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Abstract. Northern peatlands contain a large terrestrial car-
bon pool that plays an important role in the Earth’s carbon cy-
cle. A considerable fraction of this carbon pool is currently
in permafrost and is biogeochemically relatively inert; this
will change with increasing soil temperatures as a result of
climate warming in the 21st century. We use a geospatially
explicit representation of peat areas and peat depth from a
recently-compiled database and a geothermal model to esti-
mate northern North America soil temperature responses to
predicted changes in air temperature. We find that, despite a
widespread decline in the areas classified as permafrost, soil
temperatures in peatlands respond more slowly to increases
in air temperature owing to the insulating properties of peat.
We estimate that an additional 670 km3 of peat soils in North
America, containing∼33 Pg C, could be seasonally thawed
by the end of the century, representing∼20 % of the total
peat volume in Alaska and Canada. Warming conditions re-
sult in a lengthening of the soil thaw period by∼40 days,
averaged over the model domain. These changes have poten-
tially important implications for the carbon balance of peat
soils.

1 Introduction

Northern peatlands cover∼10 % of the land north of 45◦ N
and contain∼500 Pg carbon (C), almost entirely as peat
(Yu et al., 2010). This relatively large carbon pool within
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one to a few meters of the land surface confers the impor-
tant role of peatlands in the earth’s carbon fluxes (Gorham,
1991). Changing environmental conditions could potentially
impact the exchanges of carbon dioxide (CO2, Limpens et
al., 2008), methane (CH4, Christensen et al., 2004), dis-
solved organic carbon (DOC, Frey and Smith, 2005) and ni-
trous oxide (N2O, Elberling et al., 2010) between peatlands
and the atmosphere through a number of direct and indirect
effects, and thereby change the role of peatlands in the global
climate system. In particular, climate warming can directly
affect C fluxes from peatlands. Ecosystem respiration has
been found to increase in response to a 1◦C soil warming
in a subarctic bog (Dorrepaal et al., 2009) and to vary de-
pending on seasonal temperature patterns (Lund et al., 2010).
Methane emissions are also strongly dependent on soil tem-
perature (Treat et al., 2007; Kettridge and Baird, 2008).

An estimated one third of Northern peatlands is currently
located in permafrost regions (Tarnocai, 2006; Smith et al.,
2007). Permafrost is usually defined asground material that
remains at or below 0◦C for a period of at least two years,
for natural climatic reasons(van Everdingen, 1998) and rep-
resents an important control on the peat atmosphere and peat
hydrosphere interactions. Biogeochemical processes in peat-
lands with permafrost are strongly influenced by the maxi-
mum depth of the 0◦C isotherm (the active layer thickness,
ALT) that separates frozen (and relatively inert) peat from
seasonally-thawed (and biologically active) peat. A deepen-
ing of the active layer in recent decades, a general degra-
dation of permafrost (Romanovsky and Osterkamp, 1997;
Oberman and Mazhitova, 2001; Camill, 2005;Åkerman and
Johansson, 2008; Anisimov and Reneva, 2009; Simon and
Serge, 2009) and the projected increases in the active layer
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in the next decades (Stendel and Christensen, 2002; Arctic
Climate Impact Assessment (ACIA), 2004; Romanovsky et
al., 2007; Marchenko et al., 2008) have raised questions on
the potential release of carbon from peatlands as a result of
global warming (Christensen et al., 2004; Turetsky et al.,
2007). Anisimov (2007) predicted an overall increase in the
seasonal thaw depth of 30 % by 2080, which resulted in a
20–30 % increase in CH4 emissions from Russian peatland
regions.

Soil temperatures are not only influenced by air temper-
atures but also by the presence or absence of an insulating
layer of snow on the surface (Sturm et al., 1997). The re-
sponse of soil temperatures to changes in air temperature
strongly depends on the temporal distribution, depth, and
density of the snowpack during the winter (Lawrence and
Slater, 2010). The snowpack generally insulates the soil from
the cold air and changes in the snowpack can therefore lead
to more soil cooling (if the snowpack decreases) or warmer
winter soil temperatures and permafrost degradation with a
deeper snowpack (Christensen et al., 2004; Payette et al.,
2004; Stieglitz et al., 2003).

Finally, it is the thermal and hydraulic properties of the
peat itself that lead to different responses to air temper-
ature in peat soil when compared to mineral soils that
have prompted their explicit parameterization in land sur-
face models (e.g. Beringer et al., 2001). Thermal proper-
ties of peat soil are strongly related to the peat soil moisture
(Farouki, 1981; O’Donnell et al., 2009), which depends on
the position of the water table, both of which are likely to
change under future climate conditions. The insulating prop-
erties of peat are expected to preserve permafrost in peatland
areas from severe degradation (Shur and Jorgenson, 2007; Yi
et al., 2007). Currently, relict permafrost formed during the
Little Ice Age is found in isolated patches within Canadian
bogs despite warmer air temperatures (Halsey et al., 1995;
Vitt et al., 1994). Additionally, peat depth is an important
control on the active layer depth (Fukui et al., 2008; Yi et al.,
2006). It is therefore imperative to consider the spatial distri-
bution of those properties in attempts to model the future dis-
tribution of permafrost areas and the role of peatlands in the
global climate system. A layer of organic material (<0.3 m)
on top of mineral soil is a dominant feature of northern forest
and tundra soils that are not classified as peatlands (Rinke et
al., 2008). This layer plays an important role in exchanges of
water, energy and carbon and the representation of this thin
organic layer in ecosystem models is therefore also important
(Yi et al., 2009).

A number of attempts have been made to incorporate
peatlands and organic soil layers in Earth system models
(e.g. Rawlins et al., 2003; Lawrence and Slater, 2008; Wania
et al., 2009) and these approaches have assumed a spatially
uniform depth of the organic layer. Here, we present the first
attempt to estimate soil temperatures in peatlands using a
grid cell based framework with partitioning of the grid cell
into a peat and non-peat fraction and explicitly taking into

account the spatially varying depth of peat over a large spa-
tial domain. This allows for an assessment of the impact of
peat depth on soil temperatures and the relative differences
in soil temperatures for peat soils and mineral soils and an
assessment of the frozen and unfrozen peat volumes under
changing climate. We use a thermodynamic model and soil
moisture from a hydrological model to predict soil tempera-
ture in peat and mineral soil and estimate areas and thawed
volumes of these soil fractions under future climate condi-
tions. Assuming a carbon concentration and carbon content
for peat and mineral soils, the total soil carbon in North-
ern North America that will change from being permanently
frozen to seasonally thawed can be assessed.

We will first present an overview of the model and the
data sets and then discuss the importance of peat depth for
the prediction of peat soil temperatures by analyzing results
from transient simulations of soil temperatures in peatlands
in North America under predicted climate conditions for the
period 2001–2100.

2 Data and methods

2.1 The GIPL 2.0 model

We used the modified Geophysical Institute Permafrost Lab
model (GIPL 2.0; Marchenko et al., 2008) to simulate soil
temperatures and freezing and thawing depths in peatland
and non-peatland soils. Details of the numerical algorithm
are provided elsewhere (Marchenko, 2001; Marchenko et al.,
2008) and only a short overview is given here. GIPL cal-
culates soil temperatures at different depths by applying a fi-
nite difference scheme to solve the 1-D heat transfer equation
with phase change numerically and is therefore applicable to
transient simulations. The version applied here computes soil
temperatures at a 30 min× 30 min spatial resolution. GIPL
takes into account spatially varying thermal properties of the
soil layers and estimates the amount of unfrozen water based
on those properties.

The depth of the soil column and its importance for longer
timescale models of soil temperature has been recognized
(e.g. Alexeev et al., 2007; Lawrence et al., 2008). The com-
putational domain is therefore extended to a depth of 100 m
at which a spatially uniform geothermal heat flux is set as
a boundary condition. The upper boundary condition at the
soil or peat surface is determined by the air temperature, or,
if a snowpack is present, by a heat flux through the snowpack
that is calculated taking into account the depth and density of
the snow (Fig. 1).

We applied the model with a time step of 24 h and com-
puted soil temperatures at 114 computation nodes in the soil
column, with space between nodes increasing with depth.
The entire model domain (Fig. 2) covered a total area of
11.59 million km2 in 8078 grid cells. In areas with peatlands,
soil temperatures are calculated for peatlands and mineral
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soils separately. There was no lateral transport of heat be-
tween the peat and the non-peat fraction of a grid cell and
no lateral transport of heat between neighboring grid cells.
For both peat and non-peat calculations, we set the initial
soil temperature,Tini [◦C], at depthz [m] asTini(z) =TmG0z

whereTm is the mean annual air temperature [◦C] andG0
[◦C m−1] is the geothermal gradient (set to 0.015). We com-
puted time series of soil temperature for the period 2001–
2100 after a 100-year spin-up period using contemporary
(2001–2010) climatologies of temperature and precipitation.

The latent heat of the freeze-thaw phase change is imple-
mented through the apparent volumetric heat capacity over
a small temperature range near the freezing temperature of
water (Tf = 0◦C), C(z, T ) + δ(T )Q(z) at the freezing front
T (z, τ ) =Tf , whereQ(z) is the latent heat of ice fusion or
specific enthalpy of fusion (Qf = 334 [M J m−3]) andδ(T ) is
the Dirac delta function having the following properties:

δ1 (T − Tf) =

{
1

2 1
if |T − Tf | ≤ 1

δ → 0, if |T − Tf | > 1
(1)

where1 is the width of a half-interval of̃C (volumetric heat
capacity) and̃λ (thermal conductivity) smoothing range, set
to 0.08◦C. The latent heat of ice formation-fusion is there-
fore represented through apparent volumetric heat capacity
[δ(T )Q(z)] at the phase freezing front so that the heat trans-
fer problem can be solved without explicit representation of
freezing front coordinates. The smoothed volumetric heat
capacityC̃ [M J m−3 K−1] at temperatureT [◦C] is approxi-
mated taking into account the volumetric heat capacityCvol
of the solid materials (peat or mineral soil; see below), the
soil water/ice contentθ , the unfrozen water contentθu, and
the latent heat of ice fusionQ(z):

C̃ (T ) =

Cvol +Cice(θ −θu)+Cwθu T <Tf −1

Cvol +0.5 Cice(θ −θu)+0.5 Cw(θ −θu)+Qθ/21 Tf −1≤T ≤Tf +1

Cvol +Cwθ T >Tf +1

(2)

whereCw andCice are the heat capacity values for water and
ice respectively (4.18 and 1.9 M J m−3 K−1).

Unfrozen waterθu is the amount of water in the soil (θ )
that remains unfrozen in the form of a thin layer around the
soil particles. It can improve the transfer of heat in frozen
soils (Farauki, 1981) and can retard the thermal response of
the soil to air temperature changes (Romanovsky and Os-
terkamp, 2000). Taking into account frozen water in soil
temperature models can therefore significantly improve the
simulations. The amount of unfrozen water depends on the
soil type and shows significant variations in space. We cal-
culated unfrozen water for temperatures below a predefined
thresholdc (set to−0.01◦C), depending on the soil type as
(Tice et al., 1976):

θu = a |c − T |
b (3)

wherea andb are soil type specific shape parameters that
were set to 0.1 and−0.7 for sand and to 0.5 and−0.7 for
silt and clay soils. Unfrozen water for the mineral soil in a

Fig. 1. Conceptual overview of the water level and water content
(θ ) in peatland for the wet (water table at 0.07 m ) and dry scenario
(water table at 0.30 m) and the organic layer in mineral soils.G0 is
the geothermal heat flux. Mineral soil layer depth, snowpack depth,
and bedrock depth are not drawn to scale.

grid cell was computed as the weighted average of the un-
frozen water for sand, silt, and clay. Unfrozen water content
is typically very small in peatland soils (Romanovsky and
Osterkamp, 2000; Kujala et al., 2008) and was neglected in
our model.

2.1.1 Snow dynamics

Heat transport in snow is largely dependent on the mi-
crostructure of the snow (pore and grain distribution and size)
which is difficult to quantify (Sturm et al., 1997), particularly
for continental-scale simulations. The thermal conductivity
of snow is therefore often calculated using empirical func-
tions that are based on measurable properties of snow.
We used the empirical equation of Proskuryakov (1999)
(e.g. Ershov, 2004), which calculates the heat flux through
the snow pack into the soil as a function of snow depthDs
[m] and snow densityρs [kg m−3]:

α =
1

α0
+

Ds

0.018 + 0.00087ρs
(4)

whereα0 [set to 20.14 W m−2 K−1]is the averaged factor of
convection heat exchange at the surface of snow andα is the
snow thermal resistivity. The thermal conductivity increases
with increasing snow density and is therefore higher later in
the snow season.

To simulate spatially varying fields of snow density and
snow depth, we implemented a simple snow accumulation/
snow melt module of the WBMplus hydrological model
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Fig. 2. Estimated peat volume (from the NSCD database) in each 30min grid cell, distribution of permafrost under contemporary conditions,
and location of the CALM sites in the model domain. Permafrost classification is from Brown et al. (2001). Southern boundary defined by
Tarnocai et al. (2009) soils database.

(Wisser et al., 2010). In this model, it is assumed that pre-
cipitation falls as snow if the daily air temperature is below a
temperature threshold [−1◦C] and accumulates a snow pack
[mm snow water equivalent, SWE].

Melting from the snow pack occurs when daily air temper-
ature is above 1◦C as a function of daily air temperature and
rainfall (Willmott et al., 1985):

Ms = 2.63 + 2.55Tm + 0.0912Tm P (5)

whereMs [mm] is the snowmelt,Tm [◦C] is the mean daily
air temperature, andP [mm] is the daily precipitation.

The density of snow can change by an order of magnitude
from wild, fresh snow to compacted, settled snow later in the
season as a result of metamorphism. To calculate the snow
depth during the entire snow season for each grid cell we
assumed an initial snow densityρs [kg m−3] of 150 at the
onset of the winter (defined as the middle of the first month
where the mean air temperature is below−1◦C) and a linear
increase in snow density of 3 kg m−3 day−1 throughout the
winter based on regional estimates of snow depth by Gray
and Prowse (1993) so the depth of snow for each time step
can be calculated asDs = SWE/ρs.

2.2 Soil thermal properties

Soil apparent volumetric heat capacityCvol [J m−3 K−1] and
soil thermal conductivityλ [W m−1 K−1]) are calculated as
the volume weighted average values for the fractions of solid
material (peat or mineral soil), and water. The depth of the

organic layer on top of mineral soil depends on soil type,
vegetation, and land cover. We used the 0.5◦ version of the
MODIS land cover map (Friedl et al., 2002) to assign or-
ganic layer depths to land cover classes (Table 1). The ther-
mal properties of the organic layer were assumed to be the
same as the peat thermal properties. The total volume of this
non-peat organic layer overlaying mineral soils in the model
domain is 1173 km3, and its depth ranges from 0 to 0.25 and
is 0.12 m on average.

2.2.1 Thermal properties of mineral soils

Heat capacity c for dry mineral soils was calculated using an
empirical relationship between bulk density and heat capac-
ity as (Global Soil Data Task Group, 2002):

Cvol = (0.07 + 0.748ρmin)
[
M J m−3 K−1

]
(6)

whereρmin [g cm−3] is the bulk density of the dry mineral
soil. The total heat capacity of the wet soil was computed
as a function of temperature andCvol (Eq. 2). Heat capacity
for dry soils varied between 0.2 and 1.35 M J m−3 K−1 and
averaged 0.89 M J m−3 K−1.

The relationship between soil properties, soil water con-
tent, and the thermal conductivityλ is highly complex (Yang
and Koike, 2005) and a number of empirical relationships
have been developed to parameterize the thermal conduc-
tivity of different soils. A widely used relationship for the
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Table 1. Depth of organic layer in the mineral soil partition in each
grid cell for different MODIS land cover classes. Based on Bock-
heim et al. (1997). The permanent wetlands class does not include
peatlands.

Modis Land cover class Org. Layer, m

Water bodies 0
Evergreen needleleaf forests 0.20
Deciduous broadleaf forests 0.05
Mixed forests 0.15
Closed shrubland 0.15
Open shrubland 0.10
Woody savannas 0.15
Savannas 0.05
Grassland 0.10
Permanent wetlands* 0.25
Croplands 0.10
Cropland/natural veg mosaic 0.10
Permanent snow/ice 0
Barren/sparsely vegetated 0.02

thermal conductivity of the soil as a function of soil moisture
is from Hendrickx et al. (2008):

λ(θ) = A + Bθ − (A − D) e−(Cθ)4
(7)

whereA, B, C, D are empirical coefficients that are deter-
mined based on the composition of the soil (the volume frac-
tions of quartz, other minerals, total solids, and clay, that are,
in turn, estimated from the soil fractions of sand, silt, and
clay). The volume and weight fractions of sand, silt, and clay
in each grid cell, are available from the standardized data set
of soil horizon depth and textures for up to 15 soil horizons
compiled by Webb et al. (2000). The soil depth (computed as
the sum of all soil layer depths in each grid cell) in the study
region generally varies between 0.0 and 9.7 m and is 4.25 m
on average.

Temporally and spatially varying fields of soil moisture in
mineral soils were calculated using the WBMplus hydrologi-
cal model (Wisser et al., 2010) that computes components of
the hydrological cycle based on soil hydraulic properties and
fields of climate data.

Potential evapotranspiration in WBMplus was calculated as
a function of air temperature and day length using the Hamon
relationship (Hamon, 1963).

We assumed that the soil is underlain by bedrock up to
the lower boundary of our model (100 m), assumed the same
water content as in the upper layers, and computed thermal
properties like the lowest layer of the soil layers. This is
similar to the approach used by Lawrence et al. (2008) but
different from the assumption of Zhang et al. (2008b) of no
water in bedrock.

2.2.2 Thermal properties of peat soil

The heat capacity of dry peat was set to 0.58 [M J m−3 K−1]
(Bonan, 2002), while heat capacity for wet peat was com-
puted based on the volume fractions of peat and water and the
temperature (Eq. 2). The thermal conductivities for frozen
and thawed peat (λf andλt) were computed using the empir-
ical relationships found by O’Donnel et al. (2009):

λf = 0.0055θ · 100 + 0.0141 (8)

λt = 0.005θ · 100 + 0.04 (9)

whereθ is the water content as a fraction of saturation.
The thermal properties of peat soil are therefore largely

controlled by the water content in the peat soil and the
position of the water table, both of which depend on the
type of peatland (bog, fen), and microtopographical features.
These hydrological conditions provide an important control
on physical, chemical, and biological processes in peatlands
(Weiss et al., 2006) and the position of the water table can
both promote and hinder freezing in peatlands (Kingsbury
and Moore, 1987) but very few measurements for water table
or soil moisture in boreal peatlands exist (Weiss et al., 2006).
In addition, the relationship between water table depth and
soil moisture in the layers above the water table is site spe-
cific and difficult to generalize over a large domain.

We conceptually divided the peat soil column into fibric,
mesic, and humic peat for which different levels of soil mois-
tureθ were assumed, and the depth of those layers depends
on the position of the water table in the peat column. Soil
moisture for the fibric and mesic layers were set at 0.2 and
0.5 respectively and the humic peat layer was assumed to be
fully saturated.

The position of the water table in peatlands is relatively
stable over time (Frolking et al., 2009). Generally, the wa-
ter table is deeper in bogs and higher in fens (Zoltai et al.,
1998), which are the two dominant forms of peatlands in the
Northern Hemisphere (Rydin and Jeglum, 2006; St-Hilaire et
al., 2008). For example, Tarnocai (2006) estimates that bogs
cover 67 % of the Canadian peatlands, fens cover 32 %, and
swamps and marshes combined cover 1 %.

Based on observations of the mean water table from a vari-
ety of boreal peatlands from Zoltai et al. (1998) we simulated
soil temperatures in peatlands for two positions of the water
table; a wet scenario with a water level at 0.07 m, represent-
ing a fen, and a dry scenario with a water level at 0.30 m,
representing a bog. We assumed the water table to be con-
stant throughout the simulation period. For both scenarios,
the depth of the fibric peat layer was assumed to be at 30 %
of the water table depth. The different assumptions regarding
the position of the water table and the depth of the soil layers
are conceptually depicted in Fig. 1.
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2.3 Peatland area and peat depth

To partition the grid cells into a fraction occupied by peat-
lands and a fraction with mineral soils, we used the recently
published Northern Circumpolar Soil Carbon Database (NC-
SCD; Tarnocai et al., 2009) which lists soil types and soil
carbon content for some 140 000 polygons in the circumpolar
region. To estimate the extent of peatland in each 30 min grid
cell, we aggregated the areas of histosol and histel (frozen
histosol) soil types. The resulting total peatland area for
Canada and Alaska was 1.38 million km2 in 2430 grid cells
– 11 % of the study area (Fig. 2). This area represents about
one third to almost one half of the global peatland area north
of 40◦ latitude that was previously estimated to be around
3–4 million km2 (Matthews and Fung, 1987; Aselmann and
Crutzen, 1989; Yu et al., 2010).

The total soil organic carbon (SOC) in histels and histosols
in the NCSCD database was 165 Pg C for the study region.
The depth of these peat soils can be computed by assuming a
carbon density and a peat dry bulk density, both of which
vary significantly spatially depending on local conditions.
For example, Turunen et al. (2001) found carbon density
of 50–55 % and mean values of bulk density of 91 kg m−3

for west Siberian peatlands. Gorham (1991), based on ex-
tensive Canadian datasets, reported an average bulk den-
sity of 112 kg m−3 and a carbon density of 51.7 % of dry
mass. Turunen et al. (2002) found the average dry bulk den-
sity of Finnish geological mires to be 91 kg m−3 and Vitt et
al. (2009) found that peat bulk density in Canada typically
varies between 90 kg m−3 and 120 kg m−3 whereas Chason
and Siegel (1986) found peat bulk density to vary between
60 and 140 kg m−3 in Northern Minnesota.

To estimate the peat depth in the peat fraction of each
grid cell we assumed a uniform carbon density of 50 % and
peat bulk density of 100 kg m−3. The resulting average peat
depth is 3.21 m. Calculated peat depths were quite differ-
ent for Alaska (generally around 0.6 m) and Canada, which
had much larger spatial variability and ranged from less than
0.5 m on the Western coast to several meters in the Hudson
Bay Lowlands. The total volume of peat, calculated as the
product of peat depth and peat area is 3480 km3, 98 % of
which was in Canada (Fig. 2). In cases where our estimated
peat depth was smaller than 30 or 40 cm (the minimum or-
ganic layer depth for organic soils to be considered peatlands
in the US and Canada), we treated those as if there was only
mineral soil with a thin organic layer. This affected only
29 grid cells in Canada and Alaska (∼1 % of total number
of grid cells with peatland).

2.4 Climate data

Daily time series of precipitation and air temperature for the
period 2001–2100 were taken from the ECHAM 5 model
(Roeckner et al., 2003) for the IPCC scenario A1B.

Simulated 20th century (20C3M) ECHAM5 air tempera-
tures for the northern regions (20–90◦ N) have been found
to have the smallest bias out of all the models used in
the IPCC AR4 assessment when compared to the 40 year
ECMWF reanalysis (ERA40) data (Walsh et al., 2008) and
was therefore chosen for the offline simulations of soil tem-
peratures and permafrost. The original coarser resolution
data was interpolated to 0.5◦ grid cells using the NCAR NCL
software (NCAR, 2011).

Air temperature in the northern regions is projected to in-
crease more rapidly than in the other regions; the mean an-
nual air temperature in the model domain increases from
−3.96◦C for the first decade of the century to−1.94◦C
for the period 2041–2050 and +1.0◦C for the last decade
of the century. Much of the warming in mean air temper-
ature is seen in the winter months whereas summer temper-
ature over the entire model domain increases only slightly.
Mean annual precipitation in the model domain increases
from 784 mm (2001/2010) to 922 mm (2090/2100), repre-
senting an increase of nearly 18 %. This is a consistent pat-
tern across many GCMs (Arctic Climate Impact Assessment,
2004; Meehl et al., 2007; Rawlins et al., 2010).

3 Results

3.1 Model evaluation

The GIPL model has been validated against ground tempera-
ture measurements in shallow boreholes in Alaska that repre-
sent a wide range of soil and vegetation characteristics (Ro-
manovsky and Osterkamp, 2000; Nicolsky et al., 2009). In a
complementary paper (Treat et al., 2011, in prep.) the model
presented here has been tested against observed time series of
daily measured soil temperature at different depths in a per-
mafrost peatland site in Northwest Territories, Canada, and a
permafrost site with a thick organic horizon in Alaska (Treat
et al., 2010). The results showed generally a good agreement
of observed and modeled soil temperatures.

The range in seasonal mean soil temperature is generally
higher in mineral soils, in particular near the surface. The dif-
ferences in modeled soil temperatures are generally smaller
for deeper soil layers where the temperatures are governed by
long-term variations in mean annual air temperatures rather
than responses to seasonal variations in air temperature.

To further evaluate the model and the assumptions regard-
ing the properties of mineral and peat soils we compared
modeled active layer thickness (ALT) under contemporary
(2001–2010) conditions with ALT measurements from 56
sites in Alaska and Canada, representing a wide range of soil,
topographical, and climatic conditions, from the Circumpo-
lar Active Layer Monitoring (CALM; Brown et al., 2000)
program. The annual ALT measurements generally represent
an average value from a sample grid of 121 points over an
area of 1 ha or 1 km2. ALT is typically measured by inserting
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a steel rod into the soil and recording the thawed soil depth.
The maximum depth that can be measured is therefore lim-
ited by the length of the steel rod (∼1.20 m). As the period of
observations in the CALM database varies for each station,
we averaged annual values for the most recent 10 years and
compared those values with the mean modeled annual ALT
for the period 2001–2010.

ALT at a particular location depends on a number of fac-
tors including thermal properties of soil, vegetation, snow
cover, soil moisture, and there is consequently a wide range
of ALT observations across a spectrum of temporal and spa-
tial scales (Brown et al., 2000) and within a single site
(Hinkel and Nelson, 2003). For example, Wright et al. (2009)
found the variability of the ALT in peatlands in northwestern
Canada over distances of less than one meter to be correlated
with lateral water flow converging to frost table depressions,
a process that is not taken into account in our modeling ap-
proach. Smith at al. (2009) showed variations around the
mean for one site of around 50 %. Nelson et al. (1997) re-
ported extreme local variations in ALT, based on terrain and
soil moisture conditions; for example they found a difference
in ALT of 50 % between an acidic and non-acidic tundra site.
Similarly, differences in the terrain lead to differences in ob-
served ALT of 20 cm from one observation grid (1 km2) to
the next. ALT also varies from one year to the next.

Despite these inconsistencies in the spatial and temporal
resolution of observed and modeled data that make a for-
mal comparison difficult, our model generally reproduces the
observed range of ALT well; observed average ALT ranges
from 0.30 to 1.34 m (mean of 0.61 m) whereas the modeled
ALT thickness ranges from 0.36 to 1.04 (mean of 0.65 m)
for mineral soils, and from 0.16 to 0.42 m (mean of 0.31 m)
for dry peat and from 0.18 to 0.54 (mean of 0.35 m) for wet
peat. Data on soil temperatures or the composition of soil
throughout the soil column are generally not available for
CALM sites, so the depth of the organic layer is not known.
Nonetheless, Brown et al. (2000) report that CALM data in-
dicate that the insulating properties of organic soil generally
lead to smaller interannual variations in ALT and to a shal-
lower active layer depth, consistent with the simulations.

3.2 Trends in the timing and distribution of snow cover

Despite the projected increase in precipitation (see Sect. 2.4),
the annual amount of snowfall slightly decreases over the en-
tire model domain as a result of warming air temperatures.
The mean annual values of snow depth show a significantly
decreasing trend for most of the model domain: increas-
ing trends are only seen in small regions around Northeast
Alaska and in the polar regions of Canada. In areas with
peatlands, the mean annual snow depth decreases on average
by 0.72 mm a−1 over the simulation period.

We defined the snow season as the period when the ground
is covered with a snow cover of an average depth of more
than 1.0 cm over a period of five days.

The domain-mean onset of the snow season is 5 October
for the period 2001–2010, but by the end of the century the
domain-mean onset is 11 October. The domain-mean date
for snowpack disappearance is 18 May for 2001–2010; it
occurs 10 days earlier by the end of the century (8 May).
Combined, the period when the ground is covered with snow
decreases by around 16 days by the end of the century, rep-
resenting a decrease in the snow season length of about 7 %.

3.3 Trends in soil moisture

Both the heat capacity and the thermal conductivity of soil
increase with increasing soil moisture (Eqs. 5 and 6). In-
creasing soil moisture in the future could therefore lead to
faster responses of soil temperatures to changes in air tem-
perature (as a result of higher thermal conductivity), resulting
in an increased warming of the soil. Increased heat capacity,
on the other hand, leads to a slower response of soil temper-
atures, in particular if temperatures are low and around the
freezing point (Eq. 1) and large quantities of heat need to be
added/removed for the thaw/freeze phase change (Boike et
al., 2009). The large increase in precipitation in the model
domain (Sect. 2.4) was partly offset by increased evapotran-
spiration as a result of higher temperatures, and the resulting
increases in annual average values of simulated soil moisture
were small. Average annual values of mineral soil moisture
increased from 61 % during 2001/2010 to 62 % in 2041/2050
and 64 % in 2091/2100.

3.4 Trends in the frost-free season

We defined the onset of the thaw season as the first day when
the soil temperature (averaged over a period of five days) at
a depth of 5.0 cm rises above 0◦C and the end of the thaw
season as the day when the averaged soil surface temperature
drops below 0◦C. The spatial distribution of the onset of the
frost-free season in the model domain follows the temper-
ature gradient and varies from March in the southernmost
parts of Canada to the end of May/early June in northern
Canada. Averaged over the model domain, the frost-free pe-
riod under contemporary conditions starts on 14 April and
lasts until 26 September. By the end of the century, the onset
will occur 25 days earlier (22 March), with the end of the
frost-free period shifting from 26 September to 18 October
(Table 2 and Fig. 3). The changes in the frost free season
in areas covered with peatlands show a very similar pattern
(Fig. 4). The differences in peat soils and mineral soils are
caused both by the different thermal properties and the spa-
tial distribution of peat soil in relation to the entire model
domain (Fig. 2); peat soils are concentrated in the southern
(and warmer) regions of the model domain.

The frost-free season increases from 174 to 214 days for
the entire model domain, and for peatland areas from 179 to
218 days (Table 2). These increases represent a lengthen-
ing of the biologically active period of 25 % and 22 %. On
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Table 2. Domain mean annual start dates, end dates (Julian Day
and date) and length (days) of the frost-free period in peatlands and
mineral soils for first, mid, and last decades of 21st century.

2001/2010 2041/2050 2091/2100

Peat soil

Thaw day 106 (8 Apr) 97 (28 Mar) 79 (12 Mar)
Freeze-up day 285 (14 Oct) 292 (24 Oct) 297 (3 Nov)
Thaw season Length 179 195 218

Mineral soil

Thaw day 110 (14 Apr) 101 (5 Apr) 85 (22 Mar)
Freeze-up day 284 (26 Sep) 291 (5 Oct) 299 (18 Oct)
Thaw season Length 174 190 214

Fig. 3. Significant trends [days a−1 a−1] in freeze-free period in the
model domain, derived from the soil surface temperature at 0.05 m
for 2001–2100.

average, the increase is caused by both an earlier thawing
date as well as a later freeze date; the freeze date is gener-
ally more variable across the model domain (Fig. 4). The
increases in the thawing period length are largest in south-
ern Alaska, and eastern and western Canada and smallest
in northern Canada, where the thawing season is shortest
(Fig. 3).

3.5 Geography of peatlands and permafrost

3.5.1 Contemporary conditions

Our modeled estimate of the peatland area that is underlain
by permafrost is based on the assumption of negative tem-
peratures for at least 24 consecutive months; a grid cell can
therefore be either classified as (continuous) permafrost or as
non-permafrost. The estimated permafrost area varies greatly
with the reference depth at which modeled temperatures are
evaluated (Table 4). For a water level in peatlands of 0.30 m
(the dry scenario) the area of peatlands that is underlain by

Fig. 4. Time series of the mean simulated start and end of the freez-
ing period at the surface for grid cells with peat soils and one stan-
dard deviation around the mean.

permafrost varies from 43 % of the total area at 0.5 m to 72 %
at 5.0 m. For the wet peat scenario (water level at 0.07 m),
these estimates vary between 33 and 72 %.

The higher thermal conductivity and consequently more
variable active layer dynamics lead to a wider range of per-
mafrost areas in mineral soils. The mineral soil underlain by
permafrost ranges from 17 % at the surface (≤0.5 m depth)
to more than 63 % at 5.0 m depth.

The spatial distribution of ALT for dry peat, wet peat and
mineral soil in the model domain generally follows the cli-
mate gradient but shows some regional variation that reflects
the depth of peat, the distribution of the thin organic layer
on mineral soils, and the composition of the soil that impact
thermal properties of soil (Fig. 5).

3.5.2 Future projections of the permafrost area

Warming air temperatures generally increase the active layer
thickness and consequently decrease the area of mineral and
peat soil underlain by permafrost depending on the reference
depth used to define permafrost areas. The modeled thick-
ness of the active layer significantly increases but is strongly
dependent on the composition of the soil (peat versus min-
eral soil) and the moisture status in peat soils (high water
table versus low water table). Under the dry peat scenario
(water level at 0.30 m), the ALT for near surface soil layers
(depth< 2.0 m) increases from 0.36 m for the first decade of
the century to 0.44 m at the end of the century, representing
an increase of 22 %. For comparison, the mineral soil ALT
in grid cell with peat increases from 0.70 to 0.93 m (32 %).
Figure 5 shows the areas with an ALT of less than 2.0 m and
indicates an almost complete disappearance of surface per-
mafrost areas for mineral soil by 2100, whereas permafrost
in peatlands is more persistent with smaller changes in ALT
and permafrost area.
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Fig. 5. Modeled average ALT [m] under contemporary (2001/2010), mid-century (2041/2050) and end-century (2091/2100) climate condi-
tions for dry peat (left), wet peat (middle) and mineral soils (right). ALT> 2.0 m is masked out.

The projected deepening of the ALT has large implications
for the area classified as permafrost depending on the refer-
ence soil depth. Compared to contemporary conditions, the
area of peatlands underlain by permafrost at 0.5 m depth de-
clines from 43 % to 33 % of the total peatland area by the
middle of the next century and to∼14 % by 2100 (Table 4
and Fig. 6). In mineral soils, the surface permafrost (≤0.5 m
depth) area decreases at a much faster rate than in peat soils,
and will almost completely disappear by 2100. Near surface
permafrost (2.0 m) in mineral soils decreases by∼60 % over
the century. When considering deeper soils, the permafrost in
peatland areas is very stable; the permafrost area at 5 m depth
is only reduced by 1 % by the end of the century whereas the
mineral soil area underlain by permanently frozen soil at 5 m
decreases by∼20 % by the end of the century.

3.5.3 Future predictions of seasonally-thawed soil
volume

We compute the maximum seasonal thawed volume of peat
soil, mineral soil, and surface organic horizon each year as
the product of the simulated ALT in peatlands or mineral

soils and the area of peat and mineral soils. If the ALT is
deeper than the peat or mineral soil or surface organic layer
depths (Sect. 2.3), these depths are used rather than ALT to
calculate thawed volumes.

As the ALT is deeper than the thin organic layer overlying
mineral soil almost everywhere under contemporary climate
conditions, changes in the maximum thawed organic layer
volume by 2100 are negligible (Table 5). The maximum vol-
ume of unfrozen mineral soil, however, increases from 53 %
of the total soil volume under contemporary conditions to
more than 80 %, representing an increase in thawed volume
of more than 50 % (Fig. 6 and Table 5).

Despite the moderate decrease in the permafrost areas in
peat soils (Sect. 3.5.2), changes in the maximum thawed vol-
ume of peat as a result of a deepening active layer are also
quite significant. Under contemporary conditions (2001–
2010), 1850 km3 of peat (45 %) are unfrozen in the dry peat
scenario. This unfrozen volume of peat for the dry scenario
increased to 2056 km3 by 2050 and to 2511 km3 (64 % of the
peat volume) in the last decade of the century. The thawed
volume of peat under the wet scenario is∼5 % larger. The
increase in maximum thawed volume of peat by 661 km3
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Fig. 6. Areas underlain by permafrost at different depth for dry and
wet peat and mineral soil relative to 2001 (top; see Table 5 for ab-
solute values) and time series of thawed soil volume as percentage
of the total volumes (bottom; see Table 6 for absolute values)

represents∼20 % of the estimated peat volume in Canada
and Alaska and can potentially have large implications for
the soil carbon balance in the region.

4 Discussion

4.1 Climate conditions and soil thermal regimes

4.1.1 Snow

The timing and magnitude of snowfall, the resulting snow
depth, and the length of the snow season (the number of days
with a significant snow pack on the ground) are some of the
most important factors influencing the response of soil tem-
perature to variations in air temperature (Stieglitz et al., 2003;
Zhang et al., 2008a; Jorgenson et al., 2010; Lawrence and
Slater, 2010) and therefore ultimately impact biogeochemi-
cal cycling rates in the soil (Schimel et al., 2004). Lawrence
and Slater (2010) estimate that 50–100 % of the soil temper-
ature changes by the end of the last century could be caused
by variations in the snow state.

Generally, the response of soil temperatures to air temper-
atures is dampened the deeper the snow pack and a thinner
showpack leads to colder winter soil temperatures. Long-
term modeling results for Canada show a decreasing snow
pack for the period 1850–2100 and suggest that the rate of
increase in ground soil temperatures is 1–2◦C smaller than
that of air temperature and that the rate of permafrost degra-
dation is smaller than based on the changes in air temperature
alone (Zhang et al., 2008a).

Changes in the length of the snow season can lead to an
increased warming or cooling of the ground depending on
when the snow season is shortened. A delayed offset of the
snow season (earlier melt) increases the heat flux into the soil
whereas a delay of the snow season onset can lead to both
warming and cooling of the ground depending on the tempo-
ral patterns of air temperature and snowfall (Lawrence and
Slater, 2010). If the delay is due to warmer air temperature
and a delayed transition to below-freezing air temperatures,
the result is a warming effect. If the delayed onset is primar-
ily a result of changed precipitation patterns and less snow,
the soil is not as insulated from colder air temperatures and
the result will be lower soil temperatures.

Our modeled decrease in the mean annual snow depth is
consistent with climate model projections across the North-
ern Hemisphere (Arctic Climate Impact Assessment, 2004;
Zhang et al., 2008b; Lawrence and Slater, 2010) and with
observed trends from measurements conducted in the last
decades (Dyer and Mote, 2006). A lengthening of the snow
free period between 3.1 and 6.4 days for the last 30 years has
been observed using satellite data for the period 1972–2000
in North America (Dye, 2002). Our results indicate that the
extension of the snow free season of 16 days by the end of
the century is largely caused by an earlier melting date, re-
sulting in less insulation of the soil from colder temperatures
and consequently more heat flux into the soil. The shallower
snowpack leads to less insulation of the soil from cold air
during the winter months, resulting in colder soil tempera-
tures in winter that partly offset the increases in air tempera-
ture.

4.1.2 Soil temperatures and active layer thickness

Warmer soil temperatures resulting in a deepening of the
ALT have been widely observed in the Northern Hemisphere.
Permafrost temperature at 20 m depth has increased by 1 to
2◦C in northern Eurasia during the last 30 to 35 years (Ro-
manovsky et al., 2010). This observed increase is very sim-
ilar to what has been observed in Alaska and Canada (Ro-
manovsky et al., 2010; Smith et al., 2010) where the warming
varies between locations, but is typically from 0.5 to 2◦C. In
the last 30 years, an increase of temperatures in deeper layers
of permanently frozen soils observed in the Russian North
and Alaska has resulted in the thawing of permafrost in nat-
ural, undisturbed conditions in areas close to the southern

Earth Syst. Dynam., 2, 121–138, 2011 www.earth-syst-dynam.net/2/121/2011/



D. Wisser et al.: Soil temperature response to 21st century global warming 131

boundary of the permafrost zone. This warming occurred
predominantly between the 1970s and 1990s.

Warming at the surface increases the ALT that controls a
number of hydrological processes and determines the plant
root depth, the access to nutrients in the soil, and therefore
impacts biogeochemical processes in the soil (Shiklomanov
et al., 2007). Zhang et al. (2008b) reported an increase in
the ALT by 14–30 % from the 1990s to the 2090s in the per-
mafrost region in Canada, depending on the climate forcing.
For the entire Northern Hemisphere, Anisimov et al. (1997)
reported an increase in ALT of 20–30 %.

These changes lead to changes in the areas classified as
permafrost that is often used to report changes in the soil tem-
perature as a result of warming air temperatures. Studies on
the impact of global warming on soil conditions often report
the changes in area underlain by permafrost (Lawrence and
Slater, 2008; Zhang et al., 2008b). Consistent with those pro-
jections, our results suggest that ALT in peat soils increase by
22 % and, in mineral soils in the same domain, by 32 %.

4.1.3 Permafrost areas and thawed volumes

To assess the contemporary geography of peatlands and per-
mafrost areas in the model domain we used the permafrost
classification of Brown et al. (2001), that subdivided the
Northern permafrost region on the basis of the proportion of
the ground that is actually frozen to various degrees (Heg-
ingbottom, 2002) into continuous (>90 % permafrost), dis-
continuous (50–90 %), sporadic (10–50 %), and isolated (0–
10 %) permafrost. Assuming the actual extent of permafrost
in each class is equal to the midpoint of the reported range
(for example 30 % for areas classified as sporadic), a total
area of 418 300 km2 (30 %) of peatlands is underlain by per-
mafrost under contemporary conditions (Table 3) based on
this present-day reference map (Fig. 2). Two thirds of the
peatland areas are not permanently frozen under contempo-
rary conditions. These results are comparable with our mod-
eled results that are based on below zero temperatures at a
given depth for a period of at least 2 years (Sect. 3.5.1) and
are consistent with the 37 % of Canadian peatlands in per-
mafrost areas estimated by Tarnocai (2006).

As the definition of permafrost is independent of the depth
at which the layer is frozen and permafrost can be up to sev-
eral hundred meters deep, a comparison of “permafrost ar-
eas” from models that simulate the temperature profile to
very different depths might be misleading and approaches
to determine permafrost areas based on model results conse-
quently vary. For example, in Zhang et al. (2008b), a grid cell
contained permafrost in a given year if the temperature in any
layer in the soil column (modeled to a depth of 120 m) was
never above freezing; the projected decline of those areas in
Canada was 16–20 % by the 2090s. Lawrence et al. (2008)
followed the approach of Zhang et al. (1999) and defined per-
mafrost as areas with a temperature below 0◦C for two or
more consecutive years and projected a dramatic decline of

Table 3. Contemporary geography of peatlands and permafrost ex-
tent in Alaska and Canada. Percentages relative to the total peatland
area in Alaska and Canada (1.40 million km2). Permafrost classifi-
cation from Brown et al. (2001).

Permafrost Area Assumed Actual Percent
Extent [km2

] actual Area of total
coverage[%] [km2

] peatland
area

Continuous 210 000 95 200 000 15
Discontinuous 200 000 70 140 000 10
Sporadic 250 000 30 74 000 5
Isolated 200 000 5 10 000 1

Sum 850 000 420 000 31

∼90 % in the “near surface” (top 3.5 m) permafrost area by
the end of the century.

From a biogeochemical perspective, the classification of
areas as permafrost based on some (arbitrary) soil depth can
be misleading as it ignores the volume of (peat) soil that is ac-
tually thawed on top of the permafrost table and could poten-
tially interact with the atmosphere and hydrosphere, as well
as the change the carbon budget of the soil should previously
frozen soil become permanently thawed. This volume can be
compared to the total volume and the volume of previously
frozen (and mostly inert) soil volumes.

Our results indicate that despite a widespread degradation
of permafrost and a rapid decrease in the area classified as
permafrost, the thawed volume of peat increases by only
20 % by the end of the century (Table 5). Additional thawing
of the thin organic layer is negligible because the deepening
of the ALT will affect mostly deeper mineral soils while the
thin organic layer thaws every season (Anisimov, 2007).

4.1.4 Frost free season

Between 2000 and 2100, we found an increase in frost-free
season length of∼40 days in peatlands across North Amer-
ica, most of which is caused by an earlier thaw in the spring.

These estimates are consistent with projected increases in
the growing season and with lengthening of the growing sea-
son that has already been observed in northern latitudes. A
recent increase in growing season length in northern latitudes
has been found by others (Euskirchen et al., 2006; Smith et
al., 2004). Euskirchen et al. (2006) found a rate of increase
in the growing season of 0.38 days a−1 from 1960–2000 and
predicted an increase of 35 days between 2000–2100.
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Table 4. 10-year average peatland areas underlain by permafrost at different depths (2 significant figures). Percentages are computed relative
to total peatland area (1.41 million km2) and mineral soil area (11 million km2)

2001/2010 2041/2050 2091/2100

depth Area[km2
] % Area[km2

] % Area[km2
] %

0.5 m Peat dry 610 000 43 470 000 33 200 000 14
Peat Wet 490 000 34 360 000 26 160 000 11
Mineral Soil 1 900 000 17 1 200 000 11 540 000 5

1.0 m Peat dry 710 000 50 600 000 42 330 000 24
Peat Wet 630 000 44 540 000 39 260 000 19
Mineral Soil 5 600 000 48 4 400 000 38 1 500 000 13

2.0 m Peat dry 970 000 69 880 000 62 640 000 45
Peat wet 860 000 61 760 000 54 520 000 37
Mineral soil 7 200 000 62 6 300 000 54 2 900 000 25

5.0 m Peat dry 1 000 000 72 1 000 000 72 1 000 000 72
Peat wet 1 000 000 72 1 000 000 72 1 000 000 71
Mineral soil 7 300 000 63 7 100 000 61 5 900 000 51

Table 5. Volumes of thawed mineral and peat soil for different time slices and percentages of total soil volume (2 significant figures).

2001/2010 2041/2050 2091/2100

Volume % Volume % Volume %
[km3

] [km3
] [km3

]

Uplands

Organic Layer 1200 100 1200 100 1200 100
Mineral soil 20 000 53 23 000 61 30 000 81

Peatlands

Peat soils, wet 2000 47 2200 50 2600 64
Peat soil, dry 1900 45 2100 50 2500 61
Mineral soil (below wet peat) 1500 43 1600 45 1700 50
Mineral soil (below dry peat) 1500 43 1500 44 1700 47

4.2 Implications for carbon cycling

The projected lengthening of the frost free period can have
profound impacts on biogeochemical processes and the cy-
cling of nitrogen (N) and carbon (C).

For example, longer thaw seasons could change the N
dynamics in arctic watersheds (Yano et al., 2010), while
warmer winters increase the rates of N mineralization
(Schimel et al., 2004). A longer growing season may in-
crease the uptake for CO2 (photosynthesis) but the effect on
the net C balance depends on the hydrological conditions
and the vegetation characteristics of the ecosystems consid-
ered (Strack et al., 2008). Lafleur and Humphreys (2008)
observed higher CO2 uptake at a low-arctic site in the North-
west Territories during a year with an early spring (snowmelt

occurred 3 weeks earlier than other years) and warmer air
and soil temperatures, as compared with the other years in
the study. A synthesis of boreal and temperate eddy correla-
tion sites showed that the gains in productivity due to a longer
growing season were partly compensated by increased respi-
ratory losses, and that the response of fluxes to longer grow-
ing season depends on the characteristics of the vegetation,
with deciduous forests being more sensitive than evergreen
forests (Piao et al., 2007). Richardson et al. (2010) show that
respiration increases more than productivity when the grow-
ing season is longer in the fall, and vice-versa in the spring.
Euskirchen et al. (2006) found that increases in growing sea-
son length were correlated with increases in net ecosystem
productivity, and vegetation C. Often, labile C from deeper
in the soil profile has been protected from decomposition by
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permafrost and is quickly mineralized with temperature in-
creases following permafrost thaw (Zimov et al., 2006). In-
creasing soil temperatures, and the deepening of the active
layer as a result of increasing air temperatures and chang-
ing snow dynamics will have implications for the cycling of
carbon in peatlands and for the fluxes of carbon to the atmo-
sphere and to the hydrosphere, as biogeochemical processes
in peatlands are partly controlled by the freeze/thaw state of
the (peat) soil.

The net effect of warming will depend on the balance of
increased respiration and productivity (Schuur et al., 2009;
Dorrepaal et al., 2009) as a result of warmer soils, and in-
creased export of dissolved organic carbon (DOC) in rivers
and streams in catchments with thawed peatlands (Frey and
Smith, 2005).

Assuming that peat soils contain 50 % of carbon, a bulk
density of 100 kg m−3 (Sect. 2.3), and a uniform distribution
of this carbon with depth, our estimate of an additional vol-
ume of peat of 670 km3 that would be thawed by 2100 im-
plies that an additional 33 Pg of carbon would be thawed.
Carbon concentrations in mineral soils show a much higher
range than those in peat soils. The additional amount of
thawed carbon from mineral soils can therefore only be es-
timated with large uncertainties. Turunen and Moore (2003)
found mean concentrations of C in mineral subsoils beneath
peat in central Finland. Slightly higher values were reported
by Hossain et al. (2007) for Northern Canada.

Assuming a mean concentration of C in mineral soils of
5 kg m−3 (a mean value for mineral subsoils beneath peat in
central Finland found by Turunen and Moore, 2003) , the
additional volume of thawed mineral soils (10 700 km3; Ta-
ble 5) contains 53 Pg of carbon. An additional∼1 Pg of C are
contained in thawing mineral soils under (wet) peatland soils.
The total amount of thawed carbon (87 Pg) represents∼8 %
of the entire carbon pool in the upper three meters of the soil
the Northern Hemisphere, estimated to be around 1024 Pg
(Tarnocai et al., 2009). If we assume the same distribution
of carbon with depth and a similar response of soil tempera-
ture (∼20 % increase in the thawed peat volume) to warming
in the Eurasian peatlands, an additional∼32 Pg of the esti-
mated 163 Pg stored in Eurasian peatlands (Tarnocai et al.,
2009) could become biogeochemically active.

C processes are not only controlled by the transition of
freeze/thaw but also by the temperatures alone, both in the
subzero and above zero range. The warming of the soil even
at temperatures below zero can have profound effects on the
decomposition and production processes and thus the overall
carbon balance of the peatlands (Gedney et al., 2004; Schuur
et al., 2008; Carrasco et al., 2006), although the sensitivity of
soil organic carbon (SOC) decomposition to soil temperature
has recently been found to be scale dependent and lower on
the global scale than expected from field experiments (Ise et
al., 2008).

Winters and frozen-season processes are important for
both the soil temperatures and the soil C balance. In addi-
tion to changes in permafrost degradation due to increased
snowpack (Christensen et al., 2004; Payette et al., 2004;
Stieglitz et al., 2003), Osterkamp (2005) found larger in-
creases in permafrost soil temperatures during the winter
than the summer. The duration of the thawed season at depth
has significant implications for the annual C flux; Schimel et
al. (2006) found that deeper, unfrozen mineral soil accounted
for 50 % of the daily CO2 production at sites in Alaska, and
nearly 100 % of CO2 production during the winter months in
Alaska. Relatively large amounts of CO2 were still produced
into December, when surface soil temperatures dropped be-
low −5◦C. The radiative forcing of peatlands can also be
impacted by changes in the hydrological conditions: with
wetter conditions, CH4 emissions increase (Turetsky et al.,
2002, 2007) and are very sensitive to changes in soil temper-
ature (Turetsky et al., 2008).

4.3 Uncertainties

Our modeling approach, like other large scale efforts to sim-
ulate soil temperatures under changing conditions (Lawrence
and Slater, 2005; Zhang et al., 2008b; Wania et al., 2009) is
limited by a number of simplified assumptions and the omis-
sion of small scale processes that are not represented in the
model. One of these shortcomings is the neglect of con-
vective heat transport through infiltration from rainfall and
snowmelt. Although heat conduction is the dominant heat
transfer process in soils (Boike et al., 2009), infiltration ac-
celerates the warming of the soil and could become more
important in a wetter climate. Infiltration is a key process in
arctic soils and is controlled mostly by the thaw status of the
soil (Zhang et al., 2010), and can potentially lead to a delay
in modeled spring thawing (Wania et al., 2009). The verti-
cal transport of heat by infiltration of warmer rainwater or
snowmelt is not currently considered in the model. However,
experimental data suggests that the impact of soil moisture
on the thermal regime is primarily through its influence on
thermal conductivity and that heat advection plays a minor
role (Wright et al., 2009).

The soil thermal regime is further influenced by the com-
plex interaction between climate, topography, hydrology and
vegetation, all of which cannot be adequately represented
with the approach used here. For example, Jorgenson et
al. (2010) reported differences in observed near-surface tem-
peratures between boreal landscapes within similar climatic
regions of∼12◦C based on those factors; our model takes
into account hydrology in a simple way but ignores slope,
aspect, and vegetation.

Further biases could arise from discounting the effects of
vegetation that (1) limit the amount of solar radiation hitting
the soil during the summer, and (2) impact the distribution
and persistence of the snow cover (Smith and Riseborough,
2002). Anticipated changes in the vegetation as a result of
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warming air temperatures towards shrubbier vegetation could
potentially provide more shading, change snowpack and alter
heat flux into the soil as well (Sturm et al., 2005).

Uncertainties in our simulation are not only caused by un-
certainties in the characterization of surface and subsurface
parameters (Shiklomanov et al., 2007) but also by the climate
forcing. Predictions of soil temperature depend on the forc-
ing climate data and are subject to uncertainties in those data;
the predicted soil temperatures can vary substantially (Anisi-
mov and Reneva, 2009). For example, Anisimov et al. (2007)
found that a 0.5–1.0◦C difference the zonal mean air tem-
perature could translate in differences in the projected per-
mafrost area of 10–20 %, comparable to the extent of changes
in the permafrost area in the next decades, although increases
in temperatures, and the large scale patterns of future snow
depth and precipitation are consistent across climate projec-
tions.

The estimates on peat volume are based on assumptions
regarding the carbon content in peat and the bulk density of
peat (see Sect. 2.3). Changing the peat bulk density from 100
to 80 increases the peat volume to 4200 km3 whereas a peat
bulk density of 120 kg m−3 would yield a volume of peat of
only 2800 km3.

5 Conclusions

Consistent with observations for the recent decades and with
other model simulations of soil temperatures under future cli-
mate conditions, we find a widespread degradation of per-
mafrost in Northern regions by the end of the century. Ex-
plicitly considering the distribution and depth of Northern
peatlands showed that the insulating properties of peat lead
to a considerably higher persistence of permafrost in peat soil
compared to mineral soils and consequently delayed degra-
dation of permafrost in peatland areas.

Our analyses bring up the important consideration of sea-
sonality in predicting the impacts of climate change on C cy-
cling and storage within permafrost ecosystems. We found a
25 day earlier initiation of the spring frost-free season, and a
13 day extension of the fall frost-free period.

Despite the slower rate of soil warming in peatland ar-
eas and a slow degradation of permafrost under peat soils,
a considerable volume of peat, approximately an additional
20 % of the total volume of 3480 km3 of peat in Alaska and
Canada, will be thawed by the end of the century. The poten-
tial release of carbon and the net effect of this thawing will
depend on the balance between increased productivity and
respiration, and will be mitigated by peat moisture.

Permafrost thaw often leads to collapse areas overlying
ice-rich permafrost, and the formation of fens within existing
permafrost peatlands (e.g. Beilman et al., 2001; Turetsky et
al., 2007) or in areas that were formerly forested (Jorgenson
et al., 2001). Jorgensen et al. (2001) estimate a 9 % increase
in peatland area in the Tanana Flats of interior Alaska from

formerly forested areas. Often, these thaw collapse fens are
more wetter, more productive and sequester more carbon fol-
lowing permafrost thaw (Camill et al., 2001).

Future improvements in predictive models that help under-
stand the role of peatlands in the global climate system and
their role as a source or sink of carbon under changing cli-
mate conditions will therefore depend on coupling the ther-
modynamical model with a hydrological model with an ap-
propriate parameterization of peat hydraulic properties that is
able to simulate the soil moisture and water table dynamics
in peatlands. As this parameterization depends on the type
peatland (e.g., fen vs. bog), improved modeling approaches
will require a consistent methodology to map peatlands at the
global scale.
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