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Abstract. Evidence has been found for reduced sensitivity
of tree growth to temperature in a number of forests at high
northern latitudes and alpine locations. Furthermore, at some
of these sites, emergent subpopulations of trees show nega-
tive growth trends with rising temperature. These findings
are typically referred to as the “Divergence Problem” (DP).
Given the high relevance of paleoclimatic reconstructions for
policy-related studies, it is important for dendrochronologists
to address this issue of potential model uncertainties associ-
ated with the DP. Here we address this issue by proposing a
calibration technique, termed “stochastic response function”
(SRF), which allows the presence or absence of any instabil-
ities in growth response of trees (or any other climate proxy)
to their calibration target to be visualized and detected. Since
this framework estimates confidence limits and subsequently
provides statistical significance tests, the approach is also
very well suited for proxy screening prior to the generation
of a climate-reconstruction network.

Two examples of tree growth/climate relationships are
provided, one from the North American Arctic treeline and
the other from the upper treeline in the European Alps. In-
stabilities were found to be present where stabilities were re-
ported in the literature, and vice versa, stabilities were found
where instabilities were reported. We advise to apply SRFs
in future proxy-screening schemes, next to the use of corre-
lations and RE/CE statistics. It will improve the strength of
reconstruction hindcasts.

Correspondence to:H. Visser
(hans.visser@pbl.nl)

1 Introduction

Evidence for reduced sensitivity of tree growth to temper-
ature has been reported for several forest sites along high-
northern latitudes and from some alpine locations. This phe-
nomenon appears to reflect the inability of certain tree-ring
width and maximum latewood density chronologies from ini-
tially temperature-limited sites to track the warming trends
seen in instrumental measurements from some northern lo-
cations since around the mid-20th century. A related phe-
nomenon is that some formerly temperature sensitive trees
may be losing their ability to reflect high-frequency climate
signals in some boreal and alpine forests (e.g., Wilmking et
al., 2005; Pisaric et al., 2007; Zhang et al., 2009; Büntgen et
al., 2006, 2008, 2009).

These observations have been described as the “Diver-
gence Problem” (DP), which has been discussed in a num-
ber of recently published articles (e.g., Jansen et al., 2007;
Wilson et al., 2007; D’Arrigo et al., 2008; Wilmking and
Singh, 2008; B̈untgen et al., 2009; Esper and Frank, 2009;
Loehle, 2009). DP has not only led to discussions within
the scientific community, but recently also to considerable
controversy within the public arena (the “CRU affair”, “cli-
mategate”, the “trick”). See Schiermeier (2010, p. 286–287)
for a summary.

If the DP is in fact a real and widespread phenomenon,
co-occurring with global warming as well as anthropogenic-
induced changes of atmospheric composition, it would po-
tentially put into question the overall ability of tree ring-
based temperature reconstructions to capture earlier periods
of putative warmth, such as the so-called Medieval Warm
Period (MWP), and subsequently to model possible future
reactions of forest ecosystems in a warming world. Clearly,
if some proxies show unstable relationships with a particular
target variable, the validity of the large-scale reconstructions
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may be compromised. Error may be magnified for recon-
structions representing smaller spatial scales.

In both cases, the Uniformitarian principle – “the present
is the key to the past” – would no longer be valid. This prin-
ciple states that physical and biological processes which link
today’s environment with today’s variations in tree growth,
must have been in operation in the past (Fritts, 1976, p. 14–
15). Thus, if certain tree-ring proxies exhibit non-stable re-
lations to climate in recent decades, we could expect such
relations during the MWP as well, thus conforming with the
Uniformitarian principle.

In general, given the high relevance of climate recon-
structions for policy-related studies (e.g., National Research
Council, 2006; Jansen et al., 2007), it is important for paleo-
climatologists to address this issue of potential model uncer-
tainties associated with the DP (Visser and Petersen, 2009;
Schiermeier, 2010). Here, we address this issue of uncertain-
ties and non-stable relations by proposing a calibration tech-
nique, termed stochastic response functions (SRFs), that can
be readily used to trace instabilities in proxy/climate relation-
ships. Since SRFs are one means of detecting and visualizing
such instabilities, they are also potentially useful as a screen-
ing tool for judging the acceptability of particular proxies in
a given reconstruction-network approach. While our focus
is on the tree-ring proxy, the SRF method could be applied
to the analysis of other proxies as well, such as documentary
archives (Dobrovolńy et al., 2010) or sediment cores (Oppo
et al., 2009).

First, we describe the model underlying SRFs along with
specific tests for residuals and model assumptions, with sta-
tistical details given in Appendix A. Second, the utility of
SRFs as a screening tool for individual proxies is assessed.
Third, we apply the SRF approach to two recent dendrocli-
matic examples in northern interior Canada (D’Arrigo et al.,
2009), and the European Alps (Büntgen et al., 2008). Our
discussion focuses on (i) the appropriateness of truncation of
calibration periods in order to omit the period of instability,
and (ii) potential implications for use of SRFs as a screening
tool.

2 Methods of proxy calibration

2.1 Stochastic response functions

Calibration and validation methodologies have been well de-
scribed within the field of dendroclimatology (Fritts, 1976;
Cook and Kairiukstis, 1990). We propose a modification of
the traditional calibration approach (Appendix, model (4)).
This modification is used to generate an explicit visualiza-
tion of model instability. It is based on the application of
a sub-model from the class of so-called structural time se-
ries models (STMs) and denoted hereafter as the stochastic
response function model:

It = µt +αt ·Xt +εt (1)

Here, the “intercept”µ, which is traditionally a constant, is
replaced by a slowly bending trend modelµt, the integrated
random walk (IRW) model. The constant response weightα

has been replaced by a stochastic counterpartαt, based on
random walk models for individual climate variables. Both
trend and response weights are estimated using the discrete
Kalman filter (Harvey, 1989; Durbin and Koopman, 2001).
The filter is ideal in the sense that it yields the minimum
mean square error estimates (MMSE, normally distributed
noise processes) forµt and αt along with maximum like-
lihood estimates for unknown noise variances. One of the
attractive properties of model (1) is that the traditional mul-
tiple regression model is just a special case (models (A2a)
and (A2b) in Appendix A). By using maximum likelihood
(ML) estimation we also let the model “choose” between be-
ing constant or time-varying in nature. Mathematical details
of model (1) are given in the Appendix.

Applications of SRFs are not new in dendroclimatol-
ogy (Visser, 1986; Visser and Molenaar, 1988, 1992; Van
Deusen, 1990; van den Brakel and Visser, 1996). However,
the application of STMs for reconstruction studies has been
quite limited. Only one other sub-model from STMs has re-
cently been applied in dendroclimatology, using PRECON
software (Cook and D’Arrigo, 2002; Rozas, 2005; D’Arrigo
et al., 2009; Wilson et al., 2010). Here, Wilson et al. show
an interesting application of STMs other than proxy calibra-
tion. They explored the coherence between four ENSO re-
constructions (period 1550–2000, cf. their Fig. 6).

The STM applied in latter four references is equivalent to
model (1), but with theomissionof the trend componentµt.
One concern regarding this “model without intercept” is that
the actual presence of an intercept in certain sub-periods of
the calibration period will force response estimatesα̂ to show
time-dependent behavior. Therefore, the “model without in-
tercept” is best avoided.

2.2 Discussion of model (1)

Four main points should be considered when using the
model (1) for the analysis of time-series in palaeoclimatol-
ogy:

First, two other methods in dendroclimatology need to be
mentioned which address the issue of model (in)stabilities, in
addition to the SRF model. The first method is that ofmov-
ing response functions(MRFs) (Biondi and Waikul, 2004;
Oberhuber et al., 2008). Here, the model (A1) is applied
to a number of sub-periods of the calibration period. The
length of these sub-periods is equal and fixed, and called the
“window”. In fact, MRFs can be seen as a special case of
SRFs where the IRW trend modelµt is replaced by a ran-
dom walk (see Appendix). The second method is that of
moving correlations, which also utilizes a window (Biondi
and Waikul, 2004; Carrer et al., 2007; Wilmking and Myers
Smith, 2008; Zhang et al., 2009). The SRF counterpart is the
use of model (1) with only one explanatory variableXt.

Clim. Past, 6, 367–377, 2010 www.clim-past.net/6/367/2010/



H. Visser et al.: Detecting instabilities in tree-ring proxy calibration 369

While themoving correlationsmethod is attractive in its
simplicity, care should be taken when tree growth and cli-
mate variables interact. For example, if one has estimated a
modelIt = µ+α1 ·X1,t+εt, then the value ofα may change
considerably if the model is extended with some variableX2,t
due to the correlation betweenX1,t andX2,t (“multicollinear-
ity”). We note that there exist different opinions on the use of
correlations versus response functions (Blasing et al., 1984).

Second, model (1) assumes alinear relationship between
the proxy and the climate target. For the application of non-
linear models, e.g. those based on neural networks, we refer
to Woodhouse (1999) and Carrer and Urbinati (2001). An-
other recently described method is based on visual inspec-
tion, where bothIt andXt are scaled to zero mean and unit
variance over some predefined period and then plotted and
analyzed (e.g., Esper et al., 2010). Loehle (2009) discusses
the special case where the correspondence betweenIt andXt
is non-linear, either within the calibration period or outside
of it. It is this latter case that we address below.

Third, in model (1) the proxy is the dependent variable and
climate variables serve as independent variables. After hav-
ing estimated the response function and having selected the
relevant independent variable(s), a lineartransfer function
modelcan be estimated to generate the actual reconstruction.
The selected climate variables then serve as dependent vari-
ables and the chronologyIt (or a group of tree-ring chronolo-
giesI t or any other set of proxies) serves as the independent
variable. The weightsα may be scalar, a vector or a matrix
(Cook et al., 1994).

Fourth, the climate variablesXt in model (1) are assumed
to be local instrumental (station) data. Some reconstruction
studies base their calibration inferences on climate tempera-
tures deduced fromglobally gridded temperature or precip-
itation data, downscaled to the locations of interest, as in
Mann et al. (2008, SI). Since such climate variablesXt may
contain considerable uncertainties, the technique oferrors-
in-variable (EIV) regressionis applied (also denoted as total
least square regression), as in Hegerl et al. (2007) and Am-
mann et al. (2010). This situation is not covered by model (1)
since uncertainty is only assumed inIt.

We note that gridded target variables are model-based con-
structs, and form uncertain substitutes for actual measure-
ments. Hindcasts in the reconstruction period are thus pre-
dictions for this constructed target and can significantly de-
viate from the real historic values of this target at the location
of the proxy (this is also true for station data as the proxies
are typically at remote locations, often hundreds of kilome-
ters from the closest station). Therefore, such target hind-
casts should be interpreted with care.

2.3 Diagnostic checks, climate envelope

To test for the validity of model (1), a number of diagnostic
checks can be used:

– homoscedasticity of residuals.

– tests on residuals for structural breaks, based on the cu-
mulative sum (CUSUM) of residuals.

– scatterplots of residuals against individual explanatory
variables. If some non-linear relationship exists be-
tween the proxy andXt variables, a systematic devia-
tion from a horizontal straight line will be seen.

For more details the reader is referred to Harvey (1989,
Ch. 5.4) and Van Deusen (1990).

The latter mentioned scatterplots of residuals are used for
checking the assumption of a linear calibration relationship
rather than a non-linear relationship of the form

It = f (Xt)+εt (2)

The importance of this test has been stressed by Loehle
(2009) within the context of dendroclimatic reconstructions.
In addition to evaluation of scatterplots, we propose a second
check for linearity, in which model (1) can be estimated with
the extension of a quadratic term:

It = µt +αt ·Xt +β t ·X
2
t +εt (3)

Coefficientsα̂t and β̂ t can be tested for statistical signifi-
cance. The quadratic model can be useful for describing the
concept of a climatic threshold or tipping point, as discussed
in Wilmking et al. (2004) and D’Arrigo et al. (2004). The
idea of modeling thresholds is based on the well-knownlaw
of the minimum, initially formulated by Carl Sprengel in the
19th century. This law states that linearity may exist over
“normal” values ofXt , but may level off (or even become
reversed in sign) when values ofXt become extreme.

As long as such non-linearities exist within the calibration
period, tests will show them to be present. However, as sug-
gested by Loehle (2009), non-linearities may also appear in
extreme cases where explanatory variablesXt attain values
not found during the calibration period. If this is the case, re-
constructions will be less accurate during such times. There-
fore, it may be advantageous to identify a climate envelope
[Xmin, Xmax] from the calibration data and discuss the oc-
currence ofXt hindcasts which fall outside this envelope (cf.
Fritts, 1976 p. 15). We will return to this point in Sect. 4.1.

2.4 Proxy screening

Having estimatedµt andαt, their patterns over time can be
used for screening purposes. There are three ways to draw
conclusions on model (in)stabilities. The first is simply a
visual inspection of the graphs ofµt andαt over time. The
second method is of a statistical nature and uses estimates of
trend differences [µt −µs] and response weight differences
[αt −αs], along with their corresponding (2-σ ) confidence
limits. These confidence limits follow from the Kalman filter
equations (these limits are in fact a unique “selling point” for
this filter). Here, the symbolsµ andα come from model (1)
and the indices “t” and “s” refer to two arbitrary years within
the calibration period.
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A third method is the Likelihood Ratio (LR) test statis-
tic, which is based on maximized and non-maximized noise
variances as proposed by Harvey (1989, p. 236). Here, aχ1
distribution is used with a 2-α significance level rather than a
1-α significance level for a test of sizeα (theχ1 threshold is
2.7 for a test withα=0.05). Note that the symbolα used here
should not be confused by its use in model (1).

A screening procedure for individual proxies could then
be formulated as follows:

1. plot bothµt andαt patterns over time along with 2-σ

confidence limits.

2. plot both [µt−µs] and [αt−αs] patterns over time along
with 2-σ confidence limits.

3. evaluate these patterns for their biological relevance.

4. as a further confirmation of the constancy of the pat-
terns, one can use the LR test, which measures whether
noise variances are zero (H0 hypothesis) or positive (H1
hypothesis).

3 Two examples

3.1 Tree growth at the North American Arctic treeline

D’Arrigo et al. (2009) presented white spruce (Picea glauca)
data for two latitudinal treeline sites in northern interior
Canada: one along the Coppermine River in the North-
west Territories and the other in the Thelon River Sanctu-
ary, Nunavut. Both ring-width (TRW) and density (MXD)
chronologies were generated for these two sites. Individual
tree measurements were detrended using negative exponen-
tial or straight-line curve fits.

Local meteorological data were obtained from the clos-
est adjacent stations, for Coppermine over the period 1933–
2003 (Coppermine station), and for the Thelon site (Baker
Lake station) over the period 1950–2002. These GHCN data
underwent rigorous quality assurance reviews. The calibra-
tion/validation technique applied was that of splitting the cal-
ibration period in two parts and calculating/comparing cor-
relation coefficients over both time periods (their Figs. 4 and
5). Target variables were summer temperatures for various
seasons (JJ, JA and AMJJA). We note D’Arrigo et al. did not
explicitly generate climatic reconstructions in their study

We have applied the SRF approach to the TRW and MXD
chronologies for the Coppermine and Thelon sites. Our re-
sults indicated that two of the four chronologies showed sta-
ble responses using the SRF method: the TRW series for
Coppermine and the MXD series for the Thelon (Table 1).
Both α̂t andµ̂t appear to be constant. Note that the series are
different with regards to level of explained variance: 27%
and 39%, and with regards to length of the calibration pe-
riod: 1933–2003 versus 1950–2002. The explained variance
as used herein is defined as

[1−var(It − µ̂t − α̂tXt)/var(It − µ̂t )]·100%. In other words,
the explained variance is a measure for the explanatory
“power” of addingXt to model (1). Trend and response val-
ues are based on thesmoothedKalman filter estimates.

We checked the residuals, or innovations in Kalman-filter
terms, of the four models for their statistical properties.
These innovations should follow a white noise process, i.e.
no serial correlations, and should preferable follow a normal
distribution (Appendix A). The whiteness results were satis-
factory for all four models (based on autocorrelation func-
tions with lags up to 20 years and a log-plot for visual in-
spection of first-order correlations). Normality was perfect
for second and third model in Table 1, reasonable for the
fourth model and moderate for the first model (based on vi-
sual inspection of normality plots). Our overall judgment of
the four innovation series is that they satisfy the necessary
condition of whiteness and reasonably satisfy the (not neces-
sary) condition of normality.

As an example we have plotted the MXD estimates for
Coppermine in Fig. 1. The trend̂µt shows a clearly time-
dependent behavior (green line in upper panel). The lower
panel shows that the trend estimate in the final year 2003
is significantly higher than for the period 1957–1995 (2-σ

confidence limits). The response weightα̂t is time-varying
(significance tested by LR test) and shows a steady decrease
from ∼0.90 in 1933 to∼0.50 in 20031. A second exam-
ple is given in Fig. 2 where the Thelon TRW chronology is
analysed. Model estimates show a constant weighing factor
(α̂=0.47±0.22), along with a statistical significant decreas-
ing linear trend.

3.2 Tree growth in the European Alps

Büntgen et al. (2008) presented a network of 124 larch
(Larix deciduaMill.) and spruce (Picea abiesKarst.) TRW
chronologies across the European Alpine arc. Two Alpine

1We make a short note here for the interpretation of trend and
weight differences, as shown in Fig. 1. Looking at the middle panel
one would judge that changes [αt −αs] will be statistically non-
significant: the upper bound in 2003 does not exceed the lower
bound in the year 1933. The same holds for the trend pattern
shown in the upper panel: the changes seem small, relative to the
high variability. However, the lower panel shows that trend differ-
ences [µ2003−µt] are significant over the period 1957–1995. There
seems to be a contradiction here.

The explanation is as follows. The variance of the difference of
any two stochastic variablesX andY is only equal to the sum of the
respective variances ifX andY aremutually uncorrelated. If not:

var(X −Y )=var(X)+var(Y )−2·cov(X,Y ). In other words, sup-
pose that the variablesX andY show a small difference while their
respective standard deviations are large. Then, ifX andY are highly
correlated, their difference [X−Y ] may still be statistically signifi-
cant due to the covariance term. In the extreme case of 100% corre-
lation we have that var(X−Y )=0 and any difference, however small,
will be significant. Clearly, weightsαt andαs are highly correlated,
and the same holds for any trend valuesµt andµs.
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Table 1. Stability statistics for the Thelon and Coppermine TRW/MXD series. The stability descriptives are deduced from visual inspection
of the SRF graphs, and were confirmed by LR tests (cf. Figs. 1 and 2).

Index chronology (proxy) Temp. Responseα̂t Interceptµ̂t Explained
variable variance

MXD Coppermine (1933–2003) AMJJA decreasing behavior flexible behavior 50%
TRW Coppermine (1933–2003) JJ constant constant 27%
MXD Thelon (1950–2002) AMJJA constant constant 39%
TRW Thelon (1950–2002) JA constant strong linear decrease 27%

Table 2. Stability statistics for larch and spruce, based on two standardization approaches, RCS and splines. The stability descriptives are
deduced from visual inspection of the SRF graphs, and were confirmed by LR tests.

Index chronology (proxy) Temp. Responseα̂t Interceptµ̂t Explained
variable variance

TRW larch with RCS stand (1864–2003) JJ slightly variable flexible behavior 50%
TRW larch with spline stand (1864–2003) JJ slightly variable flexible behavior 50%
TRW spruce with RCS stand (1864–2003) JJ constant significant increasing at the beginning 43%
TRW spruce with spline stand (1864–2003) JJ time-varying behavior significant decrease at the end 48%

mean chronologies of 40 larch and 24 spruce sites were se-
lected based on their correlation with early (1864–1933) in-
strumental temperatures to assess their ability of tracking re-
cent (1934–2003) summer warming. The larch and spruce
TRW datasets were standardized in two ways: using 300 yr
cubic smoothing splines and using the Regional Curve Stan-
dardization (RCS) approach (e.g. Esper et al., 2002). Thus,
four index chronology proxies are obtained. Meteorologi-
cal data consisted of a homogenized long-term (1864–2003)
mean of 13 instrumental stations, located>1500 m a.s.l.
(Auer et al., 2007). The calibration/validation technique was
based on regression and scaling models where the calibration
period was split up in two parts. For these periods theR2,
RE, CE and DW statistics were calculated, using the June–
July temperature as the target variable (see Appendix for ex-
planation). B̈untgen et al. used the RCS-standardized larch
series to reconstruct June–July temperatures up to the year
1000 AD.

We have applied the SRF model to all four chronologies
to trace instabilities in their response to climate, where the
results for larch are identical since both standardization tech-
niques yielded index chronologies with only marginal differ-
ences (Table 2). The explained variance is quite high in all
four cases, ranging from 43% to 50% over almost 150 years.
The SRF method, however, indicates that none of the four
chronologies has both a stableα̂t and a stablêµt estimate
when using the full calibration period 1864–2003.

We checked the innovation series of the four models pre-
sented in Table 2. The whiteness results were satisfactory
for the first and second model in the table. The third and

fourth model showed a small but significant first-order cor-
relation (R=0.22 and 0.25, resp.). Normality was perfect for
the fourth model in Table 1, reasonable for the first and sec-
ond model, and moderate for the third model. Our overall
judgment of the four innovation series is that they reasonably
satisfy the necessary condition of whiteness and reasonably
satisfy the (not necessary) condition of normality.

The first case from Table 2, that of Larch, detrended by
RCS, is given in Fig. 3. The trend estimate (green line, up-
per panel) shows non-stationary behavior at the record’s end,
from 1970–2003. The lower panel shows that the trend esti-
mate in the final year (µ2003) is significant larger than those
for 1864–1917 and 1937–1995 (2-σ confidence limits). The
response weight̂αt has a slightly decreasing pattern, which
the LR test showed to be non-significant.

4 Discussion

We discuss two topics in this section: (i) the omission of
data (truncation) over the final decades of a chronology,
one method which has been used to deal with divergence-
type phenomena; and (ii) potential implications of SRFs for
screening procedures of proxy data.

4.1 Omission of data over recent decades

One solution for resolving instabilities towards the end of a
calibration period is simply to omit all data after the year in
which these instabilities emerge. If validation statistics show
a stable response and intercept over the remaining period, a
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Fig. 1.   SRF estimates for the MXD chronology derived at Coppermine. Period: 1933-2003. The 2 
black line in the upper panel represents the normalized indices, the green line the estimated IRW trend 3 

and the red line the trend plus influence of July-August temperatures. The response α̂  appears to be 4 

time varying (middle panel, with 95% confidence limits). The trend differences with 95% confidence 5 
limits are shown in the lower panel. 6 
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Fig. 1. SRF estimates for the MXD chronology derived at Cop-
permine. Period: 1933–2003. The black line in the upper panel
represents the normalized indices, the green line the estimated IRW
trend and the red line the trend plus influence of July-August tem-
peratures. The responseα̂ appears to be time varying (middle panel,
with 95% confidence limits). The trend differences with 95% con-
fidence limits are shown in the lower panel.

proxy might still be used for reconstruction purposes (e.g.,
Briffa et al., 2001; Cook et al., 2004; Wilson and Elling,
2004; Mann et al., 2008, SI). Esper et al. (2010) performed
a sensitivity study in which the role of the calibration pe-
riod was explicitly taken into account (amongst other factors
such as standardization technique and instrumental data cor-
rections). However, their study deviates from our approach
herein in that no regression technique was applied.

One potential application of the SRF method in this con-
text is that we can accurately follow the patterns ofα̂i,t and
µ̂t to determine if it might be advantageous to confine the
response analysis to a shorter calibration period. As an
illustration, we re-estimated the MXD series for Copper-
mine, shown in Fig. 1, choosing the shorter calibration pe-
riod 1933–1990. The results reveal a more variable response
weight than shown in the middle panel of Fig. 1. Thus,
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Fig. 2. SRF estimates for the Thelon TRW chronology. Period: 1950-2002. The black line represents 2 

the normalized indices, the green line the estimated IRW trend and the red line the trend plus influence 3 

of July-August temperatures. The IRW trend appears to be a straight line with statistical significant 4 

differences for any trend difference [µt - µs]. The response α̂  appears to be constant: 0.47 ± 0.22. 5 
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Fig. 2. SRF estimates for the Thelon TRW chronology. Period:
1950–2002. The black line represents the normalized indices, the
green line the estimated IRW trend and the red line the trend plus
influence of July–August temperatures. The IRW trend appears
to be a straight line with statistical significant differences for any
trend difference [µt −µs]. The responsêα appears to be constant:
0.47±0.22.

the omission of recent data does not improve the stability
of the climate-tree growth model in this case. We also re-
estimated the larch example shown in Fig. 3. Theα̂t andµ̂t
patterns suggest that a re-estimation over the period 1864–
1950 yield values that are in fact stable. The estimation re-
sults are shown in Fig. 4. There appears to be a small lin-
ear trend, which is statistically non-significant. The response
weight appears to be constant:α̂=0.70±0.15. Therefore, this
re-analysis shows that the RCS-detrended larch chronology
shows a stable response over a shorter calibration period.

Taken together, the truncation of calibration periods seems
to be a good means of retaining proxies which would not oth-
erwise pass a screening procedure. However, one could ar-
gue that if a loss of proxy-target sensitivity occurs in recent
decades, it could also have occurred in the past. A notable
example is during the MWP, when temperatures have been
reconstructed for some regions to be comparable to those of
the 20th century (Jones et al., 2009). This argument is in
line with the Uniformitarian principle as formulated in the
Introduction. The principle implies that the same kinds of
limiting conditions affected the same kinds of processes in
the same ways in the past as in the present; only the fre-
quencies, intensities, and localities of the limiting conditions
affecting growth may have changed (Fritts, 1976). Loehle
(2009, p. 241) comes to a similar conclusion, using a math-
ematical approach: “if a reconstruction already shows diver-
gence, it is an indication that recent temperature are already
in the non-linear zone; such reconstructions should not be
used for evaluating past climates.”

Loehle also suggests an argument in favor of omitting data
over recent decades. If we could address the cause of recent
instabilities to an external factor, only recently in operation
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Fig. 3. SRF estimates for Larch, standardized by RCS (first chronology in Table 2). Period: 1864-2 
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Fig. 3. SRF estimates for Larch, standardized by RCS (first chronol-
ogy in Table 2). Period: 1864–2003. The upper graph shows the
index chronology (black line), the IRW trend (green line) and the
trend plus climate influence (red line). The middle panel shows
time-varying responsêαt and the lower panel the trend differences
[µ̂2003− µ̂t]. The dashed lines represent 95% confidence limits.

(air pollution, soil acidification, etc.), we could truncate the
calibration period. However, this introduces a new prob-
lem: how could we uniquely attribute instabilities to such
(anthropogenic) drivers? E.g., in case of the example shown
in Figs. 3 and 4 we do not have such a unique clue.

In conclusion, we feel that the omission of data over recent
decades is not a sufficient means to accept a specific chronol-
ogy for use in a reconstruction network.

4.2 SRFs and screening of proxy data

Since SRFs can potentially be used to detect pattern
(in)stabilities, along with statistical significance testing, it
is interesting to re-evaluate the two examples from the pre-
ceding Section. Certainly, any two calibration/validation ap-
proaches can show different results for specific proxies. For
instance, one may split a calibration period into two parts of
equal size and calculate correlation coefficients between the
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Fig. 4 Larch data, standardized by RCS, 1864-1950. In this example we re-estimated the results 2 

shown in Fig. 3. The response weight appears to be constant: α̂ =  0.70 ± 0.15. The explained variance 3 

is 55%. The slightly increasing linear trend is statistically non-significant. 4 
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Fig. 4. Larch data, standardized by RCS, 1864–1950. In this ex-
ample we re-estimated the results shown in Fig. 3. The response
weight appears to be constant:α̂=0.70±0.15. The explained vari-
ance is 55%. The slightly increasing linear trend is statistically non-
significant.

proxy and target variable over both periods. Supposing that
bothR2 values are considered reasonably strong, say above
0.44 (as in Table 1 of B̈untgen et al., 2009, for larch and
splines) one might conclude that the results are satisfactory.
In another approach, CE/RE values are calculated over the
same two periods. Negative CE values might cause one to
reject the proxy. This marked difference is explained from
the fact that well-fitting models, leading to highR2 values,
might have a poor prediction performance on independent
data (cf. National Research Council, 2006 – Fig. 9-3). This
methodological uncertainty is real since both methods (us-
ing R2 values alone versus RE/CE values) can be found side
by side in the recent reconstruction literature. The articles of
D’Arrigo et al. and B̈untgen et al., mentioned above, together
constitute only two such examples. Thus, how do the results
from D’Arrigo et al. (R2 approach) and those of Büntgen
et al. (R2/RE/CE approach) relate to the results presented in
Tables 1 and 2?

D’Arrigo et al. use a split calibration period and calcu-
late correlation coefficients over both periods. In three out of
four cases, a strong decrease in correlations in the most re-
cent period occurs. Their conclusion is that the recent loss of
temperature sensitivity varies with tree parameter (TRW or
MXD) and site studied. This sensitivity, as well as uncertain-
ties in tree-ring data standardization (Esper et al., 2009) and
possibly in instrumental data, needs to be addressed in future
efforts, as they state. Our findings, summarized in Table 1,
show slightly different results. Two out of four chronologies
show constant behavior, both forα̂t and µ̂t (MXD Thelon
and TRW Coppermine). Thus, these two chronologies pass
the SRF screening test. However, three additional remarks
have to be made. First, corresponding explained variances
are moderate to low: 39% and 27%, respectively. Second, the
calibration periods are relatively short (53 years for Thelon,

www.clim-past.net/6/367/2010/ Clim. Past, 6, 367–377, 2010



374 H. Visser et al.: Detecting instabilities in tree-ring proxy calibration

71 years for Coppermine). Third, non-homogeneities in the
instrumental data may play a role, despite the GHCN tests.
Therefore, we come to the same conclusion as D’Arrigo et
al. (2009) that some of these series have potential losses in
sensitivity to climate.

Büntgen et al. split the calibration period in two and cal-
culatedR2 values as well as RE and CE values for each of
the four chronologies (two standardization techniques and
two tree species). They find CE values around zero for
both spline-standardized series, a finding which is consis-
tent with the findings presented herein in Table 2. Thus,
the spline detrended series do not perform well in either ap-
proach. For the RCS standardized series, much better CE val-
ues are found, between 0.25 and 0.29, guaranteeing predic-
tion skill. Squared correlation coefficients over sub-periods
vary between 0.18 and 0.55. Büntgen et al. conclude that
there is no indication of a DP for either species after scal-
ing the RCS chronologies, although larch generally tracks
summer temperature better than spruce (lowerR2 values).
Our findings here show time-varying behavior for the RCS
chronologies as well. After shortening the calibration pe-
riod (data after 1950 omitted) we find stable responses for
the RCS-standardized larch chronology. Unfortunately, this
shortening does not guarantee stability in the past, as dis-
cussed in Sect. 4.1.

Clearly, these two examples, covering three screening
techniques, are not sufficient for a full evaluation of meth-
ods. Further, any comparison of any three approaches will
reveal results which differ in some detail. With that respect
the analysis shown here is certainly incomplete and more re-
search is needed.

5 Conclusions

Peer-reviewed literature has described unstable relationships
between tree-ring proxies and climate target variables for re-
cent decades at some northern and higher elevation sites, of-
ten denoted by the term “divergence”. Within this context
we have drawn attention to a statistical approach which is
ideally suited for tracing instabilities in proxy-target cali-
bration, that of stochastic response functions. This method
is also well suited for performing proxy data screening
prior to network aggregation. Our inferences in this study
have mainly focused on methods of calibration and screen-
ing within the field of dendroclimatology. However, the
proposed technique is potentially applicable to the calibra-
tion of other proxies besides tree rings. Furthermore, the
(non-)equivalence of independent reconstructions can be ex-
plored as shown by Wilson et al. (2010).

We draw the following conclusions:

1. Stochastic response functions are useful for providing
insight when instabilities are expected to occur in gen-
eration of climatic reconstructions. Changes in response
and trend can be readily observed from year to year.

No specific time window is needed, in contrast with the
MRF or moving correlations approach. Furthermore,
the use of the Kalman filter allows us to test for time-
dependent changes. It should be noted that the time sta-
bility of the intercept and response weights are of equal
importance (in the literature the (in)stability of the first
term is never mentioned explicitly).

2. It is advisable to define a climate envelope and deter-
mine whether hindcasts fall outside this envelope over
the length of the climatic reconstruction. Tests for lin-
earity are also important.

3. Stochastic response functions are ideally suited to lo-
calize instabilities over time. However, if these instabil-
ities occur in recent decades (“divergence”) and if the
cause of these instabilities can not be traced/attributed
to drivers which are only in operation during these re-
cent decades, the omission of recent decades in the cali-
bration period is not a valid means of generating an un-
biased reconstruction network.

4. Two examples have been discussed as illustrations of
the potential application of stochastic response func-
tions to climatic reconstructions. For both examples, we
find screening results that are only partly comparable to
those found using other methods of validation (R2, RE,
CE). It is unclear if the stochastic response methodol-
ogy would filter out more proxies than these traditional
methods. Clearly, much more analysis is necessary to
evaluate the various screening methods.

5. Given the policy relevance of paleoclimatic reconstruc-
tions, dendrochronologists are especially advised to be
more explicit about dealing with uncertainty in proxy
screening.

Appendix A

Response function models in detail

Calibration of a tree growth/climate model is typically based
on a linear regression relationship between a proxyIt and
some climate variable(s)Xt:

It = µ+α ·Xt +εt (A1)

Model (A1) can be termed a response function model, where
the vectorα with constant regression weights is theresponse
function. The parameterµ is the intercept and is often omit-
ted from the model as bothIt andXt are normalized to zero
mean and unit variance. If the relationship betweenIt andXt
are multiplicative rather than linear, a log transformation can
be applied. The vectorXt may consist of the original climate
variables or principal components derived from these vari-
ables. The reader is referred to Cook and Kairiukstis (1990)
and Hughes (2002) for more details.
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The suitability of model (A1) is typically tested by split-
ting the calibration period in two or three sub-periods of gen-
erally equal length. Model (A1) is then calibrated for one
sub-period and used to estimate It values over the other sub-
period(s). Finally, model performance is assessed using sev-
eral statistics typically used in dendroclimatology: R, RE,
CE and DW. Here, R stands for the well-known correlation
coefficient. RE stands for the Reduction of Error statistic
and is a measure for the prediction performance for thecali-
bration period chosen. CE stands for the Coefficient of Effi-
ciency statistic and measures the prediction performance for
a particularvalidationperiod. For this reason the CE statistic
is more stringent than the RE statistic. Please refer to Na-
tional Research Council (2006, p. 92–95 for strengths and
weaknesses of these statistics). DW stands for the Durbin
Watson test, which tests for lag-1 autocorrelation in resid-
uals of the calibration model. See Fritts (1976), Cook and
Kairiukstis (1990), Cook et al. (1994) and National Research
Council (2006) for details. B̈urger and Cubasch (2007) use
the RE and CE statistics in combination with resampling
schemes.

Stochastic response functions can be modeled by choosing
a sub-model from the class of structural time series models
(STMs), in combination with the discrete Kalman filter (Har-
vey, 1989; Visser and Molenaar, 1995; Durbin and Koopman,
2001). These models allow the estimation of a regression
model withtime-varyingcoefficients:

It = µt +α1,t ·X1,t +α2,t ·X2,t + .....+αm,t ·Xm,t +εt (A2a)

Here, It stands for a climate proxy, such as a standardized
ring-width chronology, or the logarithm thereof (depend-
ing on the additivity resp. multiplicativity assumptions in
the growth model). The variablesXi,t may stand for stan-
dardized climate variables or PCs thereof. The coefficients
α1,t, .....,αm,t together form thestochasticresponse function
and εt is a white noise process with varianceσ 2

ε . A time-
dependent response is gained by definingm random walk
models: αi,t=ai,t−1+ηi,t , i=1, ....,m. Here,ηi,t stands for
a noise process with zero mean and varianceσ 2

η,i . These
variances may be found by applying maximum likelihood
optimization. For the trend componentµt, resembling the
age-related trend plus external factors, the integrated ran-
dom walk trend model (IRW model) is taken (Visser, 2004).
This model reads asµt −2 ·µt +µt = ηm+1,t , with ηm+1,t
a white noise process with varianceσ 2

η,m+1. Dendroclimatic
consequences for chronology building and the selection of
variables in the context of time-varying coefficients are de-
scribed in Visser and Molenaar (1988), and van den Brakel
and Visser (1996).

The discrete Kalman filter is an optimal filter in that it
yields the minimum mean square error estimates (MMSE)
for µt andαt along with maximum likelihood estimation for
unknown noise variances. This result holds if all noise pro-
cesses are normally distributed. If noise processes involved
do not follow a normal distribution, the Kalman filter still

yields the minimum mean square linear estimators (MM-
SLE) forµt andαt . For details please refer to Harvey (1989,
p. 111). All estimates shown in this article are based on
smoothed estimates using a fixed-interval smoother.

As for initial values of noise variances we have chosen
the approach of a so-called diffuse or non-informative prior.
This means that we set the initial covariance matrix to the
unity matrix with large numbers on the main diagonal. Thus,
we simply “tell” the filter that we have no information what-
soever at the first iteration. See Harvey (1989, p. 121) for de-
tails. The consequence of this approach is that the filter needs
some iterations to arrive at stable state-space estimates. For
the models presented in Tables 1 and 2 of this article we have
chosen for a transient period of 20 years. The consequence
of a “diffuse prior” is that the innovations series starts after
these 20 years. In the process of ML optimization the tran-
sient period is excluded. See Harvey (1989, p. 256) for de-
tails. We note that this transient period is not seen in Figs. 1
through 4. The reason is simply that these graphs do not
show thefiltered estimates forµt andαt, but thesmoothed
estimates.

The IRW trend model reduces to the well-known OLS fit
of a straight line ifσ 2

η,m+1 is set to zero. And constant re-

sponses are found if the variancesσ 2
η,i are set to zero. Thus, if

all noise variances in model (A2a) are set to zero, this model
reduces to

It=α0+β · t+α1 ·X1,t+α2 ·X2,t+.....+αm ·Xm,t+εt (A2b)

For stationary data the termβ will be zero and Eq. (A2b)
equals the well-known multiple regression model.

The SRF model has similarities to the moving response
functions (MRFs) (Biondi and Waikul, 2004) if the trend
component is set to a random walk, rather than the IRW
trend model. However, the advantage of SRFs over MRFs
is that no window has to be chosen and, thus, that estimates
are found for the full sample period. Furthermore, within
the framework of SRFs the selection of variables can be per-
formed over thewholecalibration period (Visser and Mole-
naar, 1988), while MRFs have to do that for a much shorter
window, in the order of 50 years of length. This selection of
variables may become problematic if the number of explana-
tory variables becomes large (>24).

Commercial software for estimating model (A2a) is avail-
able from Timberlake LTD. They supply the STAMP pack-
age which is able to estimate a wide range of STMs, includ-
ing the case whereIt is multivariate rather than univariate. A
non-commercial package is TrendSpotter and is freely avail-
able from the first author. It should be noted that STAMP
does not supply estimates for trend differences [µt −µs] or
response weight differences [αt −αs], based on De Jong and
Mackinnon (1988). In the present version of TrendSpot-
ter uncertainty estimates are supplied for [µt −µs] (Visser,
2004). However, uncertainties for [αt −αs] are not supplied.
This would be an important extension of the software in the
context of climate reconstruction research.
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