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Abstract. We outline six important hazards that can be en-
countered in econometric modelling of time-series data, and
apply that analysis to demonstrate errors in the empirical
modelling of climate data inBeenstock et al.(2012). We
show that the claim made inBeenstock et al.(2012) as to the
different degrees of integrability of CO2 and temperature is
incorrect. In particular, the level of integration is not constant
and not intrinsic to the process. Further, we illustrate that the
measure of anthropogenic forcing inBeenstock et al.(2012),
a constructed “anthropogenic anomaly”, is not appropriate
regardless of the time-series properties of the data.

1 Introduction

Global temperature records and radiative forcing of green-
house gases (GHGs) are non-stationary time series, the sta-
tistical properties of which invalidate standard inference pro-
cedures that seek to detect relationships between them. Coin-
tegration analysis can be used to overcome the inferential dif-
ficulties resulting from stochastic trends when that is the only
source of non-stationarity, and is applied to test whether there
exist combinations of non-stationary variables that are them-
selves stationary (seeHendry and Juselius, 2001). Cointegra-
tion analysis crucially relies on the time-series properties of
the available data, and while tests can be performed on an es-
timated equation’s residual in bi-variate models, cases with

more than 2 variables require testing in a system setting (see
Engle and Granger, 1987).

In their empirical statistical study of temperature and ra-
diative forcing of greenhouse gases,Beenstock et al.(2012)
present statistical tests that purport to show that these
variables have different integrability properties, and hence
cannot be related unless they polynomially cointegrate.
Beenstock et al.(2012) then show that their constructed mea-
sure of anthropogenic forcing, an “anthropogenic anomaly”,
does not cointegrate with observed temperature, presenting
this as evidence against anthropogenic global warming.

Beenstock et al. (2012) address an interesting question, to
do so they rely heavily on the time-series properties of the
data to reach their conclusions. We show that, consistent with
the existing literature, the claim that all anthropogenic forc-
ing variables are only stationary in second differences is er-
roneous. In particular, this level of integration is not constant
and not intrinsic to the process. Further, we show that the
measure of anthropogenic forcing in Beenstock et al. (2012),
a constructed “anthropogenic anomaly”, is inappropriate re-
gardless of the time-series properties of the data.

The literature on stochastic trends and cointegration differ-
entiates between series being stationary, trend stationary, first
difference stationary, denotedI (1), and stationary in second
differences,I (2). Stationary variables are drawn from distri-
butions that are invariant over time. Trend stationarity im-
plies that a series is stationary once a linear trend component
is removed. Integrability refers to one aspect of the station-
arity properties of a time series. Series that are integrated of
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order one,I (1), and two,I (2), are stationary if differenced
once or twice respectively.1 An I (1) process contains a unit-
root, that is, the characteristic polynomial of the process has
a root at 1. The presence of more than one unit root is in-
dicative of higher order integration (e.g.I (2)). The level of
integration is traditionally determined using unit-root tests.2

Cointegration methods as applied in Beenstock et al. (2012)
require that series first exhibit the same degree of integration
before a meaningful relationship between them can be es-
tablished. Therefore, unit-root tests to determine the level of
integration often play a major part in single-equation cointe-
gration analyses.

In simple zero-dimensional energy balance models, the
time-series properties of radiative forcing should be trans-
ferred onto temperature. This may not hold for a limited
number of observations, sufficiently noisy time series, or if
the model is inappropriate. However,Kaufmann et al.(2013)
provide evidence that this result generalizes to more complex
climate models: the stochastic trend in model temperature is
driven by the stochastic trends in the anthropogenic forcing
series. Thus, in a zero-dimension energy balance model, if
radiative forcing of greenhouse gases wereI (2), and there
is a long-run relationship (cointegration) between such forc-
ing and temperature, then temperature should beI (2) as
well. There could be a long-run relation (cointegration) be-
tween greenhouse gases that are hypothesized to beI (2) and
temperature (hypothesized to beI (1)) if the anthropogenic
forcing series themselves cointegrate to anI (1) process and
this process then cointegrates with temperature. Beenstock
et al. (2012) show in their work that anthropogenic green-
house gas forcings are allI (2), which cointegrate to anI (1)
variable, an “anthropogenic anomaly”. This anthropogenic
variable, according to Beenstock et al. (2012), does not coin-
tegrate with the global temperature anomaly.

The physics of greenhouse gases are reasonably well un-
derstood, and date from insights in the late 19th century by
Arrhenius (1869), who showed that atmospheric tempera-
ture change was proportional to the logarithmic change in
CO2. Myhre et al.(2001) provide an extensive overview of
the different radiative forcing of various greenhouse gases.
In highly simplified terms (i.e. using a model with an at-
mosphere made up of a single isothermal slab), heat en-
ters the Earth’s atmosphere as short-wave radiation from the
Sun, and is radiated in the form of long-wave radiation from

1In general a series that isI (k) needs to be differencedk times
to be stationary.

2The term unit root stems from the case when unity is a solution
to the characteristic polynomial of a process. As an example, letyt

be the first-order autoregressive process:yt =αyt−1 + εt whereεt

is a white-noise process. Note thatyt is a random walk, which is
an I (1) process, and has a unit root ifα = 1. To see this, using the
lag-operatorL (see Hendry 1995, Ch. 4), the process can be ex-
pressed asyt =αLyt + εt , so re-arranged to (1− αL)yt = εt where
(1− αL) is a first order polynomial inL. This polynomial has a
root of 1/α, and thus a unit-root ifα = 1.

the warmed surface to the atmosphere, where greenhouse
gases absorb some of that heat. This heat is re-radiated, so
some radiation is directed back towards the Earth’s surface.
Thus, greater concentrations of greenhouse gases increase
the amount of absorption and hence re-radiation.

There are various reasons why the observed record of
temperature and other climate variables may not exhibit the
warming patterns suggested by theory or large-scale coupled
models. Empirical modelling can play a role in investigating
these underlying issues and test whether observations exhibit
the relationships implied by theory. However, it is dangerous
to draw hasty conclusions, especially given the large num-
ber of problems that can distort conclusions from all forms
of empirical statistical analyses. We illustrate these with an
uncontroversial example, then show errors in Beenstock et
al.’s (2012) approach, such that the paper’s starting point is
incorrect, and the analysis provides little evidential basis for
the strong conclusions. Our paper is not an attempt to provide
a complete climate model, but merely show that the statisti-
cal modelling approach of Beenstock et al. (2012) does not
stand up to scrutiny.

Section2 uses an uncontroversial example to highlight the
dangers of approaches that fail to address all the complica-
tions inherent in statistical analyses of observational data,
listing six important difficulties facing empirical analyses
that lead to fallacious inferences if not handled correctly.
Section3 applies that reasoning to the apparently more con-
troversial case of the relationship between greenhouse gases
and temperature, and highlights where the six problems can
be encountered in Beenstock et al. (2012).

2 A case study

To highlight hazards that can be encountered in statistical
analyses, and to illustrate the points we make in Sect.3 with
reference toBeenstock et al.(2012), we first use an example
where the analysis is completely uncontroversial: road fatal-
ities are due to people killed by or in moving vehicles.3

Consider Fig. 1 that records total vehicle distances driven
in billions of km p.a. (denotedXt ) and road fatalities (Yt ),
both for the UK.4

The four panels labeled a, b, c, d respectively showXt ,
Yt , Xt − Xt−1 =1Xt and1Yt . It is manifest from the graphs
thatXt andYt are highly non-stationary (do not have constant
means and variances), and have strong opposite trends. Thus,
it might seem that the further vehicles drive, the fewer the
number of deaths. We can establish that finding “rigorously”
by a statistical analysis as follows, but however sophisticated
such an analysis may appear to be, the implications that road

3All results are obtained usingAutometrics(seeDoornik, 2009).
4Fatalities are only available continuously from 1979 onwards

and interpolated from intermittent data for 1930–1979, an issue of
some importance below.
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Fig. 1.Vehicle kilometers driven and road fatalities p.a. in the UK: in levels(a, b) and first differences(c, d)

fatalities are not due to moving vehicles, or can even be re-
duced by more driving, both remain absurd.

A simple first-order autoregressive-distributed lag model,
commonly used to capture autoregressive dynamics while al-
lowing for contemporaneous and lagged covariates, (ADL:
seeHendry, 1995, Ch. 7) estimated by regressingYt , on a
constant,Xt , Xt−1 andYt−1, delivers the long-run solution
of predicted road fatalities (standard errors in parentheses):

Ŷ = 8257
(636)

− 15.7
(2.4)

X, (1)

where the test for a unit root in the model rejects at 1 %,
tur =−4.08∗∗ (seeEricsson and MacKinnon, 2002), appar-
ently confirming cointegration – with a negative sign. This
suggests that there is long-run stationary relation between
the non-stationary series of road fatalities and vehicle kilo-
meters, such that road fatalities decrease with vehicle kilo-
meters driven. To assess short-run effects, we then estimate
an equilibrium-correction model using the derived long-run
(cointegrating) solution in Eq. (1), modelling the changes
of road fatalities in terms of changes of vehicle kilometers
driven and deviations from the long-run equilibrium:

1̂Yt = 12.3
(2.48)

1Xt − 0.088
(0.012)

(Yt−1 − 8257+ 15.7Xt−1) , (2)

where the residual standard deviation iŝσ = 160. Equa-
tion (2) shows a short-run increase in deaths as vehicle kilo-
meters driven increases, but a long-run decrease.

How can “statistical evidence” fly in the face of the ob-
vious? There are at least six key reasons why such a result
occurs: data measurement errors (here inaccurate interpo-
lation); unmodelled shifts (when a change in legislation or

technology shifts a relationship); mistaken inference; incor-
rectly modelled relations (when the residuals from the esti-
mated relationship do not satisfy the statistical properties of
the assumed error processes, so claimed inferences are in-
valid); omitted variables’ bias (omitting relevant explanatory
variables); and aggregation bias (mixing data from very dif-
ferent populations). All six can powerfully distort any empir-
ical statistical study, leading to fallacious conclusions as we
now discuss.

2.1 Data measurement errors

Data measurement errors can mislead any form of inference.
Empirical relationships then represent correlations between
what was incorrectly measured, not what actually happened.
Figure 1d, showing the annual changes in road fatalities, il-
lustrates the interpolation over the early sample, with con-
stant periods followed by large jumps, quite unlike any real
data. Interpolation, unless perfect, creates measurement er-
rors and measurement errors in explanatory variables induce
downwards biases in parameter estimation. Further, interpo-
lation leads to negative error autocorrelation in dynamic re-
lations which invalidates standard statistical inference unless
this auto-correlation is handled appropriately. To see this, let
{Yt } be a stationary autoregressive process:

Yt = γ Yt−1 + et ,

whereet ∼ ID [0, σ 2
e ] (denoting independent sampling from

a constant distribution with mean 0 and varianceσ 2
e ). Sup-

pose{Yt } is only observed with error as̃Yt =Yt + vt where
vt ∼ ID [0, σ 2

v ] is a random error of measurement or interpo-
lation, then the observed variable is

Ỹt = γ Ỹt−1 + et + vt − γ vt−1 = γ Ỹt−1 + ut − ρut−1,

www.earth-syst-dynam.net/4/375/2013/ Earth Syst. Dynam., 4, 375–384, 2013



378 F. Pretis and D. F. Hendry: Comment on Beenstock et al. (2012)

whereρ depends onσ 2
e and σ 2

v . The presence ofut and
ut−1 in the above equation implies that the model will au-
tomatically exhibit negative error autocorrelation. In turn,
this negative error autocorrelation strongly affects the out-
comes of integration and cointegration tests, usually suggest-
ing a lower order of integrability than actually applies (see
Schwert, 1987andHendry, 1995, Ch. 12).

An additional major concern in the application of mod-
elling road deaths above is that periods of interpolation
and regular measurement are combined and treated as if
they stemmed from the same measurement process despite
changes in error autocorrelation and variance.

2.2 Unmodelled shifts

Unmodelled shifts are unaccounted changes in the distribu-
tions of the variables in the model over time. These unmod-
elled shifts (due to many potential causes, including techno-
logical innovations, changes in legislation, wars, major geo-
physical disturbances, etc.) can play havoc with statistical
inference: they add an additional non-stationarity to that in-
duced by integrating forces (such as unit roots). For example,
standard inference made under the assumption of stationarity
will be invalid if there is a shift in the mean – the underlying
distribution of that variable is then not invariant over time.
Further, unmodelled shifts distort the relationships between
the variables that have been included; lead to residuals with
properties that differ from the assumed error processes and
thus invalidate inference; and can induce forecast failure out
of sample. The impact from the greatly reduced private mo-
toring from petrol rationing during the Second World War
is likely the cause of the visible shift in the fatalities graph
during the early 1940s (Fig. 1b).

2.3 Mistaken inferences

Even when estimated standard errors used in statistical hy-
pothesis tests correctly reflect the actual sampling standard
deviations, there are two well-known mistaken inferences
arising from: (a) failing to reject a false null hypothesis; and
(b) rejecting a correct null hypothesis using a test with power
against more than one alternative hypothesis. We take these
in turn.

a. Consider a sample of 100 observations on an accu-
rately measured variableZt . The sample mean,̂µ
is 0.005 and the estimated standard errorσ̂ is 0.05.
Then, under the hypothesis thatZt ∼ ID [µ, σ 2], a
Student’st test of the null hypothesis thatµ = 0 has
the value of approximately 1.0. The null is not re-
jected at any reasonable significance level. But nei-
ther is the null thatµ = 0.0025 or evenµ =−0.0025.
When these are quarterly growth rates of real income
per capita, there is a dramatic difference between the
substantive outcomes not reflected in the statistics,
namely no growth (µ = 0) growth of approximately

1 % p.a. (µ = 0.0025); and real incomes falling at
1 % p.a. (µ =−0.0025). Not rejecting the null does not
entail it is true, merely that evidence is inconclusive.

b. In the example just discussed, an investigator decides
to test the assumption that the{Z} are independent
draws against the alternative that the series is a first-
order autoregression, and strongly rejects the null hy-
pothesis of independence. While that discovery viti-
ates the analysis used in (a), it does not imply that
{Zt } is a first-order autoregression. Indeed, rejection
does not even imply that the elements of{Zt } are not
drawn independently: the cause of residual autocorre-
lation could be due to inappropriately using a linear
approximation to a non-linear relation (seeHendry,
1995, Ch. 6); or be induced by an unmodelled loca-
tion shift (seeCastle and Hendry, 2013a), defined by
µ taking different values at different times (as has hap-
pened historically for real income growth: seeCastle
and Hendry, 2013b).

2.4 Incorrectly modelled relations

Incorrectly modelled relations arise in addition to all the
problems just noted, when the wrong functional form is im-
posed, say linear rather than non-linear; inadequate dynamics
are allowed for in the included variables, inducing residual
autocorrelation; or heteroskedastic errors are not handled, all
of which entail that estimated standard errors (on which tests
are based) can be far from the correct sampling uncertainty
standard deviations.

2.5 Omitting relevant explanatory variables

There are many potentially relevant explanatory variables
omitted: a partial list would include improved driving stan-
dards from more stringent driving tests; better road safety
training; safer cars with improved impact designs and bet-
ter brakes (abs); seat belts and air bags (see the analysis of
the impact of the former inHarvey and Durbin, 1986); sep-
aration of opposite direction traffic flows on motorways; re-
ductions in drunk driving; and so on. Converse effects come
from faster driving, driver overconfidence, driving after tak-
ing drugs, or while using mobile phones, etc.

2.6 Aggregation bias

Aggregation bias is due to the total data comprising distinct
sub-populations with different characteristics, here, across
both age and sex; geographical location; urban and rural; ve-
hicle types (motorcycles, cars, trucks etc.) and road struc-
tures. For example, replacing a “one lane each way” road
with a motorway (still desperately needed in the northeast
of both England and Scotland) would increase kilometers
driven yet probably reduce deaths.
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Fig. 2.Time series of the first and second differences of rfCO2 and rfN2O.

2.7 Implications

The substantive occurrence of any of these problems pre-
cludes establishing the genuine presence or absence of any
meaningful causal relationship. Despite fatalities and dis-
tance driven having very different statistical properties, and
decidedly opposite trends summarized in the “cointegrating
relation” (Eq.2), it is fallacious to conclude that moving ve-
hicles do not cause road deaths.5

3 Statistical hazards in “polynomial cointegration
tests”

All six problems just discussed are relevant in the analysis
in Beenstock et al.(2012), although five of them stand out
when just viewing the data series, namely data measurement
and unmodelled shifts, mistaken inference, incorrectly mod-
elled relations, and omitted variables. This section follows
the structure of hazards listed above in Sect.2 and roughly
the analysis of Sects. 3.1 to 3.3 in Beenstock et al. (2012).
The paper by Beenstock et al. (2012) first shows uni-variate
unit root tests to determine the time-series properties of the
data (see their Sect. 3.1), then a measure of anthropogenic
forcing is constructed (see their Sect. 3.2). This is followed
by the test for cointegration between the measure of an-
thropogenic forcing and the observed temperature anomaly
(see their Sect. 3.3). Subsequently Beenstock et al. (2012)

5Indeed, allowing for just one of these six general prob-
lems, namely unmodelled shifts using step-indicator saturation (see
Doornik et al., 2013, available inAutometrics), reveals many loca-
tion shifts in the ADL relationship leading to Eq. (1) – after which
X ceases to be significant.

conduct robustness checks on their results, provide model ex-
tensions, and estimate a short-run model (Sects. 3.4–3.9).

We first investigate the time-series properties of the data
(Sect. 3.1 in Beenstock et al., 2012) in the following sections
on data measurement (Sect.3.1), shifts (Sect.3.2), and mis-
taken inferences (Sect.3.3). These are relevant to all sections
of Beenstock et al. (2012) which rely on the use of anthro-
pogenic forcing time series (these are Sects. 3.1–3.9). We ad-
dress the construction of the measure of anthropogenic forc-
ing, “the anthropogenic anomaly”, (Sect. 3.2 in Beenstock et
al., 2012) in our Sect.3.4 on incorrectly modelled relations.
We then investigate the cointegration test (Sect. 3.3 in Been-
stock et al., 2012) in our Sect.3.5on omitted variables. These
two sections refer to the main argument made in Beenstock
et al. (2012) (in Sects. 3.2 and 3.3) which presents evidence
against anthropogenic global warming. Aggregation bias is
raised as a general point in our Sect.3.6.

3.1 Data measurement errors

We obtained the data on greenhouse gases used by Beenstock
et al. (2012) (see their Sect. 3.1) using the values provided
by Myhre et al.(1998) to convert the series into their radia-
tive forcing equivalents. The fact that the measured series of
GHGs come from a variety of different sources is omitted
from Beenstock et al. (2012). If the measurements were iden-
tical in all sources, this would not be an issue: however, our
graphs reveal sharp differences in the data properties. Con-
sider the CO2 and N2O series. Both are initially based on
ice core data (up to the dates indicated by the vertical lines in
Fig.2: 1850 until 1958 for CO2 and 1850 until 1978 for N2O)
followed by flask and other measurements thereafter. Fig-
ure2b shows that up until approximately the point when the
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Table 1.ADF unit-root tests on1rfCO2.

1850–1957 1958–2011
constant constant and trend

D-lag t-adf Reject H0 D-lag t-adf Reject H0

5??
−3.737 ** 5 −4.089 *

4 −2.910 * 4 −3.807 *
3 −2.948 * 3 −3.383
2 −3.146 * 2 −4.197 **
1 −2.706 1 −5.365 **
0 −3.544 ** 0 −6.563 **

ADF unit-root tests: the null hypothesis H0 is that the series has a unit root so is
non-stationary. Rejecting the null hypothesis suggests no unit-root
non-stationarity. D-lag specifies the number of lags included in the ADF unit
root test, where? indicates that longest lag is significant at 5 % and?? at 1 %. If
no lags are significant, the model with zero lags is appropriate. Unit root test
outcome: ** indicates rejection of the null hypothesis at 1 % and * at 5 %.

switch from ice-core to non-ice core data was made, many
of the changes have precisely the same magnitude, reveal-
ing an artificial pattern different to the latter half of the sam-
ple. Moreover, there are large changes in the variances of the
second differences of both series at the measurement system
switch. Despite the well-established problems for unit-root
tests described in Sect.2.1, the data are analyzed in Been-
stock et al. (2012) as if they come from the same populations.

We worry that Beenstock et al.’s (2012) Fig. 2 – repro-
duced here as Fig.3 – camouflages the serious problem of
measurement-regime shifts.

3.2 Unmodelled shifts

Interacting with unmodelled shifts, measurement errors can
can lead to false interpretations of the stationarity proper-
ties of data. In the presence of these different measurements
exhibiting structural changes, a unit-root test on the entire
sample could easily not reject the null hypothesis ofI (2)
even when the data are in factI (1). Indeed, once we con-
trol for these changes, our results contradict the findings in
Beenstock et al. (2012) (see their Sect. 3.1 and Table 1). Our
results are presented here in Tables1 and Table2 below.

Sub-sample unit-root tests

Unit-root tests are used to determine the level of integration
of time series. Rejection of the null hypothesis provides ev-
idence against the presence of a unit-root and suggests that
the series isI (0) (stationary) rather thanI (1) (integrated). As
is to be expected from the data in Fig.2, but based on aug-
mented Dickey–Fuller (ADF) tests (seeDickey and Fuller,
1981), the first difference of annual radiative forcing of CO2
is stationary initially around a constant (over 1850–1957),
then around a linear trend (over 1958–2011). Although these
tests are based on sub-samples corresponding to the shift
in the measurement system, there is sufficient power to re-
ject the null hypothesis of a unit root. In a similar manner,

Table 2.ADF Unit-root Tests on1rfN2O.

1850–1978 1978–2011
const. and trend constant

D-lag t-adf Reject H0 D-lag t-adf Reject H0

5 2.098 5 −3.832 **
4 1.864 4 −3.347 *
3? 1.427 3 −3.636 **
2?? 0.801 2 −4.048 **
1??

−0.619 1 −4.793 **
0 −3.87 0 −7.845 **

ADF unit-root tests: the null hypothesis H0 is that the series has a unit root and
is non-stationary. Rejecting the null hypothesis suggests no unit-root
non-stationarity. D-lag specifies the number of lags included in the ADF
unit-root test, where? indicates that longest lag is significant at 5 % and?? at
1 %. If no lags are significant, the model with zero lags is appropriate. Unit root
test outcome: ** indicates rejection of the null hypothesis at 1 % and * at 5 %.

∆ rfCO2 

1860 1880 1900 1920 1940 1960 1980 2000

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
wm−2

∆ rfCO2 

Fig. 3.Time series of the first differences of rfCO2 from Beenstock
et al. (2012).

unit-root tests reject non-stationarity of the first difference of
N2O for the second set of observations (1978–2011). Unit-
root non-stationarity cannot be rejected for 1850–1978 for
N2O: however, given the manifestly artificial appearance of
the data such a result should be interpreted with extreme cau-
tion. Particularly, the1N2O series appears to exhibit a step
shift in the early 1900s, which also leads to spurious results
in unit-root tests. The split points for our sub-sample unit-
root tests are given by the extraneous dates of change in the
measurement system, so the tests do not need to allow for
that choice.

Given these time-series properties including apparent
shifts and changes in variance, assuming that all annual an-
thropogenic GHGs areI (2) is an incorrect starting point, and
the findings inBeenstock et al.(2012) appear to be an arte-
fact of pooling data with very different measurement systems
and behaviour in the two sub-samples.

3.3 Mistaken inferences

In line with our analysis suggesting that the presence of mea-
surement changes affects the unit root test outcomes,Stern
and Kaufmann(2000) show that when using univariate unit
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root tests, the results can vary considerably, depending on
which type of test is used and also vary across different an-
thropogenic gases. For example, CO2 appears to beI (1) in
two out of their four tests, andI (2) in the others (Table 1 in
their paper). Similarly, N2O appearsI (1) in three out of the
four test types. Due to these conflicting results they there-
fore then employ a structural time-series approach. Second,
Kaufmann and Stern(2002) test the time-series properties of
the aggregate of the radiative forcing of all the major green-
house gases (CO2, CH4, N2O, CFC-11, CFC-12) and find
them to beI (1).

Crucially, the level of integration, and thus stationarity, of
data is not intrinsic to its process and can change over time.
There is nothing inherent in the physical data generating pro-
cess that makes anthropogenic forcings, or other variables,
I (1) or I (2). The observational data may, over some period,
be consistent with a process that isI (1) or I (2), but this is
not an intrinsic property that cannot change. There are many
examples of changes, two being that the level of CO2 emis-
sions is related to economic activity, which has varied over
time, and emissions of CFCs which only arose in the latter
part of the 20th century. Both of these may be stationary in
second differences from the 1950s onwards, but because of
the underlying processes, they may well have been station-
ary in first differences or levels before then, or in the case of
CFCs non-existent before their discovery and declining after
the Montreal Protocol of 1989 (Myhre et al., 2001, provide
some examples concerning CFCs). The claim that all green-
house gases are alwaysI (2) is incorrect. Such a result is also
inconsistent with the tests conducted in the previous litera-
ture and with our analysis.

3.4 Incorrectly modelled relations

The main message ofHendry(1995) is that before any sta-
tistical inferences can be conducted, a model must be con-
gruent, or well-specified in that it satisfies the assumptions
on which the statistical analysis relies. The unit root tests
in Table 1 in Beenstock et al. (2012) make many untested
assumptions, including accurate data, that there is a single
measurement regime, and that no location shifts occurred.

Beenstock et al.’s (2012) conclusion that anthropogenic
forcings do not cointegrate with the observed temperature
anomaly relies on their constructed measures of anthro-
pogenic forcing, the “anthropogenic anomaly” (see their
Sect. 3.2). In light of model specification, we assess this
method of constructing the measure of anthropogenic forc-
ing. The measures of anthropogenic forcing, the “anthro-
pogenic anomalies” in in Beenstock et al. (2012) (given by
Eqs. 9 and 10 in Beenstock et al., 2012, reproduced here as
Eqs.3 and4) are the residualsg1 andg2 of a single regres-
sion of radiative forcing of CO2 on the forcing of other green-
house gases:

rfCO2 = 10.972+ 0.046rfCH4 + 10.134rfN2O + g1 (3)

rfCO2 = 12.554+ 0.345rfCH4 + 9.137rfN2O

+1.029BC+ 0.441ReflAer+ g2, (4)

where BC is their radiative forcing of black-carbon con-
centration, and ReflAer is their radiative forcing of all re-
flective aerosols. Such regressions are a variant for possi-
bly I (2) variables of the approach inEngle and Granger
(1987). Banerjee et al.(1986) demonstrated that this type of
test imposed “common-factor” restrictions of the form crit-
icized by Hendry and Mizon(1978) andMizon (1995), as
a consequence of which the test often lacks power and is
substantively inferior to the systems approach inJohansen
(1988). We now consider their “anthropogenic anomaly” in
two cases.

First, despite the above ADF unit root test outcomes, sup-
pose one accepted the starting point ofBeenstock et al.
(2012) that all anthropogenic variables areI (2). They state
that Eqs. (3) and (4) are to test for cointegration between
the anthropogenic series. However, cointegration is a system
property, so the variables need to be treated as such. To es-
tablish cointegration between the variables in Eq. (3) (rfCO2
regressed on rfCH4 and rfN2O), the full system of three
variables needs to be considered (seeHendry and Juselius,
2001). This is further complicated here as the variables are
assumed to beI (2), so anI (2) cointegration analysis is re-
quired (seeJuselius, 2006): the system has at most full rank
(= 3), or if there is (polynomial) cointegration the system
may exhibit reduced rank of one or two, and if no (polyno-
mial) cointegration, rank zero. If there is reduced rank (which
has to be tested in anI (2) procedure), the system needs to
be decomposed into the cointegrating relations (which are
I (0) and therefore stationary) and the common underlying
stochastic trends (of which some may beI (1) and someI (2)
trends). Given the assumedI (2) property, if the three vari-
ables cointegrate, there may be up to twoI (1) cointegrat-
ing relations between the three series, and thus two potential
anthropogenic anomaly measures. The single anthropogenic
anomaly given in their Eq. (3) is then a linear combination of
these measures of anthropogenic forcing. The same problem
generalizes to their Eq. (4), with there being five variables in
the system and a much larger set of potential cointegrating re-
lations. The system of five variables may have full rank (= 5),
rank zero, or reduced rank between one and four if there is
cointegration, implying up to fourI (1) cointegrating rela-
tions and up to four measures of the anthropogenic anomaly.
Thus, even if their starting point that all anthropogenic are
I (2) is accepted, then their measure of the anthropogenic
anomaly is likely only one of many, given the large num-
ber of potential cointegrating relations. There could well be a
residual (anthropogenic anomaly) that does cointegrate with
temperature and solar irradiance.

Second, given that the starting point of assuming all an-
thropogenic variables areI (2) is incorrect, the measures of
the anthropogenic anomaly (g1 and g2) are inappropriate.
The measures of anthropogenic forcing are the residuals of
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regressions of rfCO2 on radiative forcing of the other green-
house gases. This means that the measure of anthropogenic
forcing used inBeenstock et al.(2012) is really the variation
in radiative forcing of CO2 that is unexplained by the vari-
ation in other greenhouse gases. In a basic energy balance
model, radiative forcings are mostly considered additively.
The total effect of all forcings together (while taking feed-
backs into account) is what is important. Taking the unex-
plained variation in radiative forcing of CO2 as a measure of
anthropogenic forcing (i.e. the “anomaly”) is then incorrect
and does not measure whatBeenstock et al.(2012) state it
does. Their main test of anthropogenic global warming (the
regression of temperature on solar irradiance and the anthro-
pogenic anomaly in their Table 3) is then a regression of tem-
perature on solar irradiance and a residual, which need not
capture any anthropogenic component at all, and does not
capture the main anthropogenic forcing component.

3.5 Omitted variables

We briefly list a few of these variables that have been omitted
and may play an important role, though they should be con-
sidered with caution as some of these gases are not as well
mixed (but spatially varied) and thus may not be appropri-
ate in a zero-dimensional model.Myhre et al.(2001) provide
a good overview of available time series for the historical
period used; these include CFCs (Chlorofluorocarbons), as
used byStern and Kaufmann(2000), which together with
tropospheric ozone likely exhibit a positive forcing, as well
as stratospheric ozone (seeMyhre et al., 2001) which likely
acts as negative forcing.

Omitted variables induce biases in general (unless or-
thogonal to all included variables), and in Beenstock et
al.’s (2012) analysis based on cointegration, the negative ef-
fects of having omitted important factors may be even more
pronounced. Suppose one accepts their analysis of integra-
tion properties (see above in Sect.3.1), and the anthro-
pogenic anomaly, (see above in Sect.3.4), the main equation
to test for cointegration between the anthropogenic compo-
nent and temperature in Beenstock et al. (2012) is a regres-
sion of temperature on the anthropogenic anomaly and solar
irradiance (reproduced here as Eq.5, see Sect. 3.3 and Ta-
ble 3 of cointegration tests in Beenstock et al., 2012):

Temperaturet = β0 + β1Solar Irradiancet
+β2Anthropogenic Anomalyt + εt . (5)

Their main conclusion stems from the fact that, using
unit-root tests, the error termεt of this regression is non-
stationary,I (1), suggesting that there is no cointegration be-
tween the three series. Any omittedI (1) variable in this
equation will induce the error term to appearI (1), and lead
to spurious rejection of cointegration. Ocean heat uptake is
one of many factors missing in this equation, and, accord-
ing to Beenstock et al.’s (2012) analysis isI (1). Beenstock
et al. (2012) state that the omission of ocean heat is not a

concern as ocean heat content and temperature do not cointe-
grate (Table 4 in Beenstock et al., 2012), however, this coin-
tegration test is undertaken using temperature, ocean heat
and water vapour alone, rather than considering the full sys-
tem where the anthropogenic measure and solar radiation are
also included. These individual regressions do not capture
the important system property of cointegration (emphasized
in Sect.3.4). Further, any of the above mentioned forcing se-
ries (CFCs, ozone) may also beI (1) and were omitted. Any
omittedI (1) variable in their main test of cointegration be-
tween temperature, the anthropogenic anomaly and solar ra-
diation will induce anI (1) stochastic trend in the residual.
Given that the regression only consists of a constructed mea-
sure of anthropogenic forcing and solar irradiance, there are
many factors that will lead to the error term appearingI (1)
and thus, to spurious rejection of cointegration.

3.6 Aggregation bias

The time-series literature studying radiative forcing and its
effect on temperature primarily relies on the global tem-
perature anomaly as a single temperature series based on
zero-dimensional energy balance models. In practice this is
a common and often useful simplification, but temperature
trends vary spatially, suggesting there may be unmodelled
heterogeneity. Finding no cointegration between a global
aggregate and global anthropogenic forcing then does not
imply there does not exist a relationship overall. To illus-
trate some of this spatial variation, Fig.4 shows the global
anomaly together with approximate Arctic (averaged over
64–90◦ N latitude) and close to Antarctic (averaged over 90–
64◦ S latitude) anomalies (data fromNASA Goddard Insti-
tute for Space Studies, 2011). As can be seen, temperature
has risen far faster in the Arctic region than globally.

4 Conclusions

A complete analysis of this data would require separate mod-
els of, or controlling for, the pre and post ice-core measure-
ments, taking account of the myriad influences impinging on
the climate, temperature, and different greenhouse gases. The
system nature of cointegration needs to be taken into account
when the analysis (such as Beenstock et al.’s, 2012) relies
solely on the time-series properties of different series.

The aim of this paper is merely to demonstrate that the
conclusions claimed by Beenstock et al. (2012) about the dif-
ferent degrees of integrability of temperature and CO2 are re-
jected once the regime-shift nature of the measurement sys-
tem is taken into account. We emphasize that the time-series
properties and degrees of integrability of data can change
over time. Further, we note that the measure of anthropogenic
forcing in Beenstock et al. (2012), a constructed “anthro-
pogenic anomaly”, is inappropriate regardless of the time-
series properties of the data. Any one of those missteps by
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Fig. 4.Temperature anomalies relative to 1951–1980 average.

itself is sufficient to cast serious doubt on the conclusions of
Beenstock et al. (2012).

To handle the hazards associated with statistical models of
temperature and greenhouse gases one could consider the fol-
lowing. First, one could model the pre-break and post-break
periods separately. Second, given the uncertainties about uni-
variate tests of time-series properties and degrees of integra-
tion, one could followStern and Kaufmann(2000) who focus
on a structural time-series approach, orKaufmann and Stern
(2002) who work with aggregates of radiative forcing. Third,
if one accepts that GHG forcings areI (2), a full I (2) system
approach is required as outlined inJuselius(2006) testing
that the degrees of integration (and relationships between se-
ries) have not changed over time. Fourth, one can account for
the changes in measurement (the most basic approach being
indicator variables for the time periods before or after the
break) while potentially also accounting for other unknown
unmodelled breaks (see e.g.Hendry and Pretis, 2013). As
emphasized inHendry (2009), to draw substantive conclu-
sions from a statistical or econometric analysis requires a
complete, comprehensive and constant model; and to draw
causal conclusions further requires that such a model is in-
variant to changes in all other variables.

Acknowledgements.This research was supported in part by
grants from the Open Society Foundations and the Oxford Martin
School. We are grateful to Myles Allen, Vanessa Berenguer-Rico,
Margaret Ziriax, an editor and four anonymous referees for
comments on a previous version.

Edited by: S. Smith

References

Arrhenius, S. A.: On the influence of carbonic acid in the
air upon the temperature of the ground, London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science
(fifth series), 41,http://www.globalwarmingart.com/images/1/
18/Arrhenius.pdf, last access: 29 May 2013, 237–275, 1896.

Banerjee, A., Dolado, J., Hendry, D. F. and Smith, G.: Explor-
ing equilibrium relationships in econometrics through statistical
models: some monte carlo evidence, Oxford Bull. Econom. Stat.,
48, 253–277, 1986.

Beenstock, M., Reingewertz, Y., and Paldor, N.: Polynomial cointe-
gration tests of anthropogenic impact on global warming, Earth
Syst. Dynam., 3, 173–188, doi:10.5194/esd-3-173-2012, 2012.

Castle, J. L. and Hendry, D. F.: Model selection in
under-specified equations with breaks, J. Econometr.,
doi:10.1016/j.jeconom.2013.08.028, in press, 2013a.

Castle, J. L. and Hendry, D. F.: Semi-automatic non-linear model se-
lection, in: Essays in Nonlinear Time Series Econometrics, edited
by: Haldrup, N., Meitz, M., and Saikkonen, P., Oxford University
Press, Oxford, 2013b.

Dickey, D. A. and Fuller, W. A.: Likelihood ratio statistics for au-
toregressive time series with a unit root, Econometrica, 49, 1057–
1072, 1981.

Doornik, J. A.: Autometrics, in: The Methodology and Practice of
Econometrics, edited by: Castle, J. L. and Shephard, N., Oxford
University Press, Oxford, 2009.

Doornik, J. A., Hendry, D. F., and Pretis, F.: Step-indicator satura-
tion, Discussion paper 658, Economics Department, Oxford Uni-
versity, Oxford, 2013.

Engle, R. F. and Granger, C. W. J.: Co-integration and error correc-
tion: Representation, estimation, and testing, Econometrica, 55,
251–276, 1987.

Ericsson, N. R. and MacKinnon, J. G.: Distributions of error cor-
rection tests for cointegration, Econometr. J., 5, 285–318, 2002.

Harvey, A. C. and Durbin, J.: The effects of seat belt legislation
on British road casualties: A case study in structural time series
modelling, J. Roy. Stat. Soc. B, 149, 187–227, 1986.

Hendry, D. F.: Dynamic Econometrics, Oxford University Press,
Oxford, 1995.

Hendry, D. F.: The methodology of empirical econometric mod-
eling: Applied econometrics through the looking-glass, in: Pal-
grave Handbook of Econometrics, edited by: Mills, T. C. and
Patterson, K. D., Palgrave MacMillan, Basingstoke, 3–67, 2009.

www.earth-syst-dynam.net/4/375/2013/ Earth Syst. Dynam., 4, 375–384, 2013

http://www.globalwarmingart.com/images/1/18/Arrhenius.pdf
http://www.globalwarmingart.com/images/1/18/Arrhenius.pdf
http://dx.doi.org/10.5194/esd-3-173-2012
http://dx.doi.org/10.1016/j.jeconom.2013.08.028


384 F. Pretis and D. F. Hendry: Comment on Beenstock et al. (2012)

Hendry, D. F. and Juselius, K.: Explaining cointegration analysis:
Part II, Energy J., 22, 75–120, 2001.

Hendry, D. F. and Mizon, G. E.: Serial correlation as a convenient
simplification, not a nuisance: A comment on a study of the de-
mand for money by the bank of England, Economic J., 88, 549–
563, 1978.

Hendry, D. F. and Pretis, F.: Anthropogenic Influences on Atmo-
spheric CO2, in: Handbook on Energy and Climate Change,
edited by: Fouquet, R., Edward Elgar, Cheltenham, 287–323,
2013.

Johansen, S.: Statistical analysis of cointegration vectors, J.
Econom. Dynam. Contr., 12, 231–254, 1988.

Juselius, K.: The Cointegrated VAR Model: Methodology and Ap-
plications, Oxford University Press, Oxford, 2006.

Kaufmann, R. K. and Stern, D. I.: Cointegration analysis of hemi-
spheric temperature relations, J. Geophys. Res., 107, ACL 8-1–
ACL 8-10, doi:10.1029/2000JD000174, 2002.

Kaufmann, R. K., Kauppi, H., Mann, M. L., and Stock, J. H.: Does
temperature contain a stochastic trend: linking statistical results
to physical mechanisms, Climatic Change, 118, 729–743, 2013.

Mizon, G. E.: A simple message for autocorrelation correctors:
Don’t, J. Econometr., 69, 267–288, 1995.

Myhre, G., Highwood, E. J., Shine, K., and Stordal, F.: New esti-
mates of radiative forcing due to well mixed greenhouse gases,
Geophys. Res. Lett., 25, 2715–2718, 1998.

Myhre, G., Myhre, A., and Stordal, F.: Historical evolution of radia-
tive forcing of climate, Atmos. Environ., 35, 2361–2373, 2001.

NASA Goddard Institute for Space Studies – GISS: GISS – Sur-
face Temperature Analysis, available on-line:http://data.giss.
nasa.gov/gistemp/(last access: 29 May 2013), 2011.

Schwert, G. W.: Effects of model specification on tests for unit roots
in macroeconomic data, J. Monet. Econom., 20, 73–103, 1987.

Stern, D. I. and Kaufmann, R. K.: Detecting a global warming sig-
nal in hemispheric temperature series: A structural time series
analysis, Climatic Change, 47, 411–438, 2000.

Earth Syst. Dynam., 4, 375–384, 2013 www.earth-syst-dynam.net/4/375/2013/

http://dx.doi.org/10.1029/2000JD000174
http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/

