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Abstract. Important progresses have been made in palaeoEemian site in France. The main results are that: (1) pollen
climatological studies by using statistical methods. But theyalone is not able to provide exhaustive information on precip-
are in somewhere limited as they take the present as an aliation, (2) assuming past G@quivalent to modern one may
solute reference. This is particularly true for the moderninduce biases in climate reconstruction, (3) vegetation mod-
analogue technique. The availability of mechanistic mod-els seem to be too much constrained by temperature relative
els to simulate the proxies measured in the sediment core® precipitation in temperate regions. This paper attempts
gives now the possibility to relax this constraint. In particu- to organise some recent ideas in the palaeoclimatological re-
lar, vegetation models provide outputs comparable to pollerconstruction domain and to propose prospectives in that ef-
data (assuming that there is a relationship between plant prdfervescent domain.

ductivity and pollen counts). The input of such models is,
among others, climate. The idea behind paleoclimatological

reconstructions is then to obtain inputs, given outputs. This

procedure, called model inversion, can be achieved with apl Introduction

propriate algorithms in the frame of the Bayesian statistical

theory. But we have chosen to present it in an intuitive way,For a long time, Quaternary palaeoecologists, and in par-
avoiding the mathematics behind it. Starting from a rela-ticular palynologists, have used intuitive methods to recon-
tive simple application, based on an equilibrium BIOME3 struct palaeoclimates or paleoenvironments from biological
model with a single proxy (pollen), the approach has evolveddata. We focus here on pollen bioindicator as it has prof-
into two directions: (1) by using several proxies measuredited, during the last two decades, of progresses of outstand-
on the same core (e.g. lake-level status &) when they  ing vegetation models. The most common approach was to
are related to a component of the vegetation, and (2) by uscompare the present-day distribution of selected species with
ing a more complex vegetation model, the dynamic vegetathe corresponding distribution of climate variables thought
tion model LPJ-GUESS. Examples presented (most of thenio be determinant for them, according to the niche’s theory.
being already published) concern Last Glacial Maximum in The species are analyzed separately and related to one cli-
Europe and Africa, Holocene in a site of the Swiss Jura, armatic variable. But the species respond to a combination
of climatic variables and their distributions are controlled by
different climatic factors in different parts of their ranges.

Correspondence tal. Guiot Moreover, climate parameters are often interrelated. Thus, it
BY (guiot@cerege.fr) has been necessary to develop methods taking into account
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the ecological complexity of species and assemblages, anthxon is not a univocal species, (4) and the species are not
of their relationships with climatic factors. A relatively an- affected by a single climatic variables.
cient evolution was to work with several climatic variables  All these problems make difficult the use of statistical
and several specieb/érsen 1944 Atkinson et al, 1987). methods based on the reference modern data. We synthe-
One of the power of the pollen counts is to give infor- sise in this paper recent progresses achieved in the last years
mation partly related on species abundances, making possie relax these constraints. One way was the use of mecha-
ble to develop response models where the abundance of theistic vegetation models together with pollen data (a similar
species is expressed as a function of the climB&rt{ein  approach can followed with other proxies if such models are
and Prentice1986. These statistical models are only valid available). Another complementary way is the use of several
on climatic niches presently realized and their extrapolationproxies measured on the same samples. We will show how to
to the past could be problematic, when the past is too dif-combine both approaches when adequate models are avail-
ferent from the presenfuiot et al, 200§. Moreover, to  able and what are the perspectives of what is called model
reconstruct climate, it is necessary to inverse these responsaversion. The purpose of this paper is not to detail the math-
models, but this cannot be achieved directly. Usually oneematics behind the methods, but to give an intuitive flavor of
calculates backward statistical relationships between climat¢he concepts involved by them. The reader can find in the
and species, which are usually callednsfer functiondy cited papers more details to satisfy his curiosity.
the palaeoclimatologists. They are based on a few assump-
tions:

. . . , .2 The methods
(1) Climate is the ultimate cause of changes in the paleobi-

ological data. Even if the inversion of statistical response models should

(pe the “natural” way to proceed to reconstruction past cli-
ate, the large majority of works published in the three last
ecades were based on a very simple "one-step” concept. A

very popular method is the modern analogue technique.

(2) The ecological properties of the species considere
has not changed between the period analyzed and th
present time, and the relationship between the specie
and the climate is thus uniform through time.

(3) The modern observations contain all the necessary in2.1 Modern analogues technique (MAT)

formation to interpret the fossil data. ) )
MAT is illustrated by the schema of Fida. This schema

The second and third assumptions originate from the uni-does not reflect the exact way in which the algorithm is built,
formatarian principle that the same scientific laws and pro-but it facilitates the comparison with the other methods. The
cesses are constant throughout space and time (this theogaption of the figure explains the five steps. To implement
has been proposed by James Hutton in 1795 and popularisdt] it is necessary to define a distance index. Usually a the
by Charles Lyell in 1830 “Amid all the revolutions of the Euclidian distance of the square-root of the pollen frequen-
globe the economy of nature has been uniform and her lawsies (chord distance) is use@®\erpeck et a).1985. The
are the only things that have resisted the general movement ™ humber of analogues depends on a threshold above which
Without the second assumption, the reconstruction of pasthe similarity is considered as too poor. The reconstructed
environments becomes impossible. To satisfy the third aselimate is provided as a weighted mean of the climate of the
sumption, it is necessary to collect a large diversity of mod-analogues (according to the inverse of the distance index). It
ern samples to optimise the chance to cover all the possiblés accompanied by an error bar based on the climatic range
situations of the period studied. But sometimes, non climaticof the analogues. This error bar cannot be considered as a
forcings are so different today that there is no true modernconfidence intervadensu strict@s it depends on the number
analogues. An example can easily be given for vegetation. Aof good analogues available and not directly on the tolerance
number of physiological and palaeoecological studies (e.gof vegetation to a climatic range nor on the noise in the data.
Jolly and Haxeltine1997 Cowling and Sykes1999 have  Advantages and limits of the method are discusse@tiiot
proved that plant-climate interactions are sensitive to the atand DeVerna({2007).
mospheric CQ@ concentration, and we know, from ice cores
(EPICA, 2004, that this concentration is presently much 2.2 Vegetation modelling
higher than ever during the past 740000yr. Consequently
modern samples collected under high£xncentration are A pollen assemblage (or spectrum) is assumed to reflect the
hardly good analogues for low GQperiods. Moreover, composition and structure of the regional vegetation. It is
pollen assemblages are noisy and sometimes biased recordemposed by a large number of taxa which can be grouped
of the climate variables, because (1) pollen productivity isinto what is usually called plant functional types (PFT, i.e.
not equal to vegetation productivity, (2) pollen assemblagegroups of plant species of similar characteristics and re-
are disturbed by pollen grain transportation, (3) a pollensponding in a similar way to climate). This has the advantage
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Fig. 1. Sketch of the modern analogues methods (MAT) and inverse proxy modelling (IPM). A. MAT starts from (1) a matrix of proxy
assemblages and a fossil assemblage (2) which is compared to all the modern proxy assemblages using a distance index; the few most simil;
ones are identified, they are called the best analogues, (3) they are located on a map, (4) the corresponding climatic variables are selecte
among the climate database and (5) averaged to provide the reconstructed climate variables. B.IPM starts (1) from a climatic scenario (a
vector of climatic variables), randomly generat&®),(which is (2) introduced into the proxy model, and produces (3) a simulated proxy
assemblage; (4) the fossil assemblage is compared to simulated pollen assemblages; if the matching is acceptable, the climatic scenario
kept, if not acceptable, it is rejected; (5) a new climatic scenario is randomly selected and the procedure (1 to 4) is repeated; (6) when a
sufficient number of virtual climatic scenarios is obtained, the procedure is stopped and distribution histograms of the scenarios retained are
build. It is possible to change other inputs of the model, such as thed€@solation, and to study the proxy model sensitivity to that
variable. For both approaches, the steps are idealised to facilitate the their intercomparison. The practical algorithms operate generally in

slightly different way.

to reduce the size of the assemblages and overall to be cohgput variables, the model computes bioclimatic variables, and
ent with vegetation model outputs, according to the work offrom them, the maximum sustainable leaf area index and the
Prentice et al(1996. net primary production (NPP, in kg yr—1) for the PFT’s

There exists a large variety of vegetation models. Some?Ple to live in this input climate. Competition among PFT's
of them need a fine knowledge of climate to estimate vegeiS Simulated by using the optimal NPP of each PFT as an
tation. They are hardly usable at a continental scale wherdndex of competitiveness. The most important PFT's in Eu-
often monthly climatic records are available. This explain FOP€ are: temperate broadleaved evergreen trees (tbe), tem-

why paleostudies have used relative simple biogeochemicdpraté summergreen trees (ts), temperate evergreen conifer
models. The most popular model was BIOME&geltine  trees (tc), boreal evergreen trees (bec), boreal deciduous trees

and Prentice1996 or a modified version BIOME4Kaplan  (bs), temperate grass (tg), woody desert plant type (wd), tun-
etal, 2003. Itis a process-based terrestrial biosphere modeflra shrub type (tus), cold herbaceous type (clg), lichen/forb
which includes a photosynthesis scheme that simulates adyPe (If). The pollen PFT’s are sometimes more precise and
climation of plants to changed atmospheric Oy optimi- pollen information is sufficient to recognize several varieties

sation of nitrogen allocation to foliage and by accounting for ©f the same model PFT, for example pollen is able to sepa-
the effects of C@on net assimilation, stomatal conductance, "ate warm and cool ts. The use of such models in the pale-

leaf area index (LAl) and ecosystem water balance. It asoclimatological context and the simulation of the £€¥fect
sumes that there is no nitrogen limitation. The inputs of the®N €cosystems are particularly well reviewedirentice and
model are soil texture, Crate, absolute minimum temper- Harrison(2009.

ature ¢"'min), monthly mean temperaturd), monthly to- BIOME3 and BIOME4 are equilibrium models. LPJ-
tal precipitation f) and monthly mean sunshsing){ i.e. GUESS is a noticeable improvement as the dynamics of
the ratio between the actual number of hours with sunshinghe vegetation stands are taken into acco@mith et al,
over the potential number (with no clouds). From these in-2001). While, in the equilibrium models, two runs with the
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same climate gives always the same vegetation output, in astimated by a linear regression from the temperature and
dynamic model, random processes as competition betweeprecipitation of the same month. Séeiiot et al.(2000 for
species, and mortality introduce stochasticity in the outputsmore details. To provide a comparison between sites and
In LPJ-GUESS, cohorts of trees of different species, age andime periods, climate variables are expressed as “anomalies”
structure compete for light and soil resources on a number obr Aclimate, i.e. differences between proposed climate and
replicated patches of plants. Either PFSit¢h et al, 2003 the modern climate at the considered site.

or species Hickler et al, 20049 may be simulated.Gar- The third tricky point is then to define what is considered
reta et al(2009 used the species version which includes 18 as a matching. Bayesian theory provides a framework for
species. LPJ-GUESS has standard inputs, i.e. with monthlguch a definitionRobert and Caselld999. In this context,
values of precipitation, temperature and cloudiness. For each uses main concepts pfior andposterior. Theprior is the
study site, past and present, precipitation and temperaturmformation, summarised under the form of a distribution,
chronologies were interpolated from the CRU TS 1.2 datasethich is available prior to the data analysis. Tp@sterior
(New et al, 2009, which has a spatial resolution of 10 is the information that we will deduce from the data and a
For cloudiness, they fitted a relationship between monthlyhierarchical model. In that respect, the hierarchical model
cloudiness and both monthly precipitation and temperaturés not restricted to the vegetation model, but it the function

per site. which relates therior to the posterior In statistical terms,
it is the probability of pollen assemblage conditional on
2.3 Inversion modelling and Bayesian approach climateC. Itis notedp(Y|C)= [ p(Y|V)p(V|C)dV where

p(V|C) is the vegetation model which links vegetatigrto

As indicated by Figla, the statistical method to estimate climate C andp(Y|V) is the function which links pollen to
climate starts from pollen assemblages and goes back to clivegetation. Theprior is an initial guess of the probability
mate. Vegetation models start from climate and go to veg-distribution of the climate. It can be given by the knowledge
etation. The idea proposed IBuiot et al.(2000 is thento  we have from other paleoclimatic data, or from, if nothing is
use massive computation algorithms to “inverse” the modelavailable, from the knowledge which has been accumulated
starting from vegetation and going back to climate. It is notin that science. The distribution law is then an uniform law
an analytical inversion, but an iterative procedure where onelefined on that range.
converges progressively towards the climate which has pro- Bayesian statistics have been conceptually introduced in
duced the observed vegetation (Flif§). The caption of the paleoclimatology byKorhola et al.(2002 andHaslett et al.
figure explains the steps of the method. The climatic spacg2006, but without any reference to a mechanistic model.
is randomly sampled to produce a large variety of climatic They underlined that such an approach is slow despite mak-
scenarios which are introduced in the vegetation model tdng unreasonable compromises on the models employed.
simulate the corresponding vegetation composition and prowith a mechanistic model, it is even slower. The reason is
ductivity. The simulated pollen assemblages are comparethat, to draw theposterior, one has to use Monte-Carlo algo-
to the fossil assemblage and those matching reasonably wetithms which need thousands of iterations. These algorithms
are retained. The corresponding climatic scenarios are then coherently with the Bayesian inference — provide an inte-
considered to be compatible with the observed vegetationgration over the climate parameter space instead of an op-
They are used to build histograms, which are estimates ofimisation. A popular type of such algorithms is known as
probability distribution functions of a climate able to gen- Monte Carlo Markov Chain (MCMC) algorithm. Let us con-
erate such a vegetation. The outputs of the model do nosider a multi-dimensional mathematical space where each di-
correspond exactly to the pollen assemblages. A transformamension represents a climatic variable. A vector of param-
tion is necessary and it is a major tricky point of the method.eters is an element of the multi-dimensional climate space.
Several tested approaches are presented in the following sethe Metropolis-Hastings algorithm is an iterative method
tions. This transformation is assimilated to the model box inwhich browses the climate space according to an acceptance-
the figure. rejection rule Metropolis et al. 1953 Hastings 1970. The

The second tricky point is the number of input climatic output of this algorithm is a “path” or “chain” of climate
parameters. The used vegetation models use 36 monthly clparameters describing the posterior distribution of climate
mate inputs above described, which define the scenario. Onparameter. The MCMC algorithm can be considered as an
has to modify them randomly to browse the climatic space,equilibrium inversion method, compatible with equilibrium
but its size is too high to converge to the true solution. So,vegetation models as BIOME3.
we decided to reduce them to a small number of represen- To realise the temporal inversion of the dynamic model
tative variables (Tjan, Tjul, Pjan, Pjul), from which all the LPJ-GUESS, a statistical framework has been developed
other climatic variables are deduced. A sine function is ad-around a temporal hierarchical model and a Sequential
justed to the two temperature variables and another to thélonte Carlo (SMC or particle filteDoucet et al(2001)) in-
two precipitation variables, enabling an interpolation of the ference algorithm, because (1) the random character of the
missing months. The sunshine percentage of each month igegetation simulated by LPJ-GUESS prohibits the use of the
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“static” MCMC approach and, (2) the need of dimension re- 1999. The results are presented according to the latitude
duction in the reconstructed climate space, which is equalFig. 3). Annual temperature shows an increased gradient
to the number of samples in the reconstructed climatic timefrom the southernmost site (about°3%) towards the north-
series. ernmost (48N), and, for the annual precipitation, a de-
creased gradient. Itis 0.8D.35 C/°latitude for temperature
and —29+12 mmflatitude for precipitation. It means that a
3 Applications temperature decrease larger in the south than in the north is
necessary to transform forest into steppes and, in the north, a
The method is illustrated starting, in one side from the equi-stronger precipitation decrease is necessary. When the LGM
librium vegetation model BIOMES towards the dynamic veg- CO; level is applied, the gradients become unsignificant for
etation model LPJ-GUESS and, in the other side, from a sinboth variables. So the GQowering is large enough to re-
gle proxy (pollen) towards a double proxy constraint. This is duce forest extent: under a high g@vel, temperature must
sketched in Fig2 with a double axis. The second proxy is, in fall sufficiently to reduce the growing season under a certain
one case, lake levels data and, in the other one, isotopic datégvel, and under a low C£evel, the forest reduction is due
each proxy giving information on different aspects of the cli- to both temperature lowering and carbon limitation. There is
mate. Finally, we will conclude on the directions that palaeo-then a real bias in ignoring the true level of gfr climate
climatology should follow to fully exploit the increasely di- reconstruction (when statistical methods are used instead of
verse and improved set of archives and proxies. mechanistic models). This bias reach&€ & southernmost
All these results concern annual temperature and precipitasites but not more than°C in nothernmost ones, meaning
tion. Even if these variables are not those which are the mosthat CQ becomes more limiting than temperature far away
determinant for vegetation, they are the average of the inputrom the ice cap.
variables and are then the most synthetic. Moreover, annual
precipitation is that one which concerns both lake-levels and3.2  Application B: Eurasia and Africa at the LGM
vegetation. We have thought that it was better to present them
instead of more bioclimatic variables (growing degree-days,Wu et al.(20073 have improved the method. First BIOME3
water availability ...), even if for a better interpretation of the has been replaced by BIOMEKgplan et al. 2003. Sec-
results, it is necessary to look also the bioclimatic variables.ond, the ANN-relationship between NPP simulations of the
model PFT’s and pollen PFT scores has been replaced by a
3.1 Application A: Europe at the Last Glacial Maxi- correspondence matrix between the model biomes and the
mum biome scores calculated from pollen. This matrix is an em-
pirical result based on modern data and theoretical definition
The first application uses BIOME3 constrained by pollen of the biomes (see the original paper for more information).
data (application A in Fig2) for the Last Glacial Maximum  The method has been applied to LGM of Eurasia and Africa
(LGM, 21+2kaBP) in Europe. The data and the method (application B in Fig2).
are fully described irGuiot et al.(2000. The model out- The estimated anomalies of the climatic parameters for the
puts are transformed into pollen PFT’s scores by an Artifi- LGM period are shown in Figd. The left part of the each
cial Neural Network (ANN) calibrated on a modern datasetgraphic concerns Africa. There is a large dispersion which
(Tarasov et a).1998. Unlike standard transfer function, the can mainly be explained by a large dispersion of the ele-
relationship is not calculated between climate and pollen, but/ations. Wu et al. (20073 have shown a strong altitudinal
between vegetation and pollen, the bridge between climatgradient of precipitation. For the modern level of £@ne
and vegetation being given by BIOME3. The measure ofcannot fit a linear relationship of temperature to latitude in
fit between the vegetation model outputs (NPP) and the obAfrica, but yet in Europe, the relationship is negative: high
servations (pollen PFT scores) is a likelihood index. It as-latitude sites had a temperature anomaly of abdl®C and
sumes a probability model for the simulation “errors”, here asouthern sites anomalies ef10 to —5°C. The gradient is
Gaussian model. It is then proportional to the sum of squarenegative while it was positive in Fi@. It is likely due to the
discrepancies between ANN-transformed NPP and observeetter ability of BIOME4 to simulate the LGM vegetation,
pollen PFT scores. Theriors are given by an uniform dis-  which is intermediate between cool steppes and tundra. A
tribution law on [-30, +5 C] for temperature anomalies and biome called steppe-tundra was introduced in the most recent
[—60, 60%] for precipitation relative anomalies. version of the model, which fits then much better to the data.
A dataset of 15LGM samples is considered. We presenEven if that biome does not exist explicitly in the pollen data,
two experiments. The first experiment is done with a highit exists cryptically when tundra and steppic scores are of
level of CG (340 ppmv) close to the atmospheric concen-the same magnitude. The reconstructed anomalies under low
tration existing during the modern data sampling. The sec-CO, concentration are not significantly different from the re-
ond experiment with a low level of GO(200 ppmv), such  constructed anomalies under high £Encentration. Wu
is measured in the ice cores for the LGNRefit et al, et al. (20073 found a clear bias for winter temperature, i.e.
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about 10C colder under higher Cbut nothing for summer levels, before 10 kaBP, between 9 and 8.5kaBP, and after
temperature. The only bias that is found for annual temper-7 ka BP. Concerning the vegetation history (represented by
ature concerns Mediterranean sites, with an annual temperdhe deciduous trees curve and the total of tree pollen 8jig.
ture rather lower under high GO the Younger Dryas was characterized by rather large per-
In Africa, temperature was not very different from present centages of treesP(nus, Betulq together with about 10%
values. Precipitation shows a much more structured proof Artemisia Early Holocene was characterized by an in-
file. Under high CQ, anomalies were close to zero in crease ofCorylus thenUlmusandQuercus Nothing in the
South Africa and between-1000 and O mm/yr at equator, Vvegetation history can be related to the rise in lake level at ca.
depending on the elevation. Under low @®©ncentration, 8400-8300 cal yr BP.
the reconstruction in the southern part of the continent was First, we use the method as defined in S2ct, pollen be-
similar, and in the central part, the dispersion was higher:ing used alone to constrain the model and,GSsumed to
—1200 to Omm/yr. If we focus on high elevation sites be constant and equal to the pre-industrial value 280 ppmv.
(>1500m), the precipitation mode, for 340 ppmv, was at The priors for January and July temperature are assumed to
about 1000 mm/year and is replaced, with 200 ppmv, by abe uniform betweenr-8 and +4C (in anomalies) and for pre-
large double peak from 1100 to 700 mm/year. In fadlty cipitation, between-40 and +40% of modern conditions. It
et al. (2007 have shown that the disappearance of forestis called the “pollen experiment” (ExP) (Fig). The YD
above 2000 m elevation can be explained partly by a precipwas characterised by a temperature lower than present by
itation decrease and partly by a g®@wering. Wu et al. 8°C. Annual precipitation did not seem to have any trend
(20073 analysed the water stress variablewhich is the  across the whole studied period. The second experiment
ratio of actual and potential evapotranspiration and is closely(pollen-CQ experiment, ExPC) is obtained by providing to
related to the stomatal area and the water use efficiency. Thethe model the atmopsheric G&s reconstructed from the
found that its maximum probability ranges within-40, Taylor Dome ice coreljderniihle et al, 1999 (Fig. 6). It
—28%] for high CGQ and within [-40, —8%)] for low COy. has the largest effect on the reconstruction of temperature —
There is then an oversetting of GOf we use a high CQ an anomaly of 5C instead an anomaly of& with ExP —
concentration, inducing an overestimation of the water stresswhen its concentration is the lowest. This is enlightened by
Several solutions are possible for the LGM climate in re- the differences ExPC-ExP between probability distributions
gions where a mixture of steppes and tundra existed. A®fExXPC and that of ExP: the modes of ExP (in blue) are sys-
these biomes have no clear analogues today, a reconstrutematically lower than the modes of ExPC (in red). As for
tion based on statistical methods will tend to choose the leasthe LGM, this shows that, when the true value of d®not
poor matching, or fail to find a matching¢yron et al.1998 taken into account, there is a bias in the temperature recon-
Jost et al.2005. These analogues were taken in tundra orstruction, the effect being maximum during the YD, when
very cold steppes, resulting in very low reconstructed tem-the CGQ was the lowest. The effect on precipitation seems
peratures. By using a mechanistic model and probability disto be negligible (the blue and red distributions being flat and
tributions, the results are multi-modal and the most probablenot contrasted).
mode is different according to the G@oncentration. All The last experiment (pollen-G&akes experiment, Ex-
possible solutions at LGM C&evels can be explored. Com- PCL) is obtained by constraining the model with pollen,,CO
plementary proxies are, in this case, of great help to precis@nd lake-levels (Fig6). The integration of lake-levels is not
the best suitable solution. straightforward. A solution has been proposeddheddadi
et al. (1996, called the constrained analogue method. The
3.3 Application C: lake levels and an equilibrium vege-  lake-levels were compared, for each iteration, to the pre-
tation model cipitation minus evapotranspiration {fE), closely related
to run-off. Both quantities are substracted by their modern
The third example is a single site application with a core cov-value at the study site. we callL, the anomaly of lake-
ering a part of the Holocene and Younger Dryas (YD) for level andA(P—E) the anomaly of RE. Even if the match-
which pollen assemblages and lake-lavels data are availabléng between simulated and observed pollen assemblages are
This application illustrates the effect expected from the use ofacceptable, the iterations where
a second proxy to precise climate components not optimally
accessible from pollen data alone (application C in Bg.
The palaeo-lake Le Locle (883 N, 6°43 E) has been (IAL| = 0.5) and(|A(P—E)|>200 mm
dried at the last century. Itislocated at 915 ma.s.l. inthe high (AL>0.5) and(A(P—E)< — 100 mm)
Swiss Jura. The pollen and lake-level data used in this studya 7 < — 0.5) and (A (P—E)>100 mm) (1)
were obtained are describedfagny et al(2007). The lake
level status curve indicates that the YD was characterized by are eliminated. The thresholds used in that equation are in
a trend toward a lake-level lowering and strong instability some way arbitrary and obtained by trials and err@ised-
(Fig. 5). The early Holocene had three major phases of lowdadi et al.(1996 found that the results were not too much
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Lac Locle: arboreal pollen
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Fig. 5. Location of Lake Le Locle in Swiss Jura. The upper right graphic represents the proportion of tree pollen and the proportion of
deciduous tree pollen in the pollen diagram. The middle right graphic represents the lake-levels. The lower right graphic represents the CO
concentration in the ice core bubbles of Taylor Doimelérniihle et al, 1999. Time scales are in calibrated years BP.
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inverse modelling; ExPC, when pollen is used with variable,@@ncentratonlfderniihle et al, 1999; EXPCL, when pollen is used with

variable CQ and with the lake levels constraints. The “blue/red” graphic represent the difference between probability distribution of two
experiments. The curves represents the modal curves.

sensitive to the choice of these values. Eighows that the distributions are narrower than the ExP modes (blue areas on
reconstructed variations of temperature do not change, buboth sides of the red area indicate large distributions). So
those of precipitation follow much better those of the lake when pollen is used alone, the precipitation reconstruction
levels, with also a decrease of the uncertainties (indicated byrave much larger uncertainties.

a narrowing of the probability distribution). The probabil-  These experiments prove again then that,Gust be

ity distribution differences (ExPCL-ExP) shows that ExPCL taken into account at least during periods where it is low.
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Another point is that precipitation, in temperate regions (at Grande Pile
least), can not be inferred with a sufficient confidence from
vegetation proxies only. Vegetation uses a part of precipi-
tation falling on the ecosystems, a significant part runs off
and consequently, a complementary proxy is needed to in-
fer correctly the total amount of water available within the
ecosystem. - [ : : : :
105 110 115 120 125

3.4 Application D: §13C proxy and equilibrium vegeta- } ‘ , — —
tion model 0.0 0.1 02 03 0.4 05 06

10

5
1

Annual Temp

-15

We present now a another single site application with a core
approximately covering the Eemian warm period (128 to
100 ka BP) for which pollen diagram arsd3C of organic
matter are available. This application illustrates the effect
expected from the use of a second proxy of vegetation to £
decrease uncertainties of pollen data alone. It corresponds : ‘ ‘ ‘ :

to application D of Fig2. The procedure used is based on 105 110 115 120 125
BIOME4 model (as in SecB.2). The likelihood function LH

assumes a Gaussian probability distribution for the errors ofig. 7. Temperature and Precipitation reconstruction at La Grande

nual Precip
L

-400
1

-800
|

$13C. Pile during Eemian period. Mean annual temperature and annual
precipitation reconstructed by biome(s) adC inverse modelling

(813C, — 813C;)2 are represented by a grey scale color for the probability distribution

LH = T sz (2) and its modal curve (in blue). They are bracketed (in green) by

. _ the domain that encompasses both potential climatic niches of both
where subscripte ands correspond to target and simu- most likely biomes. Modified fronatte et al.(2009.

lated values respectively and whergs? is the whole model
precision, the inverse of the model error variance. It is
an adjustable number which measures the quality of the fibiomes and'3C are bracketed by the ranges which should
between model outputs and datdaftt and Guiot 2005. be obtained by pollen biome constrains alone (Fjg.The
When pollen data are also available, it is possible to useadded-value of double constraints is particularly clear for
biome assignment to the sample to make an additional seprecipitation reconstruction: single constraint infers a con-
lection of the runs. If the simulated biome matches with thestant value with large uncertainties-§00, +200 mm/yr] in
biome obtained from pollen, the iteration is kept, if not, it is precipitation anomaly) and a double constraint decrease un-
rejected. Hatte et al.(2009 have compared the results ob- certainty by 2 to 4. Furthermore, reconstructed temperature
tained with biome alone (which is a single pollen approach)ranges are often decreased by a factor 2. This confirms the
and with carbon isotopes constrained by pollen biomes. Theonclusion of previous section that pollen alone cannot give
method is validated iklatt et al.(2009. a sufficiently precise reconstruction of precipitation. This
We reproduce here the results obtained for La Grandeshows also that the use of two proxies decrease the uncer-
Pile sequence. This site is located at4& N, 6°30 E, tainty on reconstruction of both variables and inverse mod-
330ma.s.l. with annual precipitation of 1080 mm, a meanelling is an elegant way to integrate several proxies related to
annual temperature of 96, and a seasonal range of about vegetation. Nevertheless, we must note that the uncertainty
18°C between the warmest and the coldest months. The datprovided by pollen biome is higher than uncertainty provided
are presented iRousseau et a{20086. by the whole PFT assemblage, as in the previous subsections.
For each sample of the La Grande Pile core, an input vec-
tor is defined and composed by (1) tB&C of the sam- 3.5 Application E: dynamic vegetation model
ple, (2) the target biomes as the two with the highest scores
achieved by the biomisation procedure (further informationThis section intends to illustrate the use of a dynamic veg-
in Rousseau et al2006, (3) the atmospheric Cconcen-  etation model, LPJ-GUESS, with a single proxy, i.e. pollen
tration based ofetit et al.(1999 record interpolated at La assemblages. As the model is dynamic, this application deals
Grande Pile time-scale and (4) soil type and texture. Thewith the temporal characteristics of the data, such as already
reconstructed annual temperature and precipitation are basesliggested byHaslett et al.(2006. Vegetation is not only
on iteration with value of LH higher than -0.5, corresponding assumed to be dependent on the contemporaneous climate
to an accepted error of maximum 0.7 %o 83£C. but also on the previous vegetation. Autocorrelation in the
Mean annual temperature and annual precipitation recontime-series is considered as an important information. More-
structed by inverse modelling constrained by both pollenover, the dynamic model is not a deterministic model (two
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runs with the same inputs do not produce exactly the same
results). MCMC algorithm are then not applicabl@arreta

et al. (2009 have proposed to use a particle filter technique =
more adapted to time-series and stochastic processes. -
We do not use here PFT’s scores but a restricted vector =] )

of 14 arboreal pollen taxaApies, Alnus, Betula, Carpinus,
Corylus, Fagus, Fraxinus, Picea, PinusvergreerQuercus
deciduousQuercus, Tilia, Uimusand Populug and a 15th
herbaceous taxon, summing all the herbaceous taxa. This
choice has the maximum of coherency with the 18 species
defined in LPJ-GUESSGarreta et al(2009 applied their
method to a fossil core (Meerfelder madtjt( et al., 2009,

but we just present here the validation of the method with
modern samples. The monthly temperature and precipitation
were deduced from a 6-dimensional climate parameter vec-
tor: C=(Tyan Tiu, Pwin, Pspr, Psum Paup, Which is slightly
different on what has been done in the previous sections. The
first two variables are temperature anomalies°@) from
January and July for 1901-2000. The four other ones weréig. 8. Alnus distribution: the points are the modern sites, the x-

seasonal (winter, spring, summer and autumn) precipitatior@xis is the? transform of pollen percents=loB{inud Pcrsh) (P for
relative anomalies (in %). percent), the y-axis is the simulatédnus using LPJ-GUESS (in

kg carbon nT2 year 1) from CRUTS-1.2 Klew et al, 2000 climate
interpolated at each site; the color scale represents the surface fitted
eto the density of sites (red meaning maximum density).

To simulate vegetation at timg>r;, with #; and¢; con-
secutive time periods (corresponding to the resolution of th
core), the vegetation model starts with and runs for; —;
years. Ift;—t; is short, vegetation simulatedtis strongly

forced by vegetatioV;, and then, implicitly, by climate;, . been done for 30 sites in Europa aBdrreta et al(2009

This constraint gives a time-coherence to vegetation and thef4e shown that the mean bias wat C and 3% in absolute
to reconstructed climate, and helps to produce “histories” or 5 e. Thus, the method seems to be unbiased.

“dynamics” or joint distributions of vegetation and climate. 1, provide a valuable information, the posterior distribu-

This constraint can be seen as a smoother of the local biaﬁ‘ons must be narrower than the prior ones. It is the case

within independent reconstructions. _ _ _ for temperature where the lower limit of temperature dis-
A key element of the inversion model is the relationship iption goes from—15°C to —5°C in January and from

between_simulat.ed vegetation and poIIen_data. !n the Prévi—_1rc to—6°C in July (Fig.9). Precipitatiorposteriorsare
ous sections, this has been calculated either with a statistiz o+ harrower than thejoriors, a result which shows that im-

cal non _Ilnear relr?monsmp or with a correspondence matr'x'provements, in both the vegetation model and the inversion
Here it is approximated by a kernel surface (or a responsgcheme, are still necessary. Some of them concern a better

surface) where the pollen taxon is expressed as a function g, qe|ling of the relationship between pollen dispersion and
the taxonomically closest model taxon. This kernel was Ca“'plant productivity.

brated on a dataset of 1209 surface samples covering Europe

and North Africa. It is illustrated foAlnus (Fig. 8) where

the maximum weight is found where the coherency is best4 The main results relevant to palaeoclimatology

between data and model (here, in the region of low pollen

and NPP values and in the region of mean pollen values and his paper has shown the progresses which have been made

NPP around 0.02). Where pollen values are high)( model in the last ten years by introducing more mechanisms in the

is enable to simulate high NPP. climate reconstructions. The hypotheses behind classical ap-
The results of the method are shown as (smoothed) postgroaches say that we may find in the modern world, sim-

rior distributions of each climatic variable. It is illustrated ilarities for the past and then explain the past in one loca-

for an Andalucian site (Fig9). Mean discrepancies be- tion as a realization of a present situation somewhere else

tween posterior medians and expected values of the 6 reconin the world. This is clearly the basis of the analogue ap-

structed parameters are negligible by comparison with interproaches, but also of all statistical approaches based on a

val widths: the differences between the modes<aseC for modern dataset considered as a training dataset (regression

temperature and close to 0% for precipitation. There is therbased methods, artificial neural networks ...). Mechanistic

a bias for temperature. But, this kind of analysis has not re-models, able to simulate a proxy in function of climate, give

ally a sense for a single site. To really evaluate the biases, itis the chance to work around this hypothesis at the condi-

is necessary to repeat this validation for several sites. It hasion to replace similarity of data by uniformity of processes.
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Fig. 9. Verification of the method on modern pollen data of an Andalucian site. Prior (blue lines) and posterior (red lines) univariate
distributions of the 6 climate variable weighted with the particle importance and smoothed: monthly January and July tempé@tafe (in
anomaly), seasonal winter, spring, summer and autumn total precipitation (in % of anomaly).

It implies that such models were strongly based on mech-
anisms and not only a set of linear or non linear equations
calibrated on modern datasets. Vegetation models is among
this category.

Pollen data have the chance that vegetation models based
on physiological laws have been developed more than fifteen
years agoRrentice et a).1992. Having such model avail-
able is not the only condition. These models must also be
enough simple to work with accessible inputs (climate, soil
structure ...). It has been the leading mind of most of the veg-
etation models developed since this pioneer work. This pa-
per has shown how to go from a relatively simple equilibrium
model (BIOMES3) to a dynamic model as LPJ-GUESS. These
models give the possibility to work under conditions very
different from the modern ones. It is clearly the case for the
atmospheric C@concentration often lower than the contin-
uously increasing present one (200 ppmv during the glacial
periods, around 280 ppmv during the interglacials and more

than 370 ppmv today). The seasonality changes are also ang)

interesting point. It is induced by variations of earth orbit
around the sun (see the pioneer worlkBefrger 1978. This
feature is implicitly partly taken into account by the inversion
procedure, through its effect on temperature and precipita-

tion, as different priors are set for winter and summer. But so- 4)

lar radiation influences also directly photosynthesis and this
should also been taken into account in the future.
Our results enable to draw several important points:

1) there may be a significant bias in not taking into account
the difference of C@between modern and past time pe-
riods. Particularly, during the glacial periods where the

www.clim-past.net/5/571/2009/

2)

difference is maximum, C@fall is partly responsible

of the destruction of forest in Mediterranean area. Not
taking it into account, the results tend to attribute it to a
too important temperature fall. The tundra-steppe veg-
etation of central and southern Europe is interpreted as
a tundra vegetation when statistical methods are used,
while a mechanistic model as BIOME4 interpret it as a
cool steppe, less cold than the tundra, especially in sum-
mer. Some biases can also exist during less cold periods
(Younger Dryas and even Holocene).

The use of lake-levels to constrain the reconstruction
from pollen data reduces the uncertainty associated with
the fact that pollen in temperate zones is a temperature
indicator rather a precipitation proxy. The results, us-
ing lake Le Locle pollen data and lake levels proxies,
have shown that, not only uncertainty is reduced but also
larger variations are reconstructed across the Holocene.

813C is another proxy strongly related to precipitation.
The results on the Grande Pile Eemian have confirmed
that the joined use of pollen and carbon isotopes reduces
also the uncertainties on precipitation reconstruction.

The use of a dynamics model confirms the main role of
temperature in the vegetation shifts in Europe. This ap-
proach is still in development and some improvements
are necessary to make the method fully operationnal. A
first result here, which maybe confirms points 2 and 3
above, is that the effect of precipitation seems to be un-
derestimated in LPJ-GUESS or BIOMEA4.
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5 Conclusions

Vegetation models are an elegant solution to integrate sev
eral proxies. They simulate quantities which may be relatec
to pollen data. They simulate also fractionatiod biC in the
plant which can be compared with isotopic measurements in

the sediment bulk. The)/ simulate also water absorbed byrhe publication of this article is financed by CNRS-INSU.

the plant and water running off. The run-off, represented by

precipitation minus evapotranspiration, can be directly com-

pared to lake-levels data when the core is lacustrine. As often

lake recharge is done in winter and water useful for vegetaReferences
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