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Abstract. Evidence has been found for reduced sensitivityl Introduction
of tree growth to temperature in a number of forests at high
northern latitudes and alpine locations. Furthermore, at som&Vidence for reduced sensitivity of tree growth to temper-
of these sites, emergent subpopulations of trees show neg&ture has been reported for several forest sites along high-
tive growth trends with rising temperature. These findingshorthern latitudes and from some alpine locations. This phe-
are typically referred to as the “Divergence Problem” (DP). nomenon appears to reflect the inability of certain tree-ring
Given the high relevance of paleoclimatic reconstructions forwidth and maximum latewood density chronologies from ini-
policy-related studies, it is important for dendrochronologiststially temperature-limited sites to track the warming trends
to address this issue of potential model uncertainties assocBeen in instrumental measurements from some northern lo-
ated with the DP. Here we address this issue by proposing &ations since around the mid-20th century. A related phe-
calibration technique, termed “stochastic response function'nomenon is that some formerly temperature sensitive trees
(SRF), which allows the presence or absence of any instabilmay be losing their ability to reflect high-frequency climate
ities in growth response of trees (or any other climate proxy)signals in some boreal and alpine forests (e.g., Wilmking et
to their calibration target to be visualized and detected. Sincél., 2005; Pisaric et al., 2007; Zhang et al., 2008n&en et
this framework estimates confidence limits and subsequentlyl., 2006, 2008, 2009).
provides statistical significance tests, the approach is also These observations have been described as the “Diver-
very well suited for proxy screening prior to the generation gence Problem” (DP), which has been discussed in a num-
of a climate-reconstruction network. ber of recently published articles (e.g., Jansen et al., 2007;
Two examples of tree growth/climate relationships areWilson et al., 2007; D'Arrigo et al., 2008; Wilmking and
provided, one from the North American Arctic treeline and Singh, 2008; Bintgen et al., 2009; Esper and Frank, 2009;
the other from the upper treeline in the European Alps. In-Loehle, 2009). DP has not only led to discussions within
stabilities were found to be present where stabilities were rethe scientific community, but recently also to considerable
ported in the literature, and vice versa, stabilities were foundcontroversy within the public arena (the “CRU affair”, “cli-
where instabilities were reported. We advise to apply SRFgnategate”, the “trick”). See Schiermeier (2010, p. 286-287)
in future proxy-screening schemes, next to the use of correfor a summary.
lations and RE/CE statistics. It will improve the strength of  If the DP is in fact a real and widespread phenomenon,
reconstruction hindcasts. co-occurring with global warming as well as anthropogenic-
induced changes of atmospheric composition, it would po-
tentially put into question the overall ability of tree ring-
based temperature reconstructions to capture earlier periods
of putative warmth, such as the so-called Medieval Warm
Period (MWP), and subsequently to model possible future
reactions of forest ecosystems in a warming world. Clearly,
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may be compromised. Error may be magnified for recon-Here, the “intercept’u, which is traditionally a constant, is
structions representing smaller spatial scales. replaced by a slowly bending trend modge| the integrated

In both cases, the Uniformitarian principle — “the presentrandom walk (IRW) model. The constant response weight
is the key to the past” —would no longer be valid. This prin- has been replaced by a stochastic counterparbased on
ciple states that physical and biological processes which linkandom walk models for individual climate variables. Both
today’s environment with today’s variations in tree growth, trend and response weights are estimated using the discrete
must have been in operation in the past (Fritts, 1976, p. 14-Kalman filter (Harvey, 1989; Durbin and Koopman, 2001).
15). Thus, if certain tree-ring proxies exhibit non-stable re- The filter is ideal in the sense that it yields the minimum
lations to climate in recent decades, we could expect suclmean square error estimates (MMSE, normally distributed
relations during the MWP as well, thus conforming with the noise processes) fqr; and ¢ along with maximum like-
Uniformitarian principle. lihood estimates for unknown noise variances. One of the

In general, given the high relevance of climate recon-attractive properties of model (1) is that the traditional mul-
structions for policy-related studies (e.g., National ResearcHiple regression model is just a special case (models (A2a)
Council, 2006; Jansen et al., 2007), it is important for paleo-and (A2b) in Appendix A). By using maximum likelihood
climatologists to address this issue of potential model uncer{ML) estimation we also let the model “choose” between be-
tainties associated with the DP (Visser and Petersen, 2009ng constant or time-varying in nature. Mathematical details
Schiermeier, 2010). Here, we address this issue of uncertairef model (1) are given in the Appendix.
ties and non-stable relations by proposing a calibration tech- Applications of SRFs are not new in dendroclimatol-
nique, termed stochastic response functions (SRFs), that casgy (Visser, 1986; Visser and Molenaar, 1988, 1992; Van
be readily used to trace instabilities in proxy/climate relation- Deusen, 1990; van den Brakel and Visser, 1996). However,
ships. Since SRFs are one means of detecting and visualizingne application of STMs for reconstruction studies has been
such instabilities, they are also potentially useful as a screenguite limited. Only one other sub-model from STMs has re-
ing tool for judging the acceptability of particular proxies in cently been applied in dendroclimatology, using PRECON
a given reconstruction-network approach. While our focussoftware (Cook and D’Arrigo, 2002; Rozas, 2005; D’Arrigo
is on the tree-ring proxy, the SRF method could be appliedet al., 2009; Wilson et al., 2010). Here, Wilson et al. show
to the analysis of other proxies as well, such as documentargn interesting application of STMs other than proxy calibra-
archives (Dobrovolf et al., 2010) or sediment cores (Oppo tion. They explored the coherence between four ENSO re-
etal., 2009). constructions (period 1550-2000, cf. their Fig. 6).

First, we describe the model underlying SRFs along with  The STM applied in latter four references is equivalent to
specific tests for residuals and model assumptions, with stamodel (1), but with theomissionof the trend component;.
tistical details given in Appendix A. Second, the utility of One concern regarding this “model without intercept” is that
SRFs as a screening tool for individual proxies is assessedhe actual presence of an intercept in certain sub-periods of
Third, we apply the SRF approach to two recent dendrocli-the calibration period will force response estimatde show
matic examples in northern interior Canada (D’Arrigo et al., time-dependent behavior. Therefore, the “model without in-
2009), and the European Alps {{Btgen et al., 2008). Our tercept” is best avoided.
discussion focuses on (i) the appropriateness of truncation of
calibration periods in order to omit the period of instability, 2.2 Discussion of model (1)
and (ii) potential implications for use of SRFs as a screening

tool. Four main points should be considered when using the
model (1) for the analysis of time-series in palaeoclimatol-
ogy:

2 Methods of proxy calibration First, two other methods in dendroclimatology need to be

mentioned which address the issue of model (in)stabilities, in
addition to the SRF model. The first method is thatraiv-

Calibration and validation methodologies have been well de{n9 response functionéMRFs) (Biondi and Waikul, 2004

scribed within the field of dendroclimatology (Fritts, 1976; OPerhuber et al., 2008). Here, the model (A1) is applied

Cook and Kairiukstis, 1990). We propose a modification of {0 @ number of sub-periods of the calibration period. The

the traditional calibration approach (Appendix, model (4)). Iength of these sub-periods is equal and fixed, angl called the
“window”. In fact, MRFs can be seen as a special case of

This modification is used to generate an explicit visualiza- ;
tion of model instability. It is based on the application of SRFS where the IRW trend modgt is replaced by a ran-

a sub-model from the class of so-called structural time sed0m walk (see Appendix). The second method is that of

ries models (STMs) and denoted hereafter as the stochastf@©Ving correlationswhich also utilizes a window (Biondi
response function model: and Waikul, 2004; Carrer et al., 2007; Wilmking and Myers

Smith, 2008; Zhang et al., 2009). The SRF counterpart is the
I=put+ar- Xi+et (1) use of model (1) with only one explanatory varialle

2.1 Stochastic response functions
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While themoving correlationgmethod is attractive in its — tests on residuals for structural breaks, based on the cu-
simplicity, care should be taken when tree growth and cli- mulative sum (CUSUM) of residuals.
mate variables interact. For example, if one has estimated a
modell; = u+ a1 - X1.t+et, then the value o may change
considerably if the model is extended with some varidhle
due to the correlation betweéh  and X (“multicollinear-
ity”). We note that there exist different opinions on the use of
correlations versus response functions (Blasing et al., 1984)For more details the reader is referred to Harvey (1989,
Second, model (1) assumedirear relationship between Ch. 5.4) and Van Deusen (1990).
the proxy and the climate target. For the application of non- The latter mentioned scatterplots of residuals are used for
linear models, e.g. those based on neural networks, we refethecking the assumption of a linear calibration relationship
to Woodhouse (1999) and Carrer and Urbinati (2001). An-rather than a non-linear relationship of the form
other recently described method is based on visual inspec-
tion, where bothl; and X are scaled to zero mean and unit L= f(X0) +et @)
variance over some predefined period and then plotted angthe importance of this test has been stressed by Loehle
analyzed (e.g., Esper et al., 2010). Loehle (2009) discusse@009) within the context of dendroclimatic reconstructions.
the special case where the correspondence betiveenX:  |n addition to evaluation of scatterplots, we propose a second

is non-linear, either within the calibration period or outside check for linearity, in which model (1) can be estimated with
of it. Itis this latter case that we address below. the extension of a quadratic term:

Third, in model (1) the proxy is the dependent variable and 5
climate variables serve as independent variables. After havlt = #t+at- Xi+Be-X{ +et 3)
ing estimated the response function and having selected th&oefﬁcients&t and l§t

relevant independent variable(s), a linggansfer function — .5nce The quadratic model can be useful for describing the

modelcan be egtimated tq generate the actual reconstructior};Oncept of a climatic threshold or tipping point, as discussed
The selected climate variables then serve as dependent vagjs Wilmking et al. (2004) and D'Arrigo et al. (2004). The

ables and the chronology (or a group of tree-ring chronolo- - jye5 of modeling thresholds is based on the well-knéaw
g|e_sIt orany Oth?r set of proxies) serves as the mdepen(_jeng)f the minimuminitially formulated by Carl Sprengel in the
variable. The weighte: may be scalar, a vector or a matrix 4 gy century. This law states that linearity may exist over

(Cook et al., 1994). “normal” values ofX; , but may level off (or even become

Fourth, t.he climate variablieﬁt in model (1) are assumeq reversed in sign) when values & become extreme.
to belocal instrumental (station) data. Some reconstruction As long as such non-linearities exist within the calibration

studies base their calibration inferences on climate temper%eriod tests will show them to be present. However, as sug-
tures deduced frorglobally gridded temperature or precip- gested by Loehle (2009), non-linearities may also appear in

Itation datla downscaled to the Icr:]calyons of interest, as in o, reme cases where explanatory variatesattain values
Mann et al. (2008, ISI)' Since such ¢ |rr1nate vr?r!abYesmay not found during the calibration period. If this is the case, re-
contain considerable uncertainties, the techniquerdirs-  ¢onsirctions will be less accurate during such times. There-

in-variable (EIV) regressioiis applied (also denoted as total ¢, it may be advantageous to identify a climate envelope
least square regression), as in Hegerl et al. (2007) and Am[xmin, Xmax from the calibration data and discuss the oc-

mann etal. (2010). This situation is not covered by model (1) ,rence ofx, hindcasts which fall outside this envelope (cf.

since uncertainty is only assumed/in Fritts, 1976 p. 15). We will return to this point in Sect. 4.1.
We note that gridded target variables are model-based con-

structs, and form uncertain substitutes for actual measurez 4 Proxy screening

ments. Hindcasts in the reconstruction period are thus pre-

dictions for this constructed target and can significantly de-Having estimatedg; andet, their patterns over time can be
viate from the real historic values of this target at the locationused for screening purposes. There are three ways to draw
of the proxy (this is also true for station data as the proxiesconclusions on model (in)stabilities. The first is simply a
are typically at remote locations, often hundreds of kilome-visual inspection of the graphs pf ande over time. The

ters from the closest station). Therefore, such target hindsecond method is of a statistical nature and uses estimates of

— scatterplots of residuals against individual explanatory
variables. If some non-linear relationship exists be-
tween the proxy and; variables, a systematic devia-
tion from a horizontal straight line will be seen.

can be tested for statistical signifi-

casts should be interpreted with care. trend differencesyf: — us] and response weight differences
. . _ [at — ag], along with their corresponding (@) confidence
2.3 Diagnostic checks, climate envelope limits. These confidence limits follow from the Kalman filter

equations (these limits are in fact a unique “selling point” for
this filter). Here, the symbolg anda come from model (1)
and the indices “t” and “s” refer to two arbitrary years within
— homoscedasticity of residuals. the calibration period.

To test for the validity of model (1), a number of diagnostic
checks can be used:
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A third method is the Likelihood Ratio (LR) test statis- [1—var(l; — it — atX¢)/var(l; — ji,)]-100%. In other words,
tic, which is based on maximized and non-maximized noisethe explained variance is a measure for the explanatory
variances as proposed by Harvey (1989, p. 236). Hegg, a “power” of addingX+ to model (1). Trend and response val-
distribution is used with a 2-significance level rather than a ues are based on teeoothedalman filter estimates.

1-« significance level for a test of size(the x1 threshold is We checked the residuals, or innovations in Kalman-filter
2.7 for a test withe=0.05). Note that the symbalused here terms, of the four models for their statistical properties.
should not be confused by its use in model (1). These innovations should follow a white noise process, i.e.

A screening procedure for individual proxies could then no serial correlations, and should preferable follow a normal
be formulated as follows: distribution (Appendix A). The whiteness results were satis-

factory for all four models (based on autocorrelation func-
tions with lags up to 20 years and a log-plot for visual in-
spection of first-order correlations). Normality was perfect
2. plot both [ui— us] and a; —aeg] patterns over time along for second and third model in Tabl_e 1, reasonable for th_e
with 2-o confidence limits. fourth model and moderate for the first model (based on vi-
sual inspection of normality plots). Our overall judgment of
3. evaluate these patterns for their biological relevance. the four innovation series is that they satisfy the necessary
i i condition of whiteness and reasonably satisfy the (not neces-
4. as a further confirmation of the constancy of the pat- sary) condition of normality.

terps, Oneé can use the LR test, Wh'(?h measures whether As an example we have plotted the MXD estimates for
noise variances are zeroqHypothesis) or positive (H

1. plot both 4t ande: patterns over time along with @-
confidence limits.

Coppermine in Fig. 1. The trend; shows a clearly time-

hypothesis). dependent behavior (green line in upper panel). The lower
panel shows that the trend estimate in the final year 2003
3 Two examples is significantly higher than for the period 1957—-1995¢(2-
confidence limits). The response weightis time-varying
3.1 Tree growth at the North American Arctic treeline (significance tested by LR test) and shows a steady decrease

from ~0.90 in 1933 to~0.50 in 2003. A second exam-
D’Arrigo et al. (2009) presented white spru¢&dea glaucq  ple is given in Fig. 2 where the Thelon TRW chronology is
data for two latitudinal treeline sites in northern interior analysed. Model estimates show a constant weighing factor
Canada: one along the Coppermine River in the North-(¢=0.470.22), along with a statistical significant decreas-
west Territories and the other in the Thelon River Sanctu-ing linear trend.
ary, Nunavut. Both ring-width (TRW) and density (MXD)
chronologies were generated for these two sites. IndividuaB.2 Tree growth in the European Alps
tree measurements were detrended using negative exponen-
tial or straight-line curve fits. Buntgen et al. (2008) presented a network of 124 larch

Local meteorological data were obtained from the clos-(Larix deciduaMill.) and spruce Picea abiearst.) TRW
est adjacent stations, for Coppermine over the period 1933chronologies across the European Alpine arc. Two Alpine
2003 (Coppermine station), and for the Thelon site (Baker—; _ .
Lake station) over the period 1950-2002. These GHCN data . /& make a short note here for the interpretation of trend and
underwent rigorous quality assurance reviews. The calibrayve'ght d'ﬁerences‘ as shown in Fig. 1. L.C’Ok'ng at.th.e middle panel

. . . . L one would judge that changes:[- as] will be statistically non-
f[lon/\_/alldatl(_)n technlque applied was thaF of spllttlng_the cal- significant: the upper bound in 2003 does not exceed the lower
ibration period in two parts and calculating/comparing Cor- hoyng in the year 1933. The same holds for the trend pattern
relation coefficients over both time periods (their Figs. 4 andshown in the upper panel: the changes seem small, relative to the
5). Target variables were summer temperatures for variousigh variability. However, the lower panel shows that trend differ-
seasons (JJ, JA and AMJJA). We note D’Arrigo et al. did notences Jtogg3— 1t] are significant over the period 1957-1995. There
explicitly generate climatic reconstructions in their study =~ seems to be a contradiction here.

We have applied the SRF approach to the TRW and MXD The explanation is as follows. The variance of the difference of
chronologies for the Coppermine and Thelon sites. Our re2ny two stochastic variables andY is only equal to the sum of the
sults indicated that two of the four chronologies showed stafespective variances K andY aremutually uncorrelatedif not:
ble responses using the SRF method: the TRW series for V&' — Y)=varX)+var(r)—2-cov(X,Y). In other words, sup-
Coppermine and the MXD series for the Thelon (Table l).pose that the variabled andY show a small difference while their

Botha: and b N hat th . respective standard deviations are large. ThexighdY are highly
othey andi; appear to be constant. Note that the series arecorrelated, their differenceX[— Y] may still be statistically signifi-

different with regards to level of explained variance: 27% cant due to the covariance term. In the extreme case of 100% corre-

and 39%, and with regards to length of the calibration pe-jation we have that vax(— ¥)=0 and any difference, however small,
riod: 1933-2003 versus 1950-2002. The explained varianceill be significant. Clearly, weights; andas are highly correlated,

as used herein is defined as and the same holds for any trend valygsand s.
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Table 1. Stability statistics for the Thelon and Coppermine TRW/MXD series. The stability descriptives are deduced from visual inspection
of the SRF graphs, and were confirmed by LR tests (cf. Figs. 1 and 2).

Index chronology (proxy) Temp. Resporke Interceptjit Explained
variable variance
MXD Coppermine (1933-2003) AMJJA decreasing behavior flexible behavior 50%
TRW Coppermine (1933-2003) JJ constant constant 27%
MXD Thelon (1950-2002) AMJJA  constant constant 39%
TRW Thelon (1950-2002) JA constant strong linear decrease 27%

Table 2. Stability statistics for larch and spruce, based on two standardization approaches, RCS and splines. The stability descriptives are
deduced from visual inspection of the SRF graphs, and were confirmed by LR tests.

Index chronology (proxy) Temp. Resporige Interceptjit Explained
variable variance
TRW larch with RCS stand (1864—2003) JJ slightly variable flexible behavior 50%
TRW larch with spline stand (1864—2003) JJ slightly variable flexible behavior 50%
TRW spruce with RCS stand (1864-2003) JJ constant significant increasing at the beginning 43%
TRW spruce with spline stand (1864—2003) JJ time-varying behavior  significant decrease at the end 48%

mean chronologies of 40 larch and 24 spruce sites were sdourth model showed a small but significant first-order cor-
lected based on their correlation with early (1864-1933) in-relation (R=0.22 and 0.25, resp.). Normality was perfect for
strumental temperatures to assess their ability of tracking rethe fourth model in Table 1, reasonable for the first and sec-
cent (1934-2003) summer warming. The larch and sprucend model, and moderate for the third model. Our overall
TRW datasets were standardized in two ways: using 300 yjudgment of the four innovation series is that they reasonably
cubic smoothing splines and using the Regional Curve Stansatisfy the necessary condition of whiteness and reasonably
dardization (RCS) approach (e.g. Esper et al., 2002). Thussatisfy the (not necessary) condition of normality.

four index chronology proxies are obtained. Meteorologi- The first case from Table 2, that of Larch, detrended by
cal data consisted of a homogenized long-term (1864—-2003RCS, is given in Fig. 3. The trend estimate (green line, up-
mean of 13 instrumental stations, located500m a.s.l.  per panel) shows non-stationary behavior at the record’s end,
(Auer et al., 2007). The calibration/validation technique wasfrom 1970-2003. The lower panel shows that the trend esti-
based on regression and scaling models where the calibratiomate in the final yearn{,o03) is significant larger than those
period was split up in two parts. For these periods B¢  for 1864—1917 and 1937-1995 é2eonfidence limits). The
RE, CE and DW statistics were calculated, using the June+esponse weight; has a slightly decreasing pattern, which
July temperature as the target variable (see Appendix for exthe LR test showed to be non-significant.

planation). Bintgen et al. used the RCS-standardized larch

series to reconstruct June—July temperatures up to the year

1000 AD. 4 Discussion

We have applied the SRF model to all four chronologlesWe discuss two topics in this section: (i) the omission of

to trace instabilities in their response to climate, where thedata (truncation) over the final decades of a chronolo
results for larch are identical since both standardization tech- gy,

nigues yielded index chronologies with only marginal differ- one method which has been used to deal with divergence-

ences (Table 2). The explained variance is quite high in aIItyloe phenomena; and (ii) potential implications of SRFs for

four cases, ranging from 43% to 50% over almost 150 years§creen|ng procedures of proxy data.

The SRF method, however, indicates that none of the four4
chronologies has both a stahle and a stablqi; estimate '

when using the full calibration period 1864-2003. One solution for resolving instabilities towards the end of a
We checked the innovation series of the four models pre-calibration period is simply to omit all data after the year in

sented in Table 2. The whiteness results were satisfactorywhich these instabilities emerge. If validation statistics show

for the first and second model in the table. The third anda stable response and intercept over the remaining period, a

1 Omission of data over recent decades
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372 H. Visser et al.: Detecting instabilities in tree-ring proxy calibration

3.0 77 Index chronology 3.0 [ Index chronology

= trend plus influence temperatures ——— |IRW trend plus influence JA temperatures
IRW trend estimate l IRW trend estimate

Sl ' g
‘,'A\X\AAV.M.
VY

-1.0

Normalized index chronology I
<

°
o
|
—

Index chronology I,

-2.0

-2.0
-3.0 T '
1930 1940 1950 1960 1970 1980 1990 2000 2010
Year AD 30
1950 1960 1970 1980 1990 2000 2010
15 ~—=J_ Year AD
3] TTe-< ~d
EN] ——— T __ T Fig. 2. SRF estimates for the Thelon TRW chronology. Period:
g os _ ~— W | . 1950-2002. The black line represents the normalized indices, the
8 7] --7 TSeed — green line the estimated IRW trend and the red line the trend plus
2 oo TT==-r7 T T influence of July—August temperatures. The IRW trend appears
@ to be a straight line with statistical significant differences for any
05 trend difference it — us]. The responsé appears to be constant:
1930 1940 1950 1960 1970 1980 1990 2000 2010
velo o 0.47+0.22.

2.0 ‘ ‘

‘ ‘ the omission of recent data does not improve the stability
of the climate-tree growth model in this case. We also re-
estimated the larch example shown in Fig. 3. ®heand /it
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00 patterns suggest that a re-estimation over the period 1864—
1950 yield values that are in fact stable. The estimation re-

T om 1os0 100 1060 1070 1980 1000 2000 2010 sults are shoyvn in Fig. 4. There appears to be a small lin-
Year AD ear trend, which is statistically non-significant. The response

_ _ for th h loav derived weight appears to be constadt:-0.70+0.15. Therefore, this
Fig. 1. SRF estimates for the MXD chronology derived at Cop- o an41vsis shows that the RCS-detrended larch chronology

permine. Period: 1933-2003. The black line in the upper panel hows a stable response over a shorter calibration period
represents the normalized indices, the green line the estimated IRW P P )

trend and the red line the trend plus influence of July-August tem-  Taken together, the truncation of calibration periods seems
peratures. The respongappears to be time varying (middle panel, to be a good means of retaining proxies which would not oth-
with 95% confidence limits). The trend differences with 95% con- erwise pass a screening procedure. However, one could ar-
fidence limits are shown in the lower panel. gue that if a loss of proxy-target sensitivity occurs in recent
decades, it could also have occurred in the past. A notable
example is during the MWP, when temperatures have been
proxy might still be used for reconstruction purposes (e.g.,reconstructed for some regions to be comparable to those of
Briffa et al., 2001; Cook et al., 2004; Wilson and Elling, the 20th century (Jones et al., 2009). This argument is in
2004; Mann et al., 2008, Sl). Esper et al. (2010) performedline with the Uniformitarian principle as formulated in the
a sensitivity study in which the role of the calibration pe- Introduction. The principle implies that the same kinds of
riod was explicitly taken into account (amongst other factorslimiting conditions affected the same kinds of processes in
such as standardization technique and instrumental data cothe same ways in the past as in the present; only the fre-
rections). However, their study deviates from our approachquencies, intensities, and localities of the limiting conditions
herein in that no regression technique was applied. affecting growth may have changed (Fritts, 1976). Loehle
One potential application of the SRF method in this con- (2009, p. 241) comes to a similar conclusion, using a math-
text is that we can accurately follow the patternsiof and ematical approach: “if a reconstruction already shows diver-
[t to determine if it might be advantageous to confine thedence, it is an indication that recent temperature are already
response analysis to a shorter calibration period. As ardn the non-linear zone; such reconstructions should not be
illustration, we re-estimated the MXD series for Copper- Used for evaluating past climates.”
mine, shown in Fig. 1, choosing the shorter calibration pe- Loehle also suggests an argument in favor of omitting data
riod 1933-1990. The results reveal a more variable responsever recent decades. If we could address the cause of recent
weight than shown in the middle panel of Fig. 1. Thus, instabilities to an external factor, only recently in operation
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2 proxy and target variable over both periods. Supposing that
' 15 ! both R? values are considered reasonably strong, say above
3 o — | 0.44 (as in Table 1 of Bntgen et al., 2009, for larch and
2 splines) one might conclude that the results are satisfactory.
g In another approach, CE/RE values are calculated over the
° 00 same two periods. Negative CE values might cause one to
OJ . . . . .
s s reject the proxy. This marked difference is explained from
150 ABTS L A%00 1928 1950 weTs 2000 202 the fact that well-fitting models, leading to higt? values,

might have a poor prediction performance on independent
Fig. 3. SRF estimates for Larch, standardized by RCS (first chronol-data (cf. National Research Council, 2006 — Fig. 9-3). This

ogy in Table 2). Period: 1864-2003. The upper graph shows themethodological uncertainty is real since both methods (us-
index chronology (black line), the IRW trend (green line) and the ing R? values alone versus RE/CE values) can be found side
trend plus climate influence (red line). The middle panel showspy side in the recent reconstruction literature. The articles of
time-varying responsé&: and the lower panel the trend differences D'Arrigo et al. and Bintgen et al., mentioned above, together

[12003~ /1t]- The dashed lines represent 95% confidence limits.  ¢qnstitute only two such examples. Thus, how do the results
from D’Arrigo et al. (R? approach) and those ofifatgen

. . e et al. (R¥/RE/CE approach) relate to the results presented in
(air pollution, soil acidification, etc.), we could truncate the Tables 1 and 272

calibration period. However, this introduces a new prob- ) ) o .
lem: how could we uniquely attribute instabilities to such ~ D'Arrigo et al. use a split calibration period and calcu-
(anthropogenic) drivers? E.g., in case of the example showrdte correlation coefficients over both periods. In three out of
in Figs. 3 and 4 we do not have such a unique clue. four cases, a strong decrease in correlations in the most re-
In conclusion, we feel that the omission of data over recentc€nt period occurs. Their conclusion is that the recent loss of

decades is not a sufficient means to accept a specific chronoféMmperature sensitivity varies with tree parameter (TRW or

ties in tree-ring data standardization (Esper et al., 2009) and
4.2 SRFs and screening of proxy data possibly in instrumental data, needs to be addressed in future
efforts, as they state. Our findings, summarized in Table 1,
Since SRFs can potentially be used to detect patterrshow slightly different results. Two out of four chronologies
(in)stabilities, along with statistical significance testing, it show constant behavior, both fé¢ and ;i (MXD Thelon
is interesting to re-evaluate the two examples from the preand TRW Coppermine). Thus, these two chronologies pass
ceding Section. Certainly, any two calibration/validation ap- the SRF screening test. However, three additional remarks
proaches can show different results for specific proxies. Fohave to be made. First, corresponding explained variances
instance, one may split a calibration period into two parts ofare moderate to low: 39% and 27%, respectively. Second, the
equal size and calculate correlation coefficients between thealibration periods are relatively short (53 years for Thelon,
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71 years for Coppermine). Third, non-homogeneities in the No specific time window is needed, in contrast with the
instrumental data may play a role, despite the GHCN tests. = MRF or moving correlations approach. Furthermore,
Therefore, we come to the same conclusion as D’Arrigo et the use of the Kalman filter allows us to test for time-
al. (2009) that some of these series have potential losses in  dependent changes. It should be noted that the time sta-
sensitivity to climate. bility of the intercept and response weights are of equal
Buntgen et al. split the calibration period in two and cal- importance (in the literature the (in)stability of the first
culatedR? values as well as RE and CE values for each of term is never mentioned explicitly).
the four chronologies (two standardization techniques and
two tree species). They find CE values around zero for
both spline-standardized series, a finding which is consis-
tent with the findings presented herein in Table 2. Thus,
the spline detrended series do not perform well in either ap-
proaCh. For the RCS standardized SerieS, much better CE Va|'3_ Stochastic response functions are |dea||y suited to lo-
ues are found, between 0.25 and 0.29, guaranteeing predic-  calize instabilities over time. However, if these instabil-
tion skill. Squared correlation coefficients over Sub'periOdS ities occur in recent decades (“divergence”) and if the

2. It is advisable to define a climate envelope and deter-
mine whether hindcasts fall outside this envelope over
the length of the climatic reconstruction. Tests for lin-
earity are also important.

vary between 0.18 and 0.55.UBtgen et al. conclude that cause of these instabilities can not be traced/attributed
there is no indication of a DP for either SpeCIeS after scal- to drivers Wh|Ch are Only in operation during these re-
ing the RCS chronologies, although larch generally tracks  cent decades, the omission of recent decades in the cali-
summer temperature better than spruce (loRérvalues). bration period is not a valid means of generating an un-
Our findings here show time-varying behavior for the RCS biased reconstruction network.

chronologies as well. After shortening the calibration pe-

riod (data after 1950 omitted) we find stable responses for 4. Two examples have been discussed as illustrations of
the RCS-standardized larch chronology. Unfortunately, this ~ the potential application of stochastic response func-
Shortening does not guarantee Stab“ity in the past, as dis- tions to climatic reconstructions. For both examples,we

cussed in Sect. 4.1. find screening results that are only partly comparable to
Clearly, these two examples, covering three screening  those found using other methods of validatidtf (RE,

techniques, are not sufficient for a full evaluation of meth- ~ CE). Itis unclear if the stochastic response methodol-

ods. Further, any comparison of any three approaches will ~ 0gy would filter out more proxies than these traditional

reveal results which differ in some detail. With that respect ~ methods. Clearly, much more analysis is necessary to
the analysis shown here is certainly incomplete and more re-  evaluate the various screening methods.

search is needed. 5. Given the policy relevance of paleoclimatic reconstruc-
tions, dendrochronologists are especially advised to be

5 Conclusions more explicit about dealing with uncertainty in proxy
screening.

Peer-reviewed literature has described unstable relationships
between tree-ring proxies and climate target variables for re-
cent decades at some northern and higher elevation sites, dﬁpp
ten denoted by the term “divergence”. Within this context . . .
we have drawn attention to a statistical approach which igresponse function models in detall
ideally suited for tracing instabilities in proxy-target cali- Cg

endix A

alibration of a tree growth/climate model is typically based
n a linear regression relationship between a prxsnd
some climate variable(sy+:

bration, that of stochastic response functions. This metho
is also well suited for performing proxy data screening
prior to network aggregation. Our inferences in this study
have mainly focused on methods of calibration and screend; = +o - Xt + ¢t (A1)

ing within the field of dendroclimatology. However, the :
proposed technique is potentially applicable to the calibra—MOdeI (AL) can be termed a response function model, where

tion of other proxies besides tree rings. Furthermore, th the vectorr with constant regression weights is tesponse

(non-)equivalence of independent reconstructions can be e%—u nction The parameten is the intercept and IS often omit-
plored as shown by Wilson et al. (2010). ed from the model as both and X are normalized to zero

. ST mean and unit variance. If the relationship betwgeamd X
We draw the following conclusions: N . .
are multiplicative rather than linear, a log transformation can
1. Stochastic response functions are useful for providingbe applied. The vectaX; may consist of the original climate
insight when instabilities are expected to occur in gen-variables or principal components derived from these vari-
eration of climatic reconstructions. Changes in responsebles. The reader is referred to Cook and Kairiukstis (1990)
and trend can be readily observed from year to yearand Hughes (2002) for more details.
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The suitability of model (Al) is typically tested by split- yields the minimum mean square linear estimators (MM-
ting the calibration period in two or three sub-periods of gen-SLE) for i ande; . For details please refer to Harvey (1989,
erally equal length. Model (A1) is then calibrated for one p. 111). All estimates shown in this article are based on
sub-period and used to estimatevdlues over the other sub- smoothed estimates using a fixed-interval smoother.
period(s). Finally, model performance is assessed using sev- As for initial values of noise variances we have chosen
eral statistics typically used in dendroclimatology: R, RE, the approach of a so-called diffuse or non-informative prior.
CE and DW. Here, R stands for the well-known correlation This means that we set the initial covariance matrix to the
coefficient. RE stands for the Reduction of Error statistic unity matrix with large numbers on the main diagonal. Thus,
and is a measure for the prediction performance forctiie we simply “tell” the filter that we have no information what-
bration period chosen. CE stands for the Coefficient of Effi- soever at the first iteration. See Harvey (1989, p. 121) for de-
ciency statistic and measures the prediction performance forails. The consequence of this approach is that the filter needs
a particulawvalidationperiod. For this reason the CE statistic some iterations to arrive at stable state-space estimates. For
is more stringent than the RE statistic. Please refer to Nathe models presented in Tables 1 and 2 of this article we have
tional Research Council (2006, p. 92-95 for strengths ancthosen for a transient period of 20 years. The consequence
weaknesses of these statistics). DW stands for the Durbif a “diffuse prior” is that the innovations series starts after
Watson test, which tests for lag-1 autocorrelation in resid-these 20 years. In the process of ML optimization the tran-
uals of the calibration model. See Fritts (1976), Cook andsient period is excluded. See Harvey (1989, p. 256) for de-
Kairiukstis (1990), Cook et al. (1994) and National Researchtails. We note that this transient period is not seen in Figs. 1
Council (2006) for details. Brger and Cubasch (2007) use through 4. The reason is simply that these graphs do not
the RE and CE statistics in combination with resampling show thefiltered estimates fog; and«t, but thesmoothed
schemes. estimates.

Stochastic response functions can be modeled by choosing The IRW trend model reduces to the well-known OLS fit
a sub-model from the class of structural time series model®f a straight line Ifa 41 IS set to zero. And constant re-
(STMs), in combination with the discrete Kalman filter (Har- sponses are found if the varianegs are setto zero. Thus, if
vey, 1989; Visser and Molenaar, 1995; Durbin and Koopman,a|| noise variances in model (A2a) are set to zero, this model
2001). These models allow the estimation of a regressioftedquces to
model withtime-varyingcoefficients:
Li=ao+p-t+a1- X1tz Xott.oo. oy - X +er - (A2Db)

For stationary data the terh will be zero and Eq. (A2b)
Here, I; stands for a climate proxy, such as a standardizecequals the well-known multiple regression model.

ring-width chronology, or the logarithm thereof (depend- The SRF model has similarities to the moving response
ing on the additivity resp. multiplicativity assumptions in functions (MRFs) (Biondi and Waikul, 2004) if the trend
the growth model). The variable¥; ; may stand for stan- component is set to a random walk, rather than the IRW
dardized climate variables or PCs thereof. The coefficientdrend model. However, the advantage of SRFs over MRFs
ALty eeee ;o t together form thestochastiaesponse function is that no window has to be chosen and, thus, that estimates
ande; is a white noise process with varianeg. A time- are found for the full sample period. Furthermore, within
dependent response is gained by definingandom walk  the framework of SRFs the selection of variables can be per-
models: o; t=a; 1—1+n;t , i=1, ....,m. Here,n;t stands for  formed over theavholecalibration period (Visser and Mole-

a noise process with zero mean and variange. These  naar, 1988), while MRFs have to do that for a much shorter
variances may be found by applying maximum likelihood window, in the order of 50 years of length. This selection of
optimization. For the trend component, resembling the  variables may become problematic if the number of explana-
age-related trend plus external factors, the integrated rantory variables becomes large 24).

dom walk trend model (IRW model) is taken (Visser, 2004). Commercial software for estimating model (A2a) is avail-
This model reads agt — 2- ut + it = Nm+1.t » With 941t able from Timberlake LTD. They supply the STAMP pack-
a white noise process with varianeg, . ,. Dendroclimatic ~ age which is able to estimate a wide range of STMs, includ-
consequences for chronology building and the selection ofng the case wherg is multivariate rather than univariate. A
variables in the context of time-varying coefficients are de-non-commercial package is TrendSpotter and is freely avail-
scribed in Visser and Molenaar (1988), and van den Brakehble from the first author. It should be noted that STAMP
and Visser (1996). does not supply estimates for trend differenges us] or

The discrete Kalman filter is an optimal filter in that it response weight differences;[- «g], based on De Jong and
yields the minimum mean square error estimates (MMSE)Mackinnon (1988). In the present version of TrendSpot-
for ut ande; along with maximum likelihood estimation for ter uncertainty estimates are supplied fof g (Visser,
unknown noise variances. This result holds if all noise pro-2004). However, uncertainties fag— as] are not supplied.
cesses are normally distributed. If noise processes involvedhis would be an important extension of the software in the
do not follow a normal distribution, the Kalman filter still context of climate reconstruction research.

h=m+ar; - Xit+az: Xot+ ... +ome- Xm +6r (A28)
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