes the following
expression:

aPTP = aNTN + aSTS+ b (4)

where

aN = kn/(δz)n , aS = ks/(δz)s (5)

a0
P = ρc1z/1t (6)

b = Sc1x + a0
PT 0

P (7)

aP = aN + aS+ a0
P− SP1z. (8)

However, the explicit method is included as an option within
the program. This option was found to be useful as a check
for the implicit scheme when using large time steps. The ex-
plicit scheme is more sensitive to instabilities and produces
easily recognisable unphysical results when run at time steps
that are too large. It is easy to become overconfident when us-
ing the implicit scheme as the instabilities produced at large
time steps by it are not so large and could be misinterpreted
as physical properties or processes.

The surface boundary condition is calculated from the net
energy flux at the surface,Esf, given by the atmospheric
model, and the temperature gradient in the top layer (i.e.
across the uppermost control volume boundary):

T 1
sf = T 1

sub+ Esfksf/δz (9)

whereTsf is the surface temperature andTsub is the tempera-
ture of the first control volume below the surface. The deep
subsurface boundary is set at a constant value that is calcu-
lated from the average yearly temperature which is assumed
to be representative for the deep subsurface (e.g. Bense and
Kooi, 2004).

An example of the results from calculations, using the new
thermal scheme, is shown in Fig. 3. The figure shows a com-
parison between a homogeneous subsurface and a subsurface
with a dust layer on top of a rocky bedrock. While the tem-
perature variation at the surface may be similar for both ex-
amples, the thermal behaviour is different in the subsurface.
In Sect. 4 we will examine in detail the effect of subsur-
face layers on the thermal signature of the surface and near-
surface atmospheric temperature.

4 Numerical limits of the model

Figure 4 shows the sensitivity of the temperature calculated
by the model on different parameters such as the subsurface
boundary depth and layer thickness. A control model was
used that calculated the temperature of the surface over a pe-
riod of one Martian year. Each parameter was varied in turn
and the results of the altered model were subtracted from
the control model. The most important model parameters, in
order to enable the most efficient use of computational re-
sources, is the number of levels and slab thickness.

The depth of the boundary condition for our high fidelity
thermal scheme was investigated by varying the depth of the
lower boundary condition. The depth of the boundary level
was fixed at the seasonal thermal skin depth. The skin depth
is the depth of penetration of a sinusoidal temperature change
at the surface. At depths on the order of the thermal skin
depth, the temperature will remain constant, essentially rep-
resenting the average annual temperature of the surface. At
much larger depths, the temperature will depend on internal
heat sources and subsurface evolution. The skin depth can be

www.geosci-instrum-method-data-syst.net/2/17/2013/ Geosci. Instrum. Method. Data Syst., 2, 17–27, 2013
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Figure 6 Comparison between previous version of the 1D model and the model with the 9 

updated thermal scheme. The continuous lines are the previous version of the model and the 10 

crosses (+) are from the new version of the model. In the left hand figure is the surface 11 

temperature and the temperature at 2 m altitude. On the right is the surface temperature, the 12 

temperature at a depth of 14 mm and the temperature at a depth of 50 mm. 13 
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Fig. 6.Comparison between the previous version of the 1-D model and the model with the updated thermal numerical scheme. The continuous
lines are the previous version of the model and the crosses (+) are from the new version of the model. In the left hand figure is the surface
temperature and the temperature at 2 m altitude. On the right is the surface temperature, the temperature at a depth of 14 mm and the
temperature at a depth of 50 mm.
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Figure 7. Martian atmospheric temperature measured by the Viking 1 lander compared to the 17 

modified column model. The same thermal inertia was used for each plot (219 W m-
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K
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). The thermal inertia is expected to change during the seasons due to exchange of volatiles 19 

between the regolith and the atmosphere as well as a varying amount of dust on the surface. 20 

The amplitude of the temperature variations from the model match those of the observations 21 

quite well. The absolute temperatures also fit quite well except for Ls 282 (bottom-left) where 22 

the deep subsurface boundary was technically set at 170 K to obtain a reasonable match 23 

whereas the others where set at 220 K.   24 
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Fig. 7.Martian atmospheric temperature measured by the Viking 1 lander compared to the modified column model. The same thermal inertia
was used for each plot (219 W m−2 s1/2 K−1). The thermal inertia may be expected to change during the seasons due to exchange of volatiles
between the regolith and the atmosphere as well as a varying amount of dust on the surface. The amplitude of the temperature variations from
the model match those of the observations quite well. The absolute temperatures also fit quite well except for Ls 282 (bottom-left) where the
deep subsurface boundary was technically set at 170 K to obtain a reasonable match whereas the others where set at 220 K.
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Figure 8. Surface temperature differences for temperature dependent and temperature 12 

independent thermal properties for dust, sandy and rocky surfaces. For a model using constant 13 

thermal properties there is a single value of thermal inertia in the legend. This corresponds to 14 

the value at 2 am. For a model using temperature dependent thermal inertia there are two 15 
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Fig. 8. Surface temperature differences for temperature dependent
and temperature independent thermal properties for dust, sandy and
rocky surfaces. For a model using constant thermal properties there
is a single value of thermal inertia in the legend. This corresponds
to the value at 2 a.m. For a model using temperature dependent ther-
mal inertia there are two values in the legend. The minimum value
corresponds to the minimum temperature and the maximum value
corresponds to the maximum temperature. The units of thermal in-
ertia for the values in the legend are J m−2 K−1 s−0.5.

calculated using the following formula:

l =

√
αP

π
(10)

whereα is the thermal diffusivity andP is the period of
Mars rotation. The thermal diffusivity is defined as follows,
α = k/(ρc). The thermal diffusivity of the Viking 1 lan-
der site is most likely somewhere around 2× 10−7 m2 s−1

(Savij̈arvi, 1995) which is representative of rocky sand. For
a Martian year (668 sols), the thermal skin depth would thus
be approximately 200 cm for the annual period (and 8 cm for
the diurnal period).

The depth of the deep subsurface boundary temperature
was increased in the model until the surface temperatures
were within 0.1 K of the surface temperature from a con-
trol model whose deep level boundary temperature was set at
a depth of the seasonal skin depth (200 cm). This condition
was found to be met at a depth of 100 cm. The temperature of
this boundary condition was set to 220 K which is the aver-
age annual surface temperature at the latitude of the Viking 1
landing site (22◦ N) and is representative of the lower bound-
ary temperature.

Subsurface thermal characterisation requires thin slabs
(i.e. fine grid) for accurate physical modelling of the large
temperature gradient near surface and also deeper down in

Table 1. Thermal properties used in the simulations of dust layers
on rock. The microstructural parameter (Hertz factor) value of 0.09
was used to calculate the dust thermal conductivity. A porosity of
0.5 was used to calculate the dust density.

Thermal property Dust Rock

Conductivity (W m−1 K−1) 0.18 2
Density (kg m−3) 1500 3000
Heat capacity (J kg−1 K−1) 533 533
Volumetric heat capacity (J m−3 K−1) 8× 105 16× 105

Thermal Inertia (W m−2 s1/2 K−1) 380 1788

our case for modelling possible fine structures in the subsur-
face structure. There will be a lower limit to ensure numerical
stability of these thin slabs. With the thermal and insolation
characteristics at the Viking 1 landing site, a slab thickness
of 2 mm was found to be the lowest value for numerical sta-
bility and 9 mm is the upper value for a physically realis-
tic model. The stability criterion for the explicit scheme is
1t<ρc(1x)2/2k whereρc is the volumetric heat capacity,
1x is the level thickness and 2k is the conductivity multi-
plied by 2. For example, for a volumetric heat capacity of
0.8× 105 J m−3 K−1 and a thermal conductivity of 0.18 W
m−1 K−1 the time step for a thickness of 2 mm is 9 s. This
result was used to initialise the simulations featured in Fig. 4,
except the lower boundary which was set to a depth of 2 m.
This then allowed us to explore the effect of increasing the
layer thickness and the depth of the lower boundary. Con-
sequently all the simulations of the Martian atmosphere and
subsurface in this paper were made with a layer thickness of
2 mm, allowing us to explore the effect of dust layers on rock,
and to maintain stability when simulating the atmosphere.

Figure 5 shows the diurnal surface temperatures calculated
with the atmosphere present (dotted line) and without the at-
mosphere present (solid line). The atmospheric heat trans-
fer is calculated by the 1-D column model. The relative dif-
ference between the results is of the order of a few degrees
(< 5 K). The calculated temperatures results in a reduced am-
plitude compared to the results under the assumption that no
atmosphere is not present. This is to be expected, because
the atmosphere absorbs some of the solar radiation and also
some of the emitted infrared radiation.

5 Validation of the model

Figure 6 shows a comparison between the previous version
of the UH 1-D model and the updated version with the modi-
fied thermal model for the lower boundary. The models were
applied to the Viking 1 lander site at a latitude of 22◦ N
and a solar longitude of zero,Ls = 0. A thermal inertia of
380 W m−2 s1/2 K−1 and an albedo of 0.24 (Savijärvi, 1995)
was used. Figure 6 shows that the new model produces more
or less identical results to the previous version of the model
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Figure 9. Diurnal temperature profiles at 0 m and 2 m altitude for a range of dust layer 10 

thicknesses on solid rock. Seasonal variation of thermal inertia is to be expected due to a 11 

varying amount of dust on the surface and also exchange of volatiles between the regolith and 12 

the atmosphere. 13 
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Fig. 9. Diurnal temperature profiles at 0 m (left panel) and 2 m (right panel) altitude for a range of dust layer thicknesses on solid rock.
Seasonal variation of thermal inertia is to be expected due to a varying amount of dust on the surface and also exchange of volatiles between
the regolith and the atmosphere.
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Figure 10. Examples of the lag of the temperature maximum time over the diurnal time 10 

period. 11 
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Fig. 10.Examples of the lag of the temperature maximum time over
the diurnal time period.

with less layers. The deepest layer compared, 50 mm below
the surface, shows a slight discrepancy that is probably due
to the finer grid of the new model.

To test our model we then fitted it to Viking 1 temperature
data available at the NASA Planetary Data System from an
altitude of 1.6 m above the surface and derived the thermal
properties of the Martian surface. The Viking 1 temperature
data has been investigated extensively in the literature and is
fairly well understood (Smith, 2008). The data was averaged
over 10 min to filter out the temperature variations due to the
turbulence near the surface. The model temperature was fit-
ted to the measured temperature using the least square fitting
method and varying the thermal inertia for theLs = 191.

Figure 7 shows a fit of the output of the new model, from
an altitude of 2 m, to the Viking 1 temperature data at dif-
ferent times during the first VL-1 Martian year (i.e. sum-
mer, autumn, winter and spring). The average thermal in-
ertia for all the fits to the measurements was calculated to
be 219 W m−2 s1/2 K−1 using an albedo,α = 0.18, and an
opacity,τ = 0.6. The significant decrease in the temperature
variation in the winter is due to the second dust storm that
occurred in the first Martian year of Viking 1’s operation
(Ryan and Henry, 1979). For this we increased the opacity
to, τ = 3.0, which corresponds to derived values during the
known Viking dust storm. Our model produces the correct
range of temperatures but there is an offset in the average
temperature which could be due to cooling due to the large
scale motion of the atmosphere (i.e. winds) that has not been
accounted for in the 1-D model.

To further confirm the model behaviour was stable and
producing realistic results, the temperature dependent ther-
mal properties (TDTPs) were activated in the subsurface
thermal numerical scheme and tested. This allowed us to ex-
plore if TDTPs present any numerical stability issues and to
compare with other published works in this area. The tem-
perature dependent thermal conductivity (TDTC) was mod-
elled using a linear relationship that approximates the trend
of increasing thermal conductivty with temperature that can
be seen in the data for particulate basalt with a particle size
between 37 and 62 µm and a bulk density of 1.5 kg m−3

in a simulated Martian environment obtained by Fountain
and West (1970). The linear relationship for thermal con-
ductivity is kT = T /60 000 + 1/115 which gives a conduc-
tivity value of 0.012 W m−1 K−1 at a temperature of 200
K and a conductivity value of 0.014 W m−1 K−1 at a tem-
perature of 320 K. This amounts to about a 10 % to 20 %
change in thermal conductivity over the temperature ranges
we are calculating. The temperature dependent heat capacity
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(TDHC) was modelled using a linear relationship fitted to
data obtained from by Robbie et al. (1970) for basalt in
a simulated Lunar environment. The linear relationship for
TDHC used here iscT = 2T + 120 which gives a TDHC of
520 J kg−1 K−1 at 200 K and 760 at 320 K. This amounts to
a 25 % to 50 % change in heat capacity over the range of
temperatures we are calculating. The thermal inertia, using
these equations and a bulk density of 1.5 kg m−3, ranges from
about 100 to 130 J m−2 K−1 s−0.5 which would correspond to
a dusty surface.

Figure 8 compares the surface temperatures from a model
with and without TDTPs for dusty, sandy and rocky surfaces.
To obtain thermal inertias appropriate for sandy and rocky
surface, as published relationships are unavailable, the equa-
tion for TDTC was multiplied by a factor of 15 for a sandy
surface and for a factor 330 for a rocky surface. The equa-
tion TDHC remained unchanged as the effect of gas phase
of the specific heat is probably negligible. The model re-
sults shown using temperature independent thermal proper-
ties (TITPs) used a model with thermal properties values cal-
culated using the equations for TDTPs but keeping the tem-
perature fixed so the temperatures at 2 a.m. conincided. This
was done so the temperature difference could be easily seen.
The time was chosen because this is commonly used time for
fitting model diurnal temperature curves to observed temper-
ature from Mars to determine the surface properties such as
grain size. As can be seen in Fig. 8 there is a non-negligible
difference for dust and sandy surfaces.

The maximum difference between temperatures calcu-
lated using a model with TITPs and a model with TDTP
is around 4–5 K for dusty and sandy surface. This agrees
well with more realistic simulations by Piqueux and Chris-
tensen (2011). The model with TITPs produces higher tem-
peratures, during the day, than produced by the model with
TDTPs because as the temperature goes up the thermal iner-
tia increases which in turn tends to cause the material to resist
further temperature changes. For the rocky surface the differ-
ence between a model with TDTP and a model with TITP is
about 0.2 K. This is small because the the temperature varia-
tion through the diurnal cycle is also small. We do not discuss
the problem of interpretation of Martian temperature obser-
vations of the surface here and only note that there is a sig-
nificant difference between models with and without TDTP.
The problem of determining Martian surface properties such
as grain size, fitting models with TITP to observations of the
Martian surface is discussed in detail by Piqueux and Chris-
tensen (2011). They conclude that because the models used
for this task use TITPs obtained from laboratory measure-
ments of analogue materials above room temperature, the
grain sizes are underestimated when interpreting spacecraft
measurements from orbit.

6 Effects of layered material on the surface temperature

A vertically heterogeneous subsurface will produce distinct
diurnal and seasonal thermal signatures such as differences in
the surface temperature variation (Putzig and Mellon, 2007)
and time of maximum temperature. This depends on the
amount of each material present, its depth below the sur-
face and the thickness of the layer. For example one might
expect to find a material on Mars with a low thermal iner-
tia (dust), perhaps of around one skin depth thickness (a few
cm), located on top of a slab of high thermal inertia mate-
rial (rock). As most of the temperature variation will occur
in the top layer one may expect to see the typical signature of
a dusty material, i.e. low thermal conductivity and low vol-
umetric heat capacity. In the morning the heat from the sun
is absorbed and stored in a thin layer near the surface, due
to poor conduction into the subsurface. The stored heat then
increases the temperature by a relatively large amount due to
the low volumetric heat capacity. There is only small time lag
before the surface temperature starts to decrease after noon
(time of maximum insolation) as the heat is quickly radiated
away from the surface.

If the thickness of the dust layer is reduced to some small
fraction of the thermal skin depth, say a few mm, the temper-
ature variation observed on the surface will be strongly in-
fluenced by the high thermal inertia of the rock underneath.
Firstly, the temperature variation will be lower than in a thick
dust layer because heat is conducted into the subsurface. The
volumetric heat capacity of the near subsurface rock will be
high resulting in a small temperature change of the surface
for a given amount of energy. The rocky layer beneath the
dust will store heat for later release in the afternoon. The
surface temperature will continue to rise for some time after
noon (time of maximum insolation) as long as the heat con-
ducted upwards to the surface is higher than the heat radiated
into the sky.

The updated model was used to investigate the effect of a
layered subsurface on the surface and near-surface temper-
atures. Dust layers of varying thickness were placed on top
of rock that was composed of the same rocky material as the
dust. Table 1 lists the thermal properties used to calculate
the thermal parameters for the dust layer simulations. The
dust layer was composed of modelled slabs, each 2 mm in
thickness. So for a dust layer of 1 cm thickness there would
be five modelled slabs in the model and for a dust layer of
2 cm thickness there would be ten modelled slabs. The rock
substrate was modelled with slabs of a thickness of 5 mm.
The dust layer was varied from a thickness of 0 cm to 6 cm
in steps of 2 mm. Diurnal surface temperatures were then
plotted for dust layers varying from 0 cm to 6 cm in 1 cm
steps. The maximum temperature was plotted in 2 mm steps
to make clear the variation in the lag of the maximum tem-
perature as the dust layer decreses in thickness.

Figure 9 shows the results from the simulations with the
dust layers. The figure demonstrates how the temperatures
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vary for a range of dust layer thicknesses on a rocky substrate
underneath. Notice that the surface temperature diurnal range
is greatly affected by the thickness of the dust layer while
the atmospheric temperature ranges less. The lag of the tem-
perature maximum is not significantly affected until the dust
layer is about 2 cm thick. The time of maximum temperature
for both the surface and the atmospheric calculations varies
over a period of about 1.5 h. This is clearer in the atmospheric
temperatures because the curves are closer together.

In Fig. 10 the dust-layer model where the dust layer is set
to 2 cm, is compared to a homogeneous material or “rock”
which has constant thermal properties in the vertical direc-
tion. Even though the amplitude of the temperature variations
is similar in all cases there is a significant lag between the
layered material and the solid material. This is presumably
due to the larger volumetric heat capacity of the “rock” and
its ability to store the heat for later release in the afternoon.

7 Concluding remarks

A high fidelity numerical thermal conductivity scheme was
included in the UH 1-D atmospheric model to enable the in-
clusion of composite materials in the subsurface (e.g. dust–
ice layers) and to more accurately model the temperature
change with time on the surface. The model with the new
thermal scheme reproduces the results from the model with
the previously established thermal scheme in identical condi-
tions. The numerical limits of the new thermal scheme were
explored and the results were found to comply with the well-
known stability limits of the applied numerical method that
have been applied. The model was fitted to spacecraft (VL-1)
data, over diurnal periods, with physically sensible parame-
ters and found to agree with previously published material.

The new model was run with a layer of dust of various
thicknesses on top of rock to investigate features in the tem-
perature variation with time and determine if dust layers on
rock could be distinguished. Hourly temperature measure-
ments of the surface or near surface can be used to deter-
mine if there is a dust cover or not by virtue of a lag in the
maximum temperature.

The model could be applied to spacecraft data to detect
thermal signatures from dust layers on rock or ice. The model
could also presumably be used to more accurately simulate
and predict the atmospheric conditions from past, present and
future in situ measurements.
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