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Abstract. It is commonly accepted that the variations of
Earth’s orbit and obliquity control the timing of Pleistocene
glacial–interglacial cycles. Evidence comes from power
spectrum analysis of palaeoclimate records and from inspec-
tion of the timing of glacial and deglacial transitions. How-
ever, we do not know how tight this control is. Is it, for ex-
ample, conceivable that random climatic fluctuations could
cause a delay in deglaciation, bad enough to skip a full pre-
cession or obliquity cycle and subsequently modify the se-
quence of ice ages?

To address this question, seven previously published con-
ceptual models of ice ages are analysed by reference to
the notion of generalised synchronisation. Insight is being
gained by comparing the effects of the astronomical forcing
with idealised forcings composed of only one or two peri-
odic components. In general, the richness of the astronom-
ical forcing allows for synchronisation over a wider range
of parameters, compared to periodic forcing. Hence, glacial
cycles may conceivably have remained paced by the astro-
nomical forcing throughout the Pleistocene.

However, all the models examined here show regimes of
strong structural dependence on parameters. This means that
small variations in parameters or random fluctuations may
cause significant shifts in the succession of ice ages. Whether
the actual system actually resides in such a regime depends
on the amplitude of the effects associated with the astro-
nomical forcing, which significantly differ across the differ-
ent models studied here. The possibility of synchronisation
on eccentricity is also discussed and it is shown that a high
Rayleigh number on eccentricity, as recently found in obser-
vations, is no guarantee of reliable synchronisation.

1 Introduction

Hays et al.(1976) showed that Southern Ocean climate ben-
thic records exhibit spectral peaks around 19, 23–24, 42 and
100 thousand years (thousand years are henceforth denoted
“ka”). More or less concomitantlyBerger (1977) showed,
based on celestial mechanics, that the power spectrum of cli-
matic precession was dominated by periods of 19, 22 and
24 ka, and that of obliquity was dominated by a period of
41 ka. These authors concluded that the succession of ice
ages is somehow controlled by the astronomical forcing.

However, experiments with numerical models have also
suggested that the precise timing of the glaciation or
deglaciation could sensitively depend on parameters that are
not well known.Weertman(1976), for example, showed that
the natural course of the ice volume from the present-day (ig-
noring anthropogenic forcing) could either be glacial incep-
tion or a long interglacial, depending on whether a certain pa-
rameter is set to 2.75 or 2.745.Paillard(2001) observed sim-
ilar phenomena using a model published inPaillard(1998).

Shown in Fig.1, for instance, are two further examples of
ice volume history reproduced with models previously pub-
lished in the palaeoclimate modelling literature (Saltzman
and Maasch, 1990; Tziperman et al., 2006). In both cases,
small changes in model parameters do, at some stage in the
climate history, induce a shift in the sequence of ice ages.

The question of the stability of the ice age sequence is
not new. As early as 1980,Imbrie and Imbrie(1980) won-
dered whether “nonorbitally forced high-frequency fluctua-
tions may have caused the system to flip or flop in an unpre-
dictable fashion.” They also noted that “the regularity of the
100-ka cycle, and particularly its phase coherence with the
100-ka eccentricity cycle, argue for predictability”. The im-
portance of eccentricity as a control of ice ages was recently
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Fig. 1. Ice volume simulated with two models previously published:
Saltzman and Maasch(1990) andTziperman et al.(2006), forced
by normalised insolation at 65◦ N. The blue lines are obtained with
the published parameters; the latter were slightly changed to obtain
the red ones:p0 = 0.262 Sv instead of 0.260 Sv inTziperman et al.
(2006), andw = 0.6 instead ofw = 0.5 in Saltzman and Maasch
(1990). While the qualitative aspect of the curves are preserved, the
timing of ice ages is affected by the parameter changes.

brought up byLisiecki (2010) and Rial (2004); Rial et al.
(2013).

Tziperman et al.(2006) already observed that a conceptual
model fitting the ice age curve is no proof that the correct
physical mechanisms have been identified, but is rather an
indication of the powerful role of the astronomical forcing as
a pacemaker. Our purpose is to take this approach one step
further by showing that the powerful action of the astronom-
ical forcing as a pacemaker does not guarantee the stability
of the ice age sequence.

A first step was proposed inDe Saedeleer et al.(2013),
where a highly idealised model of ice ages (in essence, a van
der Pol oscillator) displays a wide regime of synchronisation
when forced to the astronomical forcing. Inspection of the
time-averaged largest Lyapunov exponents, as well as basins
of attractions, allowed us to conclude that that the forced sys-
tem goes through times of unreliable synchronisation, so that
the succession of ice ages may sensitively depend on fluctu-
ations added to the system.

This work is further developed here in three directions: the
role of separate and combined influences of different com-
ponents of the astronomical forcing is being analysed more
systematically. This allows us to relate the instabilities noted
in palaeoclimate models to the literature on quasi-periodic
forcings with two components only, and more specifically to
the concept of strange non-chaotic attractor. The possibility
of synchronisation on eccentricity is also briefly discussed.
Second, the effects of additive fluctuations and those of pa-
rameter changes are being related qualitatively. Finally, the
analysis is applied to six other palaeoclimate models, which
provides a better basis to estimate the robustness of the con-
clusions.

Providing no conclusions as to whether or not glacial–
interglacial cycles are indeed predictable, the present work
focuses entirely on the possibility of dynamical stability of
simple ice age models. Making conclusions about the real
world requires first an elaborate account of the effects asso-
ciated with model discrepancy (which is stochastic) that need
to be quantified through a process of statistical inference.

2 The van der Pol oscillator

2.1 Model definition

Before going further a word of justification is needed about
the use of the van der Pol oscillator as the starting point of
this study.

The succession of glaciations and terminations is com-
monly understood as a phenomenon of relaxation, during
which regimes of linear response to the astronomical forc-
ing alternate with non-linear phenomena during which the
attracting point of the system changes.

The idea, popularised byPaillard (1998), is already im-
plicit in the works ofOerlemans(1980), based on experi-
ments with an ice sheet-lithosphere model. However, the un-
derstanding of the nature of the instabilities that are neces-
sary to cause the succession of glacial–interglacial cycles
has considerably evolved over time, as it may involve the
lithosphere (Oerlemans, 1980), the ocean biogeochemistry
(Saltzman et al., 1984), a combination of both (Saltzman
and Verbitsky, 1993), the ocean circulation (Paillard and Par-
renin, 2004) or sea-ice-atmospheric interactions (Gildor and
Tziperman, 2000).

The van der Pol model is thus chosen here as it is one of
the simplest relaxation oscillators, without consideration of
the exact physical mechanism that causes the ice age oscilla-
tions.

It is a dynamical system of two ordinary differential equa-
tions:

dx

dt
= −

1

τ
(F (t) + β + y) .

dy

dt
=

α

τ
(y − y3/3+ x),

(1)
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with (x,y) as the climate state vector,τ a time constant,α
a time-decoupling factor,β a bifurcation parameter andF(t)

the forcing. The parameterβ does not appear in the original
van der Pol equations (van der Pol, 1926), and the present
variant is sometimes referred to as thebiased van der Pol
model.

The autonomous (i.e.F(t) = 0) model displays self-
sustained oscillations as long as|β| < 1. For later reference
the period of the unforced oscillator is denotedTn(τ ). The
variablex then follows a saw-tooth periodic cycle, the asym-
metry of which is controlled byβ.

We choseα = 30. This choice implies that variabley un-
dergoes rapid variations compared tox, and it may therefore
be referred to as the “fast” variable. In climate terms,x may
be interpreted as a glaciation index, which slowly accumu-
lates the effects of the astronomical forcingF(t), while y,
which shifts between approximately−1 and 1, might be in-
terpreted as some representation of the ocean or carbon cycle
dynamics.

Again, the van der Pol oscillator is only taken here as a
starting point, its representativeness of the physics of ice ages
being admittedly contentious. Models with more explicit in-
terpretations of ice age physics will be discussed in Sect.3.

In ice age models the forcing function is generally one or
several insolation curves, computed for specific seasons and
latitudes. The rationale behind this choice is that whichever
insolation is used it is, to a very good approximation, a lin-
ear combination of climatic precession and obliquity (Loutre,
1993, see also AppendixA). The choice of one specific inso-
lation curve may be viewed as a modelling decision about the
effective forcing phase of climatic precession, and the rela-
tive amplitudes of the forcings due to precession and obliq-
uity. In turn, climatic precession and obliquity can be ex-
pressed as a sum of sines and cosines of various amplitudes
and frequencies (Berger, 1978), so thatF(t) can be modelled
as a linear combination of about a dozen of dominant peri-
odic signals, plus a series of smaller amplitude components.
They are shown in Fig.2. More details are given in Sect.2.4.
With these hypotheses the van der Pol model may be tuned so
that the benthic curve over the last 800 000 yr is reasonably
well reproduced (Fig.3).

Abundant literature analyses the response of the van der
Pol oscillator to a periodic forcing (e.g.Mettin et al., 1993;
Guckenheimer et al., 2003, and references therein). The re-
sponse of oscillators to the sum of two periodic forcings has
been the focus of attention because it leads to the emergence
of “strange non-chaotic attractors”, a concept first introduced
by Grebogi et al.(1984) and further studied in, among others,
Wiggins (1987); Romeiras and Ott(1987); Kapitaniak and
Wojewoda(1990, 1993); Belogortsev(1992); Feudel et al.
(1997); and Glendinning et al.(2000). To our knowledge,
however, there is no systematic study of the response of an
oscillator to a signal of the form of the astronomical forc-
ing. Le Treut and Ghil(1983), for example, represented the
astronomical forcing as a sum of only two or three periodic
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Fig. 2.Spectral decomposition of precession and obliquity given by
Berger(1978), scaled here such that the strongest components have
amplitude 1.

components and it will be shown here that it is worth consid-
ering the astronomical forcing with all its complexity.

2.2 Periodic forcing

Consider a sine-wave forcing (F(t) = γ sin(2π/P1t +φP1)),
with period P1 = 23 716 yr andφP1 = 32.01◦. This is the
first component of the harmonic development of climatic pre-
cession (Berger, 1978). If certain conditions are met – they
will soon be given – the van der Pol oscillator may become
synchronised on the forcing.Synchronisedmeans, in this par-
ticular context, that the response of the system displaysp cy-
cles withinq forcing periods, wherep andq are integers. It
is said that the system is in ap : q synchronisation regime
(Pikovski et al., 2001, p. 66–67). The output is periodic, and
its period is equal toq × P1.

There are several ways to identify the synchronisation in
the output of a dynamical system. One method is to plot the
state of the system at a given timet , and then superimpose on
that plot the state of the system at every timet+nP1, wheren
is integer. The system is synchronised if onlyq distinct points
appear on the graph, discarding transient effects associated
with initial conditions. These correspond to the stable fixed
points of the iteration bringing the system fromt to t + qP1.
In the following we refer to this kind of plot as a “strobo-
scopic section” of periodP1 (Fig. 4a). If the system is not
synchronised, then there are two options: the stroboscopic
section is a closed curve (the response isquasi-periodic), or
a figure with a strange geometry (the response isa-periodic).

There is another, equivalent way to identify synchronisa-
tion. Suppose that the system is started from arbitrary ini-
tial conditions. Then, plot the system state at a given timet ,
long enough after the initial conditions. Repeat the experi-
ment with another set of initial conditions, superimpose the
result on the plot, and so on with a very large number of dif-
ferent initial conditions. In doing so one constructs the sec-
tion of the global pullback attractor at timet (henceforth re-
ferred to as thepullback section); the pullback attractor itself
being the continuation of this figure over all times (Fig.4b).

www.clim-past.net/9/2253/2013/ Clim. Past, 9, 2253–2267, 2013
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Fig. 3.Simulation with the van der Pol oscillator (Eqs.1–4), forced
by astronomical forcing and compared with the benthic record
of Lisiecki and Raymo(2005). Parameters are:α = 30, β = 0.75,
γp = γo = 0.6, τ = 36.2 ka.

Each component of the global pullback attractor (two are il-
lustrated in Fig.4b) is a local pullback attractor.Rasmussen
(2000, Chap. 2) reviews all the relevant mathematical formal-
ism.

In the particular case of a periodic forcing, the strobo-
scopic section and the pullback section are often identical
(Fig. 5)1.

The number of points on the pullback section may then be
estimated for different combinations of parameters and we
can use this as a criteria to detect synchronisation. This is
done in Fig.6 for a range ofγ andτ . It turns out that syn-
chronisation regimes are organised in the form of triangles,
known in the dynamical system literature asArnol’d tongues
(Pikovski et al., 2001, p. 52). Ap : q synchronisation regime
appears when the ratio between the natural period (Tn) and
the forcing period isclose to q/p. The tolerance, i.e. how
distant this ratio can afford to be with respect toq/p, in-
creases with the forcing amplitude and decreases withp and
q. Synchronisation is weakest (least reliable) near the edge of
the tongues. Unreliable synchronisation characterises a sys-
tem that is synchronised, but in which small fluctuations may

1This property derives from the system invariance with respect
a time translation byP . There will be, however, cases where dif-
ferent initial conditions will create different stroboscopic plots. For
example two 1: 2 synchronisation regimes co-exist in the forced
van der Pol oscillator, so that there are four distinct local pullback
attractors, while only two points will appear on a stroboscopic plot
started from a single set of initial conditions. Rigorously, the global
pullback attractor at timet is identical to the global attractor of the
iterationt +nP , and the global pullback sections at two timest and
t ′ are homeomorphic.

(a)

x

y

t

P

(b) t0

tback x

y

t

Fig. 4. (a) The stroboscopic section is obtained by superimposing
the system state every forcing period (P ), here illustrated for a 2: 1
synchronisation.(b) The pullback section at timet0 is obtained by
superimposing the system states obtained by initialising the system
with the ensemble of all possible initial conditions far back in time,
here attback. The particular example shows a global pullback attrac-
tor made of two local pullback attractors (in dashed red and blue),
the sections of which are seen att . Also shown is the convergence
of initial conditions towards the pullback attractors, in grey.

cause episodes of desynchronisation. In the particular case of
periodic forcing the episode of desynchronisation is called
a phase slip, as is well explained inPikovski et al.(2001,
p. 54)

Using the pullback attractor to identify synchronisation is
not a very efficient method in the periodic forcing case. Arc-
length continuation methods are faster and more accurate
(e.g.Schilder and Peckham, 2007, and references therein). It
is shown, however, inDe Saedeleer et al.(2013) that the pull-
back section method gives results that are acceptable enough
for our purpose, and it is adopted here because it provides
a more intuitive starting point to characterise synchronisation
with multi-periodic forcings.

2.3 Synchronisation on two periods

Consider now a forcing function that is the sum of two peri-
odic signals. Two cases are considered here: the two forcing
periods differ by a factor of about 2, and the two forcing pe-
riods are close.

2.3.1 P1 = 23 716 ka andO1 = 41 000 ka

We adopt F(t) = γ [sin(2π/P1t + φP1) + cos(2π/O1t +

φO1)], with P1 = 23 716 ka, O1 = 41 000 ka and
φP1 = 32.01◦ and φO1 = 251.09◦. P1 is the first period
in the development of precession,O1 is the first period in the
development of obliquity andφP1, φO1 the corresponding
phases given byBerger(1978), so thatF(t) may already be

Clim. Past, 9, 2253–2267, 2013 www.clim-past.net/9/2253/2013/
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Fig. 5.Pullback (att0 = 0) and stroboscopic sections (t = 0+nP1)
obtained with the van der Pol oscillator, with parametersα =

30, β = 0.7, τ = 36 forced byF(t) = γ sin(2π/P1t + φP1), P1 =

23.7 ka,φP1 = 32.01◦ andγ = 0.6. The two plots indicate a case
of 4 : 1 synchronisation, and they are identical because the forcing
is periodic.

viewed as a very rough representation of the astronomical
forcing.

Let us begin withτ = 36 ka, which corresponds to a limit
cycle in the van der Pol oscillator of periodTn = 98.79 ka,
and consider the stroboscopic section onP1 (Fig. 7, line 1).
Forcing amplitudeγ is set to 0.6. Due to the presence of
the O1 forcing, the four points of the periodic case seen in
Fig. 5 have mutated into four local attractors, which appear
as closed curves (some are very flat). Every timeP1 elapses,
the system visits a different local attractor. They are attrac-
tors in the sense that they attract solutions of the iteration,
bringing the system fromt to t + 4 ·P1. In this particular ex-
ample, the system is said to be phase- or frequency-locked on
P1 with ratio 1: 4 (Pikovski et al., 2001, p. 68), because on
average, one ice age cycle takes four precession cycles, even
though the response is no longer periodic. In this example,
the curves on theP1 stroboscopic section nearly touch each
other. This implies that synchronisation is not reliable since
a solution captured by one of these attractors could easily
escape and fall into the basin of attraction of another local
attractor. One can also see that it is not synchronised onO1
since the stroboscopic section of periodO1 shows one closed
curve englobing all possible phases. It may also be said that
the system is synchronised in thegeneralisedsense (Pikovski
et al., 2001, p. 150), because the pullback section is made of
only four points: starting from arbitrary conditions, the sys-
tem converges to only a small number of solutions at any
time t . It is also stable in the Lyapunov sense, a point that
will not be further discussed here, but seeDe Saedeleer et al.
(2013).

Consider nowτ = 41 ka. The four closed curves on the
P1-stroboscopic section have collided and merged into one
attractor with strange geometry. A similar figure appears
on the E1-stroboscopic section. The phenomenon of strange
non-chaotic attractor has been described byGrebogi et al.
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Fig. 6. Bifurcation diagram obtained by counting the number of
points on the pullback section in the van der Pol oscillator (α = 30,
β = 0.7) andF(t) = γ sin(2π/P1t +φP1). The twox axes indicate
τ and the ratio between the natural system period and the forcing,
respectively. One observes the synchronisation regimes correspond-
ing to 1: 1, 1: 2, 1: 3, 1: 4 and 1: 5, respectively (gray, blue, red,
green, yellow) and, intertwined, higher order synchronisations in-
cluding 3: 2, 5: 2, 2: 3 etc. White areas are weak or no synchro-
nisation. Graph constructed usingtback= −10 Ma (see Fig.11 and
text for meaning and implications).

(1984), its occurrence in the van der Pol oscillator is dis-
cussed inKapitaniak and Wojewoda(1990), and its rele-
vance to climate dynamics was suggested bySonechkin and
Ivachtchenko(2001). In our specific example, the system is
neither frequency-locked onP1 nor onO1, but it is synchro-
nised in the generalised sense: the pullback section has two
points. Finally, withτ = 44 ka there is frequency-locking on
O1 (regime 3: 1) but not onP1.

Clearly, the system underwent changes in synchronisation
regimes asτ increased from 36 to 44 ka. Further insight may
be had by considering theτ -γ plot (Fig. 8). The frequency-
locking regime onP1 lies in the relic of the 1: 4 tongue vis-
ible in the periodic forcing case (Fig.6). Frequency locking
on O1 belongs to the 1: 3 tongue associated withO1. The
strange non-chaotic regime occurs where the tongues associ-
ated with these different forcing components merge.

The word bifurcation has been defined for non-
autonomous dynamical systems (Rasmussen, 2000, Chap. 2).
This is a complex subject and we will admit here the rather
informal notion that there is a bifurcation when a local pull-
back attractor appears or ceases to exist (adapted from Def.
2.42, in Rasmussen, 2000). With this definition, there is a bi-
furcation at least every time color changes in Fig.8 (assum-
ing tback is far enough in the past).
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Fig. 7. Pullback (att0 = 0) and stroboscopic sections (t = 0+ nP1
andt = 0+ nO1) obtained with the van der Pol oscillator with pa-
rametersα = 30, β = 0.7, and forced byF(t) = γ (sin(2πt/P1 +

φP1) + sin(2πt/O1) + φO1), P1 = 23.7 ka andO1 = 41.0 ka and
γ = 0.6, and three different values ofτ . The presence of dots on the
pullback section indicates generalised synchronisation. Localised
closed curves on the stroboscopic sections indicate frequency lock-
ing on the corresponding period (onP1 with τ = 36 ka andO1
with τ = 44 ka), and complex geometries indicate the presence of
a strange attractor (τ = 41 ka).

Another view on the bifurcation structure may be obtained
by plotting thex andy solutions of the system att0 = 0, ini-
tiated from a grid of initial conditions attback= −5 Ma (Mil-
lion years), as a function ofτ , still with γ = 0.6 (Fig.9). This
plot outlines a region of sensitive dependence on the input
parameter, more specifically betweenτ = 37 and 42 ka.

These observations have two important consequences for
our understanding of the phenomena illustrated in Fig.1. To
see this it is useful to refer to general considerations about
autonomous dynamical systems. A bifurcation generally sep-
arates two distinct (technically: non-homeomorphic) attrac-
tors, which control the asymptotic dynamics of the system.
As the bifurcation is being approached, the convergence to
the attractor is slower, while the attractor that exists on the
other side of the bifurcation may already take some tempo-
rary control on the transient dynamics of the system. This is,
namely, one possible mechanism of excitable systems. One
sometimes refers to “remnant” or “ghost attractors” to refer
to these attractors that exist on the other side of the bifur-
cation and may take control on the dynamics of the system
over significant time intervals (e.g.Nayfeh and Balachan-
dran, 2004, p. 206).

The idea may be generalised to non-autonomous sys-
tems. Consider Fig.10. The upper plot shows the two local
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Fig. 8. As Fig. 6 but with a 2-period forcing: F(t) =

γ (sin(2π/P1t + φP1) + sin(2π/O1t + φO2)) (see text for values).
Tongues originating from frequency-locking on individual periods
merge and give rise to strange non-chaotic attractors. Orange dots
correspond to the cases shown in Fig.7.

pullback attractors of the system obtained withτ = 41 ka.
The middle panel displays one local attractor obtained with
τ = 40. The twoτ = 41 attractors are reproduced with thin
lines for comparison. Observe that thisτ = 40 attractor is
qualitatively similar to theτ = 41 attractors, and most of its
time is spent on a path that is nearly undistinguishable from
those obtained withτ = 41. However, on a portion of the
time interval displayed it follows a sequence of osciliations
that is distinct from those obtained withτ = 41. In fact, there
are four pullback attractors atτ = 40.

Let us now consider a third scenario. Parameterτ = 41,
but an additive stochastic term (σ dω

dt
,σ 2

= 0.25ka−1, andω

symbolises a Wiener process) is added to the second system
equation. This is thus a slightly noisy version of the original
system. Shown here is one realisation of this stochastic equa-
tion, among the infinity of solutions that could be obtained
with this system. Expectedly, the system spends large frac-
tions of time near one or the other of the two pullback attrac-
tors. However, it also spends a significant time on a distinct
path. Speculatively, this distinct path is under the influence
of a “ghost” pullback attractor. As the bifurcation structure is
complex and dense, as shown in Fig.9, we expect a host of
ghosts to lie around, ready to take control of the system over
significant fractions of time, and this is what happens in this
particular case.

To further support this hypothesis, consider a second ex-
periment. Figure11displays the number of distinct solutions
counted at timet0 = 0, when the system is started from 121
distinct initial conditions at a time backtback, as a function of
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Fig. 9.Pullback solutions of the van der Pol oscillator forced by two
periods (as in Figs.7 and8) as a function ofτ . Forcing amplitude
is γ = 0.6 and the other parameters are as on the previous figures.
Vertical lines indicate the cases shown in Fig.7.

tback. Surprisingly, one needs to go back to−30 Ma to iden-
tify the true pullback attractor. Obviously 30 Ma is a very
long time compared to the Pleistocene and so this solution is
in practice no more relevant than the 4 or 8 solutions that can
be identified by only starting the system back in time 1 or
2 Ma ago. They may be interpreted as ghost pullback attrac-
tors, and following the preceding discussion they are likely
to be visited by a system forced by large enough random ex-
ternal fluctuations.

2.3.2 P2 = 22 427 ka andP3 = 18 976 ka

The two periods now being combined are the second and
third components of precession, still according toBerger
(1978). These two periods were selected for two reasons. The
first one is that the addition of the two periodic signal pro-
duces an interference beating with period 123 319 yr, not too
far away from the usual 100 ka cycle that characterises Late
Pleistocene climatic cycles. Second, the period of the beating
is not close to an integer number of the two original periods
(this occurs, accidentally, when usingP1 andP3). This was
important to be able to clearly distinguish a synchronisation
to the beating from a higher resonance harmonic to either
forcing components.

It is known from astronomical theory that the periodic-
ity of eccentricity is mechanically related to the beatings of
the precession signal (Berger, 1978). The scientific question
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Fig. 10. (Top) pullback attractors of the forced van der Pol oscil-
lator (β = 0.7, α = 30,γ = 0.6 with 2-period forcing) as in Fig.8,
for τ = 41 ka. They are reproduced on the graphs below (very thin
lines), overlain by (middle) one pullback attractor with same pa-
rameters butτ = 40ka, and (bottom) one stochastic realisation of
the stochastic van der Pol oscillator withτ = 41 ka.

considered here is whether the correspondence between the
period of ice age cycles and eccentricity is coincidental, or
whether a phenomenon of synchronisation of climate on ec-
centricity developed.

To address this question we need a marker of synchro-
nisation on the precession beating. The Rayleigh number
has already been used to this end in palaeoclimate appli-
cations (Huybers and Wunsch, 2004; Lisiecki, 2010). Let
Pb be the beating period, andXi the system state snap-
shot everyt = t0 + iPb, the Rayleigh numberR is defined
as |

∑
Xi − X|/

∑
|Xi − X|, where the overbar denotes an

average.R is strictly equal to 1 when the solution is synchro-
nised with a periodic forcing of periodPb, assuming no other
source of fluctuations. As a reference,Lisiecki (2010) esti-
mated 0.94 the Rayleigh number of a stacked benthicδ18O
signal with respect to eccentricity over the last million years.

The bifurcation diagram showing the number of pullback
solutions is displayed in Fig.12. The frequency-locking
tongues onP2 and P3 are easily identified at low forc-
ing amplitude; as forcing amplitude increases the tongues
merge and produce generalised synchronisation regimes. Re-
gions of synchronisation onPb, identified asR > 0.95, are
hashed. They occur when the natural system period is close
to Pb but narrow bands also appear nearTN = Pb/2. Observe
also that these synchronisation regimes are generally not
unique (several pullback attractors co-exist), and additional
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Fig. 11.Number of distinct solutions simulated with the van der Pol
oscillator (β = 0.7, α = 30, τ = 41 ka andγ = 0.6 with 2-period
forcing as in Fig.8, as a function of the timetback at which 121
distinct initial conditions are considered. The actual stable pullback
attracting set(s), in the rigorous mathematical sense, is (are) found
for tback→ −∞.

sensitivity experiments show that convergence is quite slow.
More specifically, the synchronisation diagram was com-
puted here usingtback= −10 Ma. With shorter backward
time horizons, the number of remaining solutions identified
in the beating-synchronisation regime often exceeds 6 and
could not be seen on the graph, while the Rayleigh number
was still beyond 0.95. Hence, a high Rayleigh number is not
necessarily a good indicator of reliable synchronisation.

2.4 Full astronomical forcing

The next step is to consider the full astronomical forcing,
as the sum of standardised climatic precession (5) and the
deviation of obliquity with respect to its standard value (O):

F(t) = γp5(t) + γoO(t), (2)

where

5(t) =

Np∑
i=1

ai sin(ωpi
t + φpi

)/a1 (3)

O =

No∑
i=1

bi cos(ωoi
t + φoi

)/b1. (4)

The various coefficients are taken fromBerger(1978). We
take Np = No = 34, so that the signal includes in total 68
harmonic components. With this choice the BER78 solu-
tion (Berger, 1978) is almost perfectly reproduced. BER78 is
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Fig. 12. As Fig. 8 but with: F(t) = γ (sin(2π/P2t + φP2) +

sin(2π/P3t + φP3)). Hashes indicate regions of Rayleigh number
> 0.95 on the beating associated withP2 and P3, the period of
which is calledE3 in the Berger (1978) nomenclature (third com-
ponent of eccentricity).

still used in many palaeoclimate applications. Compared to
a state-of-the-art solution such as La04 (Laskar et al., 2004),
the error on amplitude is between 0 and 25 %, and the error
on phase is generally much less than 20◦.

The bifurcation diagram representing the number of pull-
back solutions as a function of forcing amplitude andτ is
shown in Fig.13. We have takenγ = γp = γo. One recog-
nises the tongues originating from the individual components
merging gradually into a complex pattern. The number of at-
tractors settles to 1 as the amplitude of the forcing is further
increased. Let us call this the 1-pullback attractor regime. We
already know that synchronisation is generally not reliable in
the region characterised by the complex and dense bifurca-
tion region, where more than one attractor exist. The remain-
ing problem is to characterise the reliability of synchronisa-
tion in the 1-pullback attractor regime.

The literature says little about systematic approaches to
quantify the reliability of generalised synchronisation with
quasi-periodic forcings. To develop further the ideas devel-
oped in Sect.2.3.1, one can plot pullback solutions at a cer-
tain time t as a function of one or several parameters. This
is done in Fig.14. Hereγ is kept constant (= 1.0) andτ is
varied between 25 and 40. There is a brief episode of a 2-
solution regime between 31 and 32 ka. Within the 1-solution
regime there is a number of abrupt transitions (at 26, 27, 34
and 37 ka).

Abrupt variations such as nearτ = 26, 27, 34 and 37 ka
may represent discontinuities in the pullback attractor. In one
case at least (atτ = 34.46 . . . ), the discontinuous character
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Fig. 13. As Fig. 8 but with the full astronomical forcing, made of
34 precession and 34 obliquity periods (Eq.2).

could be verified up to machine precision. The abrupt vari-
ation atτ = 37.59. . . appears numerically as a continuous
variation of the attractor spread over an interval of 10−7 ka2.

Further work is required to understand the origin of these
discontinuities, and in particular to understand to what extent
they relate to the strange nature of the attractor. The relevant
aspect in the present context is that these discontinuities in-
duce similar phenomena as those described in Sect. 2: the
presence of ghost attractors and sensitive dependence to fluc-
tuations. Hence, being in the 1-pullback attractor regime does
not guarantee a reliable synchronisation on the astronomical
forcing. One needs to be deep into that zone.

3 Other models

We now consider 6 previously published models. Mathemat-
ical details are given in the Appendix and the codes are avail-
able online athttps://github.com/mcrucifix.

– SM90: this is a model with three ordinary differen-
tial equations representing the dynamics of ice volume,
carbon dioxide concentration and deep-ocean temper-
ature. The astronomical forcing is linearly introduced
in the ice volume equation, under the form of inso-
lation at 65◦ N on the day of summer solstice. Only
the carbon dioxide equation is non-linear, and this non-
linearity induces the existence of a limit-cycle solution
– spontaneous glaciation and deglaciation – in the cor-
responding autonomous system. The SM90 model is

2Note also that at least one discontinuity up to machine precision
could also be identified in the 1-pullback attractor regime whenα =

1, which suggests that the feature is not conditioned by the slow-fast
character of the system.

Fig. 14. As Fig. 9 but with the full astronomical forcing, with pa-
rameters as in Fig.13andγ = 1.0.

thus a mathematical transcription of the hypothesis ac-
cording to which the origin 100 000 yr cycle is to be
found in the biological components of Earth’s climate.

– SM91:this model is identical to SM90 except for a dif-
ference in the carbon cycle equation.

– PP04: the Paillard–Parrenin model (Paillard and Par-
renin, 2004) is also a 3-differential-equation system,
featuring Northern Hemisphere ice volume, Antarctic
ice area and carbon dioxide concentration. The carbon
dioxide equation includes one non-linear term asso-
ciated to a switch on/off of the Southern Ocean ven-
tilation. Astronomical forcing is injected linearly at
three places in the model: in the ice-volume equation,
in the carbon dioxide equation, and in the ocean ven-
tilation parameterization. The autonomous version of
the model also features a limit cycle. As in SM90 and
SM91 the non-linearity introduced in the carbon cycle
equation plays a key role but the bifurcation structure
of this model differs from SM90 and SM91 (Crucifix,
2012).

– T06: theTziperman et al.(2006) model is a mathemat-
ical idealisation of more complex versions previously
published byGildor and Tziperman(2000). T06 fea-
tures the concept of sea-ice switch, according to which
sea-ice growth in the Northern Hemisphere inhibits ac-
cumulation of snow over the ice sheets, and vice versa.
Mathematically, T06 is presented as a hybrid model,
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which is the combination of a differential equation in
which the astronomical forcing is introduced linearly
as a summer insolation forcing term, and a discrete
variable, which may be 0 or 1 to represent the absence
or presence of sea ice in the Northern Hemisphere.

– I11: theImbrie et al.(2011) was introduced by its au-
thors as a “phase-space” model. It is a 2-D model,
for which the equations were designed to distinguish
an “ice accumulation phase” and an “abrupt deglacia-
tion” phase, which is triggered when a threshold de-
fined in the phase space is crossed. I11 was specifically
tuned to reproduce the phase-space characteristics of
the benthic oxygen isotopic dynamics. A particularity
of this model is that the phasing and amplitude of the
forcing depend on the level of glaciation.

– PP12: similar to Imbrie et al. (2011), the Parrenin
and Paillard(2012) model distinguishes accumula-
tion and deglaciation phases. Accumulation is a lin-
ear accumulation of insolation, without restoring force
(hence similar to Eq. (1) of the van der Pol oscilla-
tor); deglaciation accumulates insolation forcing but
a negative relaxation towards deglaciation is added.
Contrary toImbrie et al.(2011), the trigger function,
which determines the regime change, is mainly a func-
tion of astronomical parameters. An ice volume term
only appears in the function controlling the shift from
“accumulation” to “deglaciation” regime.

The ice volumes (or, equivalently, glaciation index or
sea level) simulated by each of these models are shown in
Fig. 15. Shown here are estimates of the pullback attractors;
more specifically, the trajectories obtained with an ensem-
ble of initial conditions attback= −20 Ma. In some cases
the curves actually published (in particular in SM90) are not
pullback attractors, butghosttrajectories in the sense illus-
trated in Fig.11. In some cases (PP04 and PP12) the param-
eters had to be slightly adjusted to reproduce the published
version satisfactorily. Details are given in Appendix.

Some of these models include as much as 14 adjustable
parameters (e.g.: PP04) and a full dynamical investigation of
each of them is beyond the scope of the study. Rather, we
proceed as follows. Every model responds to a state equa-
tion, which may be written, in general (assuming a numerical
implementation), as

ti+1 = ti + δt

xi+1 = xi + δt f (xi,F (ti)),

whereti is the discretised time,xi the climate state (a 2-D or
3-D vector) atti andF(ti) is the astronomical forcing, which
is specific to each model because the different authors made
different choices about the respective weights and phases of
precession and obliquity.
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Fig. 15. Pullback attractors obtained for 6 models over the last
800 ka, forced by astronomical forcing with the parameters of the
original publications. Shown is the model component representing
ice volume. Units are arbitrary in all models, except in T06 (ice
volume in 1015m3) and PP12 (sea-level equivalent, in m).

In all generality, the equation (or its numerical approxima-
tion) may be rewritten as follows, posingτ = 1 andγ = 1:

ti+1 = ti + δt

xi+1 = xi +
1

τ
δt f (xi,γ F (ti)).

The parametersτ andγ introduced this way have a similar
meaning as in the van der Pol oscillator, sinceτ controls the
characteristic response time of the model, whileγ controls
the forcing amplitude.

Bifurcation diagrams, similar to Fig.13 are then shown in
Fig. 16. Remember thatγ = τ = 1 corresponds to the model
as originally published.

A first group of four models appears (SM90, SM91,
T06 and PP04), on which one recognises a similar tongue-
synchronisation structure as in the van der Pol oscillator.
This was expected since these models are also oscillators
with additive astronomical forcing. Depending on parame-
ter choices synchronisation may be reliable or not. Synchro-
nisation is clearly not reliable in the standard parameters
used for SM90 and SM91. In T06 the standard parameters
are not far away from the complex multi-pullback-attractor
regime and this explains why transitions such as displayed
in Fig. 1 could be obtained under small parameter changes
(or, equivalently, with some noise, as discussed in the orig-
inal Tziperman et al., 2006study). The standard parameter
choice of PP04 is further into the stability zone and, indeed,

Clim. Past, 9, 2253–2267, 2013 www.clim-past.net/9/2253/2013/



M. Crucifix: Why could ice ages be unpredictable? 2263

0.4 0.6 0.8 1.0 1.2 1.4
τ

0.2

0.4

0.6

0.8

1.0

1.2

γ

Saltzman - Maasch 1990

0.4 0.6 0.8 1.0 1.2 1.4
τ

0.2

0.4

0.6

0.8

1.0

1.2

γ

Saltzman - Maasch 1991

0.4 0.6 0.8 1.0 1.2 1.4
τ

0.2

0.4

0.6

0.8

1.0

1.2

γ

Paillard - Parrenin 2004

0.4 0.6 0.8 1.0 1.2 1.4
τ

0.2

0.4

0.6

0.8

1.0

1.2

γ

Tziperman et al. 2006

0.4 0.6 0.8 1.0 1.2 1.4
τ

0.2

0.4

0.6

0.8

1.0

1.2

γ

Parrenin and Paillard, 2012

0.4 0.6 0.8 1.0 1.2 1.4
τ

0.2

0.4

0.6

0.8

1.0

1.2

γ

Imbrie et al. 2011

Fig. 16.As Fig. 13 but for 6 models previously published. Orange
dots correspond to standard (published) parameters of these models.

experimenting with this model shows that instabilities such
as displayed in Fig.1 are harder to obtain.

I11, with standard parameters, is also fairly deep in the
stable zone. One has to consider much smaller forcing val-
ues than published to recognise the synchronisation tongue
structure that characterises oscillators (Fig.17).

PP12 finally turns out to be the only case not showing
a tongue-like structure. This may be surprising because this
model also has limit-cycle dynamics (self-sustained oscilla-
tions in the absence of astronomical forcing). Some aspects
of its design resemble the van der Pol oscillator. The role of
the variabley in the van der Pol oscillator is here played by
themode, which may either beg (glaciation) ord (deglacia-
tion). Also similar to the van der Pol, the direct effect of the
astronomical forcing on the ice volume (x in the van der Pol;
v in PP04) is additive. T06 has also similar characteristics.
The distinctive feature of PP12 is that the transition between
deglaciation and glaciation modes is controlled by the astro-
nomical forcing and not by the system state, as in the other
models. To assess the importance of this element of design
we considered a hacked version of PP12, where thed → g

occurs when forv < v1 (cf. AppendixB6 for model details).
In this case the tongue synchronisation structure is recovered,
with standard parameters marginally in the reliable synchro-
nisation regime (Fig.17).

4 Conclusions

The present article is built around the paradigm of the “pace-
maker”, that is, the timing of ice ages arises as a combination
of climate’s internal dynamics with the variations of incom-
ing solar radiation induced by the variations of our planet’s
orbit and obliquity. Mathematically, this implies that the
models of ice ages tested here either present self-sustained
oscillations in absence of astronomical forcing, or that the
structure of the vector field is organised such as to excite
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Fig. 17.As Fig.16for (left) the I11 model, but with a zoom on thex
axis, and (right) for a slightly modified version of the PP12 model,
in which the transition between deglacial and glacial states is also
controlled by ice volume, as opposed to the original PP12 model.

cyclic dynamics in the presence of a forcing. Once the forc-
ing is present, the two scenarios will result in qualitatively
similar dynamics (seeCrucifix, 2012, for more discussion on
this point).

In this study we paid attention to the dynamical aspects
that may affect the stability of the ice age sequence and its
predictability. First, the astronomical forcing has a rich har-
monic structure. We showed that a system like the van der Pol
oscillator is more likely to be synchronised on the astronom-
ical forcing (as nature provides it) than on a periodic forcing,
because the fraction of the parameter space corresponding to
synchronisation is larger in the former case. A synchronised
system is Lyapunov stable, so that at face value this would
imply that the sequence of ice ages is stable. However, – this
is the second point – even if the dynamical structure of the
Pleistocene climate was correctly identified, there would be
at least two sources of uncertainty : random fluctuations as-
sociated with the chaotic atmosphere and ocean and other
statistically random forcings like volcanoes; and uncertainty
on system parameters. In theory both types of uncertainties
point to different mathematical concepts: path-wise stabil-
ity to random fluctuations in the first case, and the structural
stability in the second. In practice, however, lack of either
form of stability will result in similar consequences: quan-
tum skips of insolation cycles in the succession of ice ages.
This was the lesson of Fig.10.

It was shown here that, compared to periodic forcing, the
richness of the harmonic structure of astronomical forcing
favours situations of weak structural stability. The interpre-
tation of the phenomenon relates directly to the theory of
quasi-periodically forced dynamical systems, and the insta-
bility develops under relatively weak forcing. It is to be dis-
tinguished from the chaos known to develop athigh forcing
amplitude, and which has been implied in El-Niño theories
Tziperman et al.(1994).

Out of the seven models tested here, we ignore which one
best captures ice ages dynamics. The overwhelming com-
plexity of the climate system does not allow us to securely
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select the most plausible model on the sole basis of our
knowledge of physics, biology and chemistry. Consequently,
while we have understood here how and why the sequence
of ice ages could be unstable in spite of available evidence
(astronomical spectral signature; Rayleigh number), estimat-
ing the stability of the sequence ice ages and quantifying our
ability to predict ice ages is also a problem of statistical in-
ference: calibrating and selecting stochastic dynamical sys-
tems based on both theory and observations, which are sparse
and characterised by chronological uncertainties. A conclu-
sive demonstration of our ability to reach this objective is still
awaited.

Appendix A

Insolation

In the following models, the forcing is computed as
a sum of precession (5 = esin$/a1), co-precession (̃5 =

ecos$/a1) and obliquity (O = (ε − ε0)/b1) computed ac-
cording to theBerger (1978) decomposition (Fig.2, and
Eqs.3–4). More precisely, we use here these quantities scaled

(P , 5̃ andO) such as they have unit variance. All insolation
quantities used in climate models may be approximated as

a linear combination of5, 5̃ andO. For example:

– normalised summer solstice insolation at 65◦ N =
0.89495 + 0.4346O

– normalised insolation at 60◦ S on the 21 February =

−0.49425 + 0.83995̃ + 0.2262O.

Appendix B

Model definitions

B1 SM90 model

dx

dt
= −x − y − v z − uF(t)

dy

dt
= −pz + r y + s z3

− wy z − z2y

dz

dt
= −q (x + z)

p = 1.0,q = 2.5, r = 0.9, s = 1.0,u = 0.6,v = 0.2 andw =

0.5, andF(t) is (here) insolation on the day of summer sol-
stice, at 65◦ N, normalised (results are qualitatively insensi-
tive to the exact choice of insolation).

B2 SM91 model

dx

dt
= −x − y − v z − uF(t)

dy

dt
= −pz + r y − s y2

− y3

dz

dt
= −q(x + z)

p = 1.0, q = 2.5, r = 1.3, s = 0.6, u = 0.6 andv = 0.2, and
F(t) is (here) insolation on the day of summer solstice, at
65◦ N, normalised (results are qualitatively insensitive to the
exact choice of insolation). One time unit is 10 ka.

B3 PP04 model

The three model variables areV (Ice volume),A (Antarctic
Ice Area) andC (Carbon dioxide concentration):

dV

dt
=

1

τV

(−xC − yF1(t) + z − V )

dA

dt
=

1

τA

(V − A)

dC

dt
=

1

τC

(αF1(t) − βV + γH + δ − C),

τV = 15 ka, τC = 5 ka, τA = 12 ka, x = 1.3, y = 0.4 (was
0.5 in the original paper),z = 0.8, α = 0.15, β = 0.5, γ =

0.5, δ = 0.4, a = 0.4, b = 0.7, c = 0.01, d = 0.27; H = 1 if
aV −bA+d−cF2(t) < 0, andH = 0 otherwise.F1(t) is the
normalised, summer-solstice insolation at 65◦ N, andF2(t) is
insolation at 60◦ S on the 21 February (taken as 330◦ of true
solar longitude). Other quantities (V , A, C) have arbitrary
units.

B4 T06 model

The two model variables arex (ice volume) andy (sea-ice
area).x is expressed in units of 1015 m3.

dx

dt
= (p0 − K x)(1− αsi) − (s + smF(t))

The equation represents the net ice balance, as accumula-
tion minus ablation, andαsi is the sea-ice albedo.αsi =

0.46y. y switches from 0 to 1 whenx exceeds 45×106 km3,
and switches from 1 to 0 whenx decreases below 3×
106 km3. The parameters given byTziperman et al.(2006)
are: p0 = 0.23 Sv, K = 0.7/(40) ka, s = 0.23 Sv andsm =

0.03 Sv, where 1 Sv = 106 m3s−1. F(t) is the normalised,
summer-solstice insolation at 65◦ N.
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B5 I11 model

Define first:

φ =
π

180
·

{
10− 25y wherey < 0,

10 elsewhere.
(B1)

θ =

{
0.135+ 0.07y wherey < 0,

0.135 elsewhere.

a = 0.07+ 0.015y

hO = (0.05− 0.005y)O

h5 = a5sinφ

h5̃ = a5̃cosφ

F = h5 + h5̃ + hO

d = −1+ 3
(F + 0.28)

0.51

With these definitions:
ÿ = 0.5[0.0625(d − y) −

ẏ2

d−y
] whereẏ > θ,

ẏ = −0.036375+ y[0.014416+ y(0.001121

−0.008264y)] + 0.5F elsewhere,

(B2)

whereẏ =
dy
dt

and ÿ =
dẏ
dt

. Note that the polynomial on the
right-hand side of the equation forẏ is a continuous fit to the
piece-wise function used in the originalImbrie et al.(2011)
publication. Time units are here ka.

B6 PP12 model

This is a hybrid dynamical system, with ice volumev (ex-
pressed inm of equivalent sea level) and state, which may be
g (glaciation) ord (deglaciation).

Define first

f (x) :=

{
x +

√
4a2 + x2 − 2a wherex > 0,

x elsewhere.

with a = 0.68034. Then define the following quantities, stan-
dardised as follows:

5∗
= (f (5) − 0.148)/0.808

5̃∗
= (f (5̃) − 0.148)/0.808

the thresholdθ = k55+k5̃5̃+kOO, and finally the follow-
ing rule controlling the transition between stateg andd:{

d → g if θ < v1

g → d if θ + v < v0
.

Ice volumev, expressed in sea-level equivalent, responds to
the following equation:

dv

dt
= −a55∗

− a5̃5̃∗
− aOÕ +

{
ad − v/τ if state isd

ag if state isg,

with the following parameter values:a5 = 1.456 mka−1,
a5̃ = 0.387 mka−1, aO = 1.137 mka−1, ag = 0.978 mka−1,
ad = −0.747 mka−1, τ = 0.834 ka, k5 = 14.635 m,
k5̃ = 2.281 m, kO = 23.5162 m, v0 = 122.918 m and
v1 = 3.1031 m. This parameter set is the one originally
presented byParrenin and Paillardin Climate of the Past
Discussion (which differs from the final version in Climate
of the Past), except thatkO is 18.5162 m in the original
paper. This modification was needed to reproduce the exact
sequence of terminations shown by the authors. Subtle
details, such as the numerical scheme or the choice of the
astronomical solution might explain the difference.

All codes and scripts are available from GitHub athttps:
//github.com/mcrucifix.

Addendum

The recently published article byMitsui and Aihara(2013)
further discusses this topic, by providing further support to
the existence of strange non-chaotic attractors in van der Pol
model as well as SM90, SM91 and PP04. They discuss also
the question of sensitive dependence to fluctuations and their
connection with the occurrence of strange non-chaotic attrac-
tors, with references to the works ofKhovanov et al.(2000)
in addition to those cited here.
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