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Abstract. A statistical framework for evaluation of climate

model simulations by comparison with climate observations

from instrumental and proxy data (part 1 in this series) is

improved by the relaxation of two assumptions. This al-

lows autocorrelation in the statistical model for simulated in-

ternal climate variability and enables direct comparison of

two alternative forced simulations to test whether one fits

the observations significantly better than the other. The ex-

tended framework is applied to a set of simulations driven

with forcings for the pre-industrial period 1000–1849 CE and

15 tree-ring-based temperature proxy series. Simulations run

with only one external forcing (land use, volcanic, small-

amplitude solar, or large-amplitude solar) do not significantly

capture the variability in the tree-ring data – although the

simulation with volcanic forcing does so for some experi-

ment settings. When all forcings are combined (using either

the small- or large-amplitude solar forcing), including also

orbital, greenhouse-gas and non-volcanic aerosol forcing,

and additionally used to produce small simulation ensembles

starting from slightly different initial ocean conditions, the

resulting simulations are highly capable of capturing some

observed variability. Nevertheless, for some choices in the

experiment design, they are not significantly closer to the ob-

servations than when unforced simulations are used, due to

highly variable results between regions. It is also not possible

to tell whether the small-amplitude or large-amplitude solar

forcing causes the multiple-forcing simulations to be closer

to the reconstructed temperature variability. Proxy data from

more regions and of more types, or representing larger re-

gions and complementary seasons, are apparently needed for

more conclusive results from model–data comparisons in the

last millennium.

1 Introduction

While much of our knowledge about climate changes in the

past emerges from evidence in various natural archives (Wan-

ner et al., 2008; Jones et al., 2009), experiments with climate

models help us to understand physical mechanisms behind

the observed changes and may also help constrain projections

of future climate changes (Schmidt, 2010). The last millen-

nium – prior to the onset of the industrial era around 1850 CE

– provides an opportunity to test hypotheses about the role of

external drivers, in particular orbital forcing, solar variabil-

ity, volcanic aerosols, land use/land cover changes and varia-

tions in greenhouse gas levels, under climate conditions rela-

tively close to those of today (Jungclaus et al., 2010; Schmidt

et al., 2011; Landrum et al., 2012; Fernández-Donado et al.,

2013; Sueyoshi et al., 2013). A constantly growing number

of proxy-based reconstructions and model-based simulations

of past climate variations implies an increasing need for sta-

tistical methods for comparing data of the two kinds. Ex-

amples of this are found in data assimilation (Goosse et al.,

2012; Widmann et al., 2010), detection and attribution stud-

ies (Hegerl et al., 2007, 2011; Schurer et al., 2014), and es-
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timation of climate sensitivity (Hegerl et al., 2006). So far,

the available methods cannot, however, account for the full

complexity of the situation, e.g. the often time-varying qual-

ity and statistical precision of climate proxy data. It is also

not clear how to determine the optimal spatial domain that

a particular proxy record should represent in a model–data

comparison. There is thus a need for more theoretical work

in this context.

Based on theoretical considerations and some assump-

tions, Sundberg et al. (2012, henceforth SUN12) formulated

a statistical framework for evaluation of climate model sim-

ulations, primarily for the last millennium. Their goal was to

develop tools for an unbiased ranking of a set of alternative

forced simulations in terms of their hypothetical distance to

the unobservable true temperature history, while using noisy

proxy records and instrumental observations as approxima-

tions to the true temperature variability. The alternative sim-

ulations in this context (in the rest of this paper) are ob-

tained with one and the same climate model that has been

run several times with alternative choices of the temporal

evolution of external forcing conditions (e.g. alternative so-

lar or volcanic forcing sequences). They may, however, also

be different simulations obtained under alternative choices

of parametrization of small-scale processes in one and the

same climate model under exactly the same forcing condi-

tions. In a companion pseudoproxy experiment, Hind et al.

(2012) investigated the possibility of determining whether

climate model simulations, driven by various external forc-

ings, were able to explain past temperature variability in a sit-

uation where the “true” past temperature history, the forcing

history and the proxy noise were known by design.

Here, we contribute further to the SUN12 work by dis-

cussing practical considerations arising when using real

proxy data series that represent different seasons and regions

of different size, having different lengths and statistical pre-

cision. To this end, we select a set of 15 tree-ring-based tem-

perature reconstructions, spread across North America, Eura-

sia and Oceania, which we use together with the same set of

global climate model simulations (Jungclaus et al., 2010) as

used by Hind et al. (2012). Another goal is to present an ex-

tension of the SUN12 framework by relaxing two of its as-

sumptions. This makes it possible, first, to allow some auto-

correlation structures in the simulated temperatures and, sec-

ond, to compare two alternative forced simulations directly

to test whether one of them matches the observed climate

variations significantly better than the other. SUN12 assumed

no autocorrelation in the simulated internal (unforced) tem-

perature variations and compared forced simulations only in-

directly by testing whether each of them matched the ob-

served climate variations better than a reference simulation

with constant forcing. Although full details of the SUN12

framework are already provided in their original work, we

summarize essential aspects here for the benefit of the reader.

The extended framework is explained in detail in two ap-

pendices. Much of our discussion deals with practical issues

which arise when applying the framework, for example con-

cerning how to define geographical regions for model–data

comparison, how to combine information representing dif-

ferent regions and seasons, and how to decide upon the time

resolution to use in the analysis.

This work also serves as a companion study to the

hemispheric-scale analysis by Hind and Moberg (2013), who

attempted to determine which of two alternative solar forc-

ing histories that, in the presence of other forcings, provided

the best fit between simulated (Jungclaus et al., 2010) and re-

constructed temperatures. The two solar forcing histories had

either a 0.1 or 0.25 % change in total solar irradiance since

the Maunder Minimum period (i.e. 1645–1715 CE; c.f. Jung-

claus et al., 2010; Lockwood, 2011; Schmidt et al., 2012;

Fernández-Donado et al., 2013; Masson-Delmotte et al.,

2013). As temperature proxies, Hind and Moberg (2013)

used six hemispheric-scale temperature reconstructions: five

based on multi-proxy compilations and one based solely on

tree-ring data. They found, in most cases, a better match

when the small-amplitude solar forcing was used, but re-

sults were not conclusive. This provokes questions regarding

whether statistical model–data comparisons can tell which

of the two alternative solar forcing histories is most correct.

Tree-ring-based proxy data, which form the backbone of our

knowledge of past temperature variations in the last millen-

nium (Jones et al., 2009), have a potential to shed further

light on this question. We apply the extended framework to

the selected tree-ring data in an attempt to examine whether

more conclusive results can be obtained. The current article

is, however, mainly intended as a methodology study where

the model–data analysis serves as a relevant demonstration

case.

2 Statistical framework

To obtain a statistical methodology for ranking a set of

plausible alternative forced simulations, and for identifying

forced simulations fitting the observed temperature varia-

tions significantly better than an unforced model, SUN12

proposed a type of regional (or local) statistical model relat-

ing a climate model simulation time series (x) via the (unob-

servable) true temperature sequence (τ ) to the instrumental

temperature measurements and temperature proxy data se-

ries for the region of interest. Instrumental measurements and

proxy data (used only when the former are missing) are here

jointly called “observations” and denoted z. For more explicit

model formulations, see also Appendices A and B.

Section 4 of SUN12 demonstrated that, for unbiased rank-

ing, the calibration of proxy data should aim at achieving

the right scaling factor of the true temperature (τ ) compo-

nent in the proxy, with the noise component superimposed.

Perfectly calibrated temperature proxy data (or instrumental

data) could thus be written z= τ + ε, where ε is a measure-

ment error type term (noise), uncorrelated with τ . A remark
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in Sect. 4 of SUN12 discusses this type of calibration in light

of recent literature (e.g. Hegerl et al., 2007; Ammann et al.,

2010; Kutzbach et al., 2011; Moberg and Brattström, 2011)

on the use of errors-in-variables models within a palaeocli-

mate reconstruction context. The methodology allows the

variance of the noise term ε to vary with time, depending

on how the precision of the observations varies. Thus, an en-

tire z sequence may be composed of different segments, each

with its characteristic noise variance. Typically, one or more

of the segments will consist of instrumental measurements,

with noise variance generally expected to be smaller than in

proxy segments.

Based on their statistical models, SUN12 developed two

test statistics for comparing climate model simulation data

with observations. First, before any attempt is made to rank

alternative model simulations, testing should be done to es-

tablish whether a statistically significant positive correlation

can be seen between a simulation series and the observations,

because otherwise there is no evidence that the simulations

and the true temperature share any effect of the forcing un-

der study.

The correlation pre-test was formulated in SUN12

(Sect. 8) in terms of a regression type statistic, denoted

R(x,z). This formulation allowed weighting of the proxy

data according to their presumed precision1 at the same time

as it allowed conditioning on the observed climate as given

and arbitrary. It is important to note, however, that high cor-

relation does not mean that the forcing (or the response to it)

is of the right size in the climate model simulation. In partic-

ular, a magnified forcing effect in x necessarily increases the

correlation, presuming that there is such a correlation.

Assuming next that a correlation has been established, a

distance between a simulation sequence and an observation

sequence is formed as a weighted mean squared distance,

D2
w:

D2
w(x,z)=

1

n

n∑
i=1

wi(xi − zi)
2.

Here, n is the number of time steps in the sequence. It was

argued in SUN12 that the weights wi should be chosen pro-

portional to the inverses of the variances of xi−zi . The arbi-

trary proportionality constant was chosen to achieve wi ≤ 1,

with equality for error-free observations of the true climate

variable τi . Through the weights wi the framework allows

and adjusts for a temporally varying statistical precision of

1A principle for the choice of weights denoted w̃ was proposed

in SUN12. However, the explicit formulas given there (Sect. 8,

p. 1348, right column, first paragraph) did not satisfy this princi-

ple, but gave smaller weights to lower precision data than intended.

The published formulas for w̃ should instead be read as formulas

for the squared weights, w̃2. In the present study, this makes almost

no difference, because the weights are taken to be constant through

time for each region, but it may have a stronger effect on data where

weights are allowed to change with time.

the proxies. A time segment with low precision will receive

a small weight wi . For more details, see Sect. 5 of SUN12.

When an ensemble of simulations driven by the same forc-

ing (but differing in their initial conditions) is available, they

should all be used in an averaging process. This can be done

in two different ways. Either a D2
w value is computed for

each simulation and the average of these values is used or,

alternatively, the averaging is made of the simulation time

sequences in the ensemble, before a D2
w value is computed

for this ensemble-mean time sequence. In SUN12, this was

referred to as averaging “outside” and “inside”, respectively,

and was discussed primarily in their Sect. 6 and Appendix A.

The theoretical discussion showed that the latter should be

somewhat more precise, but with a possible bias. The pseu-

doproxy study by Hind et al. (2012) indicated that the inside

method could be more effective, after bias correction. Later

insight has told that the weights wi used in the inside method

should rather be chosen differently such that the bias is elimi-

nated. However, the theoretical gain of the inside method ap-

pears not to be very large, and the method has given more un-

stable results (not shown) than outside averaging. Hence, we

are so far not in a position to recommend the inside method

for testing, and, in any case, it should not be used for the dif-

ferent task of ranking models. In the present study we there-

fore only use outside averaging.

For comparison of different forced models, SUN12 used

a normalized version of D2
w rather than D2

w itself. First, all

D2
w were replaced by their differences from the D2

w of an

unforced reference model (data x∗),

T (x, x∗, z)=D2
w(x, z)−D

2
w(x
∗, z). (1)

Thus, a (relatively large) negative value of T (x, x∗, z) is

needed to show that a forced model fits the observations bet-

ter than the unforced reference. The question “how large?”

is answered by scale-normalizing the T (x, x∗, z) value by

its standard error (square root of variance), calculated under

the null hypothesis:

H0: The forced climate model is equivalent to the unforced

reference model.

In Sect. 6 of SUN12, a formula is derived for the standard

error of T (x, x∗, z), depending only on the reference model

output. The corresponding test statistic, formed by dividing

T by its standard error, can be used not only for testing the

hypothesis H0 but also for regional ranking of different in-

dividual forced simulations, or more generally for ranking

different forced model ensembles when they all have equally

many members (replicates). In the even more general case of

forced model ensembles with unequally many replicates, the

test statistic will be misleading for ranking, and instead the

statistic T itself should be used for ranking.

The test statistics for correlation and distance were derived

under specific assumptions on the climate model simulations

(whereas the true climate was arbitrary). For the purpose of
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model ranking only, this need not be considered a problem,

but in their role as test statistics we want them to be robust

against imperfections in the statistical model assumptions. In

particular, we want to relax the following assumptions from

SUN12:

– assumed lack of autocorrelation in the reference model

simulations, i.e. these are statistically represented by

white noise;

– truly unforced reference model, so in particular no joint

time-varying forcing in x and x∗.

Concerning the first assumption, it is well known that in-

ternal temperature variation can show autocorrelation, be-

cause the climate system acts as an integrator of the short-

term weather variations (Hasselmann, 1976). Depending on

timescale (e.g. annual or decadal), short or long memory

dominates. Vyushin et al. (2012) found that a first-order au-

toregressive representation (AR(1)) and a power law can be

seen as lower and upper bounds for characterizing this per-

sistence. Hind et al. (2012) and Hind and Moberg (2013)

attempted to avoid this problem by using quite long time

units in their studies (30 and 20 years). This was empirically

justified, as unforced temperatures in simulations they used

were found to be compatible with white noise for these time

units in relevant spatial and seasonal domains. Nevertheless,

the knowledge that simulated unforced temperature variabil-

ity can show autocorrelation motivates an extension of the

SUN12 framework. Here we extend the theory by allowing

unforced simulated temperatures to follow a short-memory

time series model, in particular AR(1). It is shown in Ap-

pendix A how this is achieved with simple adjustment factors

for the variances of the R and T statistics, including a discus-

sion on how this is affected by the choice of time unit.

The second assumption must be relaxed in order to study

the influence of two or more forcings added sequentially to

a climate model, or to compare simulations with forcings

of a similar type to see whether one fits significantly better

than the other. Sequentially included forcings has been im-

plemented, for example, by Phipps et al. (2013), but is not

satisfied by the Jungclaus et al. (2010) set of simulations.

However, we want to use this data set to compare simula-

tions driven by low- or high-amplitude solar forcings, and we

demonstrate in Appendix B that this can be done by a signif-

icance test allowing a particular forcing to have influence on

the real climate. The method is easily described. We simply

calculate the standard error of the T statistic as if both simu-

lations were unforced. This will keep us on the safe side. The

correlation test, on the other hand, must be changed, such

that we compare the two R statistics with each other and not

with zero.

For the question how data from several regions and/or sea-

sons (represented by index j ) should be combined into a sin-

gle statistic for ranking or testing, SUN12 (Sect. 7) proposed

the use of a linear combination cjTj of the corresponding

T statistics, where the coefficients cj indicate in principle ar-

bitrary weights to be given to the regions/seasons. For rank-

ing, the quantity cjTj itself should be used (although this was

not explicitly mentioned in SUN12). For the test statistic,

however, we need the standard error of cjTj . This requires

an expression for the variance/covariance matrix of the set of

Tj statistics, based on the individual region/season standard

errors and correlations of the T statistic, Eq. (1), leading to

the final test statistic UT for each climate model under con-

sideration:

UT =

∑
j cjTj√

Var(
∑
j cjTj )

.

The denominator is the standard error of the numerator,

and the test statistic UT is approximately N(0,1)-distributed

under the null hypothesis H0 that the forcing introduced has

no systematic effect on the fit of the model for any site.

If the forcing used in a simulation experiment is realistic,

and if, additionally, its simulated climate response is realistic,

we expect to see negative observed T and UT values, but if

the simulation exaggerates the forcing effect (either because

the forcing has too large variation or because the climate

model is too sensitive to the forcing), we might see system-

atically positive values. If a forced simulation produces a re-

sult that is indistinguishable from an unforced simulation (or

a forced reference model, as in Appendix B), we would ex-

pect to see statistically insignificant T and UT values, around

zero. The correlation statistics R(x,z) can be combined in

the same way as the T statistics into an aggregated correla-

tion test value UR (see SUN12, Sect. 8).

Before the statistical framework can be applied, the time

resolution (time unit) to use for the model–data comparison

must be decided upon. For reasonably correct test p values,

it is essential to select a time unit that does not seriously vi-

olate an assumption that the simulated temperature for the

reference model is AR(1). It is also necessary to select the

size and shape of the area that a certain temperature (τ and

x) represents. If areas of very different sizes are combined in

the calculation of UR and UT , this may be a motivation to

choose correspondingly different weights cj . Different sta-

tistical precision of the proxy data series (z), however, does

not motivate choosing different weights cj , because such dif-

ferences are already accounted for by the weights w used in

D2
w and R. Data from different regions need not represent

the same season. Regions may overlap and it is even possible

to include data from different seasons for one and the same

region. Proxy series from different regions may have differ-

ent lengths. SUN12 proposed to achieve this by letting the

number of time steps, n, be the same for all regions. Regions

with shorter proxy records than the full analysis period will

thus have no terms contributing to their D2
w sums in periods

when they have no data. This would be the same as having

a proxy z with zero correlation to the true temperature τ , and

thus a weight wi = 0 before the actual proxy record starts.
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Evidently, several decisions need to be made when applying

the framework in practice. Some of these issues will be dis-

cussed in Sect. 4, while Sect. 3 explains and discusses the

choice of data sets.

3 Data

3.1 Climate model data

We follow Hind et al. (2012) and Hind and Moberg (2013)

and use the simulations by Jungclaus et al. (2010) made with

the Max Planck Institute Earth System Model (MPI-ESM)2.

This comprises an atmospheric model run at T31 (3.75◦) res-

olution and an ocean model run at a horizontal resolution

varying between 22 and 350 km. The MPI-ESM includes an

interactive carbon cycle model comprising an ocean biogeo-

chemistry model and a land surface scheme.

Jungclaus et al. (2010) performed several simulations with

forcing histories starting at 800 CE and a 3000-year-long

unforced control experiment with orbital conditions as of

800 CE and constant pre-industrial greenhouse gas levels.

Forced simulations of two kinds were made: one set with

only a single forcing (either solar, volcanic, or land cover

change) and another set with multiple forcings (combining

solar, volcanic and land cover with orbital and greenhouse

gas forcing as well as with non-volcanic aerosols). Two alter-

native solar forcing histories were used: the small-amplitude

one by Krivova et al. (2007) with a 0.1 % change in to-

tal solar irradiance between the Maunder Minimum and the

present, and the large-amplitude one by Bard et al. (2000)

with a 0.25 % change. These two solar forcing series are,

however, not simply two versions of the same basic time

series with a different scaling. The multiple-forcing simu-

lations are available as two small ensembles, where individ-

ual members start from different ocean initial conditions at

800 CE. The “E1” ensemble, using the small-amplitude solar

forcing, has five members, while the “E2” ensemble, using

the large-amplitude solar forcing, has three members. For

simplicity, we will often denote these two multiple-forced

ensembles the “low” and “high” solar ensembles in the rest

of this paper. Like Hind et al. (2012) and Hind and Moberg

(2013), we use forced simulations (x) from year 1000 CE on-

wards and split the control simulation into three 1000-year-

long segments to obtain a small ensemble of unforced simu-

lations (x∗) of the same length. We refer to Figs. 1 and 2 in

Hind et al. (2012) for time series plots of all forcings and of

simulated global mean land-only temperatures for the vari-

ous simulations by Jungclaus et al. (2010).

2http://www.ncdc.noaa.gov//paleo/metadata/

noaa-model-10477.html

3.2 Instrumental data

Instrumental temperature data are needed for two purposes.

First, SUN12 argued for using best possible data to maxi-

mize the statistical precision of the model–data comparison.

Thus, in most cases, instrumental data should be used rather

than proxy data within time periods when both exist. Sec-

ond, instrumental data are needed to calibrate the proxy data.

There are, however, several alternative temperature data sets

to choose between (e.g. Brohan et al., 2006; Smith et al.,

2008; Hansen et al., 2010; Morice et al., 2012).

Hind and Moberg (2013) used the CRUTEM3 land-only

data set by Brohan et al. (2006), which has a 5◦ resolu-

tion going back to 1850. This data set is provided with es-

timates of the error term (due to various types of station er-

rors, spatial sampling errors and systematic bias errors) in

grid-box or larger-scale mean temperatures. However, Hind

and Moberg (2013) could only incorporate these estimates in

the SUN12 framework with assistance from the main author

of Brohan et al. (2006), as error terms were not published for

arbitrary regions and seasons. The updated land-plus-marine

data set HadCRUT4 (Morice et al., 2012) is provided with

more comprehensive quantitative information about various

types of errors, partly dealt with by presenting grid-point

temperatures as 100 slightly different ensemble members.

This should make it possible to estimate relevant noise terms,

although at the expense of extra programming. We have not

tried this option here.

For the current study, we instead selected the GISS1200

gridded global temperature data set (Hansen et al., 2010),

which goes back to 1880. This data set uses a rather large

search radius (1200 km) for averaging data from temper-

ature stations in the calculation of each grid-point value.

Therefore, GISS1200 data are spatially and temporally rather

complete in remote areas such as the North American and

Eurasian subarctic regions, where several tree-ring chronolo-

gies are located but where few temperature stations – of-

ten with rather short records – are found. Despite its coarse

spatial smoothing, GISS1200 is published at a rather fine

grid (2◦). This gives some flexibility when defining regions

for temperature averages against which the tree-ring records

are calibrated. Because the model and instrumental grids are

different, we re-gridded the model grid to the same as for

GISS1200 using bilinear interpolation to enable comparison

of analogous regions. A drawback with using GISS1200 is

that explicit information about the instrumental error term is

not available. We have therefore simply subjectively assumed

that the noise term always accounts for 5 % of the total vari-

ance in instrumental temperature data, regardless of season

and size of region. This is a limitation, but we checked the

sensitivity of our results to the instrumental noise assump-

tion by trying also 0, 10 and 20 %. This had only a marginal

effect (not shown) and did not affect any conclusions.
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3.3 Tree-ring data

Tree-ring data are available from many parts of the globe.

They can be sensitive to climate in different seasons but al-

ways have annual resolution and often explain a substan-

tial fraction of observed temperature or precipitation varia-

tions (Fritts, 1976; Hughes, 2002; Briffa et al., 2004; Hughes

et al., 2011; St. George and Ault, 2014). Tree-ring data, from

either ring width (TRW) or maximum density (MXD), are

also the most extensively used proxies in temperature recon-

structions for the last millennium (Jones et al., 2009). Here,

we select 15 tree-ring records that start before 1500 CE and

which have been demonstrated to show a signal of tempera-

ture variability for a certain seasonal window. Four records

are from North America, five from Europe, four from Asia

and two from Oceania. Nine records start before 1000 CE

(i.e. they extend back to the start of our analysis period). Ta-

ble 1 lists all records with their short names used here, data

type (TRW or MXD), seasonal targets, first year used in anal-

ysis and references to literature that describes the records.

Table 2 provides web links to data source files. One of the 15

records (from Cook et al., 2013) is a reconstruction of large-

scale temperatures derived from trees growing at a range of

sites across eastern Asia, but the other 14 records are de-

rived from trees growing at either single locations or rather

small regions. We regard our selection as sufficiently com-

plete for the purpose of this study, although there are, ad-

mittedly, other records that could potentially have also been

included. It is not a problem that the Southern Hemisphere

and Northern Hemisphere seasons are offset by half a year,

because each site contributes its own R and T value to the

U statistics (see Sect. 2).

Twelve of the 15 tree-ring records have been developed

using the regional curve standardization (RCS) technique

(cf. Briffa et al., 1992), which can preserve variations on

timescales longer than the life length of individual trees. This

is essential here, as we are interested in studying long-term

temperature variations, in particular to distinguish between

small- and large-amplitude solar forcing simulations. “Indi-

vidual standardization” (IND) will inevitably inhibit varia-

tions on longer timescales, as has been frequently discussed

as the “segment length curse” problem in dendroclimatology

(e.g. Cook et al., 1995). In fact, all standardization meth-

ods, whether applied as IND or RCS, will effectively remove

a portion of the climate signal from the raw tree-ring data.

Melvin and Briffa (2008) introduced a method that allows

the simultaneous estimation of the tree-ring standardization

curves and the common environmental signal that is embed-

ded in the same tree-ring records within a region. This so-

called “signal-free” (SF) iterative standardization method re-

moves the influence of the common environmental (assumed

climate) signal on the standardization curve, which reduces

the trend distortion that can occur near the ends of a tradi-

tionally standardized chronology. The method can be applied

on both IND and RCS standardization (Melvin and Briffa,

2014), but very few records have been created with this rather

new technique. Three records in our collection were devel-

oped using SF in combination with RCS.

One additional comment should be made in context of the

SUN12 framework. The number of trees used in a tree-ring

chronology will most often vary through time; typically there

are fewer trees in the earliest part of a chronology, but the

sample size can vary very irregularly with time. These vari-

ations in sample size are known to cause temporal variations

in the variance of a chronology. Osborn et al. (1997) pro-

posed to adjust the chronology variance such that it is ap-

proximately the same at each time point as if, hypothetically,

an infinite number of trees from within the actual region

had been used. This type of variance adjustment is nowa-

days a standard procedure in dendroclimatology, and several

records in our selection are processed this way. A somewhat

similar variance adjustment is sometimes also applied to ac-

count for a varying number of chronologies used to build

a composite temperature reconstruction, as, for example, in

the records of Wilson et al. (2007) and Cook et al. (2013)

used here. It may be that these variance adjustments induce

a violation to a crucial assumption in the SUN12 framework,

namely that a proxy sequence z should be calibrated such that

the true temperature component τ always has its correct vari-

ance, with the noise term ε superimposed. Undoing these ad-

justments is generally not possible without information that

is only available to the original investigator, and it is beyond

the scope of this study to attempt doing this. We merely point

out this issue as a potential problem and simply regard pub-

lished chronologies or temperature reconstructions as uncal-

ibrated proxy sequences, which can be re-calibrated back to

the start of the analysis period by using the statistical rela-

tionship to selected instrumental temperature data in a cho-

sen calibration period.

4 Practical considerations

4.1 Selecting seasons

The first decision is to select the season that each proxy

record will represent in the model–data comparison. As each

original author team has generally spent considerable efforts

on determining the most appropriate season for each record –

and as the SUN12 framework admits using all possible com-

binations of seasons – it seems most natural to follow the

respective original judgements (see Table 1).

4.2 Choosing calibration periods

A time period (or time periods) is required for calibration

of tree-ring data and, as we argue below (Sect. 4.3), for

analysing the spatial pattern of correlations between tree-ring

data and the instrumental temperature field. Our general rec-

ommendation is to use the longest meaningful calibration pe-

riod for each record, and avoid using calibration data that are
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Table 1. Tree-ring temperature reconstructions used in this study, with seasonal representation as determined by the respective investigators.

TRW – tree-ring width; MXD – maximum density; IND – individual standardization; RCS – regional curve standardization; SF – signal-free

standardization. Short names and start year used in this study are also given.

Name Abbr. Proxy Stand. Season Start Reference

Gulf of Alaska GOA TRW IND Jan–Sep 1000 Wilson et al. (2007)

Firth River FIRTH MXD RCS+SF Jul–Aug 1073 Anchukaitis et al. (2013)

Coppermine/Thelona CT MXD IND May–Aug 1492 D’Arrigo et al. (2009)

Canadian Rockies CANR MXD RCS May–Aug 1000 Luckman and Wilson (2005)

Torneträsk TORN MXD RCS+SF May–Aug 1000 Melvin et al. (2013)

Jämtland JAMT MXD RCS Apr–Sep 1107 Gunnarson et al. (2011)

Tatra TATRA TRW RCS May–Jun 1040 Büntgen et al. (2013)

Alps ALPS MXD RCS Jun–Sep 1000 Büntgen et al. (2006)

Pyrenees PYR MXD RCS May–Sep 1260 Dorado Liñán et al. (2012)

Yamalia Combined YAMC MXD+TRW RCS+SF Jun–Jul 1000 Briffa et al. (2013)

Avam-Taimyr AVAMT TRW RCS Jul 1000 Briffa et al. (2008)

Yakutiab YAK TRW RCS Jun–Jul 1342 D’Arrigo et al. (2006)

East Asiac ASIA2k TRW other Jun–Aug 1000 Cook et al. (2013)

Tasmania TASM TRW RCS Nov–Apr 1000 Cook et al. (2000)

New Zealand NZ TRW RCS Jan–Mar 1000 Cook et al. (2002, 2006)

a Arithmetic average of normalized Coppermine and Thelon data.
b Seasonal representation as in Wilson (2004).
c Detailed information on standardization is not provided in Cook et al. (2013) but included a partial use of SF.

Table 2. Data sources for the tree-ring records.

Record Source

GOA ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/gulf_of_alaska/goa2007temp.txt

FIRTH ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/northamerica/usa/alaska/firth2013temperature.txt

CT ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/northamerica/usa/alaska/firth2013temperature.txt

CANR ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/canada/icefields-summer-maxt.txt

TORN http://www.cru.uea.ac.uk/cru/papers/melvin2012holocene/TornFigs.zip

JAMT ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/europe/sweden/gunnarson2011temp.txt

TATRA ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/europe/tatra2013temp.txt

ALPS ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/europe/buentgen2011europe.txt

PYR ftp://ftp.ncdc.noaa.gov/pub/data/paleo/pages2k/DatabaseS1-All-proxy-records.xlsx

YAMC ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/asia/russia/yamalia2013temp1000yr.txt

AVAMT http://www.cru.uea.ac.uk/cru/papers/briffa2008philtrans/Column.prn

YAK ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/n_hem_temp/nhtemp-darrigo2006.txt

ASIA2k ftp://ftp.ncdc.noaa.gov/pub/data/paleo/pages2k/DatabaseS2-Regional-Temperature-Reconstructions.xlsx

TASM ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/tasmania/tasmania_recon.txt

NZ ftp://ftp.ncdc.noaa.gov/pub/data/paleo/pages2k/DatabaseS1-All-proxy-records.xlsx

known to be unrepresentative. For the current study, however,

we take a simple pragmatic approach and use the same cal-

ibration periods as were used by each original investigator

(see Table 3).

4.3 Defining regions

Defining the region that each tree-ring series will represent is

a more challenging task. SUN12 stated (in their Sect. 2) that

“typically, this region consists of a single grid box, but aver-

ages over several grid boxes can also be considered”. A sin-

gle grid-box temperature may perhaps maximize the statis-

tical precision for calibration of a single tree-ring chronol-

ogy, but climate model errors are typically largest at the grid-

box scale and decrease with increasing spatial smoothing. It

has therefore been recommended that some spatial averaging

is applied when climate models are evaluated (Masson and

Knutti, 2011). Also, one of our tree-ring records (ASIA2k) is

derived from trees that grew in an area that extends over sev-

eral grid boxes. Moreover, unforced temperature variability

will have a larger influence in a single grid box as compared

to an average of several grid boxes, where the forced part of

the temperature variation will be more easily detected (e.g.

Servonnat et al., 2010). Thus, as we are here primarily inter-
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Table 3. Selected information for each region: latitude/longitude boundaries, proxy data calibration period, and correlation r with instru-

mental target, area weight cj , and cluster weight cj . The area weights are defined as the fraction of the global area. The cluster weights are

explained in the text.

Name Lat. Long. Cal. period r Area cj Cluster cj

GOA 59–63◦ N 135–161◦W 1899–1985 0.55 0.12 1/4

FIRTH 67–71◦ N 125–149◦W 1897–2002 0.63 0.08 1/4

CT 61–71◦ N 93–121◦W 1950–1979 0.75 0.28 1/4

CANR 47–59◦ N 109–125◦W 1895–1994 0.62 0.28 1/4

TORN 63–71◦ N 11–25◦ E 1880–2006 0.78 0.11 1/2

JAMTa 59–67◦ N 7–27◦ E 1880–2007 0.75 0.18 1/2

TATRA 45–53◦ N 13–29◦ E 1901–2009 0.42 0.20 1/3

ALPS 45–47◦ N 3◦W–11◦ E 1911–2003 0.72 0.03 1/3

PYR 39–45◦ N 7◦W–5◦ E 1900–2005 0.64 0.13 1/3

YAMC 61–75◦ N 53–81◦ E 1883–2005 0.79 0.36 1/2

AVAMT 65–75◦ N 81–107◦ E 1950–1994 0.66 0.22 1/2

YAKb 65–73◦ N 137–161◦ E 1951–1980 0.70 0.17 1

ASIA2k 37–55◦ N 73–143◦ E 1951–1989 0.59 2.11 1

TASM 39–49◦ S 127–159◦ E 1886–1991 0.52 0.56 1/2

NZ 39–47◦ S 163–177◦ E 1894–1957 0.45 0.20 1/2

a Gunnarson et al. (2011) used 1870–2007, but GISS1200 starts in 1880.
b Calibration period as in Wilson (2004).

ested in seeing how well the model simulates the externally

forced temperature variation, it appears recommendable to

select an area that is large enough to detect the forced sim-

ulated temperature response but small enough that the ac-

tual proxy record provides a meaningful approximation of

the true temperature variability.

Although we cannot give any precise recommendation on

how to determine the optimal spatial domain that a proxy

record should represent, we assume that there is also a sim-

ilar need in data assimilation and detection and attribution

studies. This appears to be an issue where more research is

needed. At this stage, we can at least suggest a practically af-

fordable way to semi-subjectively define a reasonable region

for each tree-ring record. To this end, we plot and visually in-

terpret the spatial field of correlations between each tree-ring

record and the appropriate seasonal mean temperatures in

GISS1200 data (Fig. 1). This correlation analysis is made us-

ing first-differenced data to minimize possibly spurious cor-

relations due to both linear and nonlinear trends that do not

reflect a direct physiological association between the tem-

peratures in each growth season and the tree-ring data. This

idea is similar to that adopted by Cook et al. (2013) in their

screening to determine which individual tree-ring chronolo-

gies were positively correlated with grid-point temperatures,

although they fitted an AR(1) model and removed this com-

ponent from the data before calculating correlations. More

generally, an often used class of models with nonstationarity

is the ARIMA class of models, and for such models linear

trend and nonstationarity are simultaneously eliminated by

first forming a new series of first (or higher order) differ-

ences (Box et al., 2007, Ch. 4). In fact, Fritts (1976, p. 329)

already proposed to use first differences in tree-ring research

to study (by means of a sign test) whether or not sufficient

similarity exists between actual and estimated climate data.

We also experimented with a linear detrending of the data

before performing the correlation analysis, but we found that

the form and size of the regions where correlations are strong

in this case does not depend crucially on the choice of first

differences versus linear detrending method.

The spatial correlation analysis was undertaken for cal-

ibration periods chosen above. Each map was then visu-

ally inspected to determine an appropriate region. We did

not attempt to define any objective criterion, but we com-

bined information about (i) where correlations are strongest,

(ii) where chronologies are located and (iii) information from

the literature regarding which regions the data represent. For

example, the TASM area is allowed to extend over much of

the ocean surrounding Tasmania, because Cook et al. (2000)

suggested their record as a proxy for large-scale sea surface

temperature anomalies. As another example, we followed the

observation by Cook et al. (2013) that the ASIA2k record

best represents regional temperatures north of 36◦ N. An ad-

ditional constraint was the spatial resolution of the instru-

mental temperature grid (2◦) and an account for the land/sea

mask in the climate model and how this relates to the real

land/sea borders. We did not attempt to merge all these pieces

of information objectively, but our approach is merely an

“expert judgement”. The resulting regional representation for

each tree-ring record is illustrated in Fig. 2 and the regional

latitude/longitude boundaries as well as corresponding frac-

tions of the global area are provided in Table 3. Together,

the 15 regions represent 5 % of the global area but their sizes

differ remarkably. The largest region (ASIA2k) is 70 times
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larger than the smallest (ALPS) and alone comprises more

than 40 % of the total area of all regions put together.

4.4 Selecting weights cj

The vastly different sizes of regions, as well as their un-

even geographical distribution and different seasonal repre-

sentation, motivates some suitable weights cj (explained in

Sect. 2) being chosen. The simplest choice is to let all cj be

equal, i.e. to regard all selected proxy records as equally im-

portant. Another intuitive choice is to use the area of each

region as weight. A third alternative is to choose weights ac-

cording to how much “new” or “additional” climate infor-

mation each region contributes in comparison with the other

regions. A fourth alternative could be to weight the regions

by how easy it is to detect the externally forced variability.

This alternative could be similar to optimization in detection

and attribution studies (see e.g. Allen and Tett, 1999). Here,

we try the first three alternatives and compare the results to

see how sensitive UR and UT measures are to the choice

of weights cj . Moreover, we study the effect of excluding

the three tree-ring records that were not RCS-standardized

(GOA, CT, ASIA2k) and weight the remaining 12 regions

equally.

The equal and area weights are straightforward. The lat-

ter are provided in Table 3. Note that the sum of cj need not

be 1. For the third alternative, we try a cluster analysis ap-

proach. This, however, requires some subjective decisions:

one needs to choose a distance metric, a linkage method

and also decide how many clusters to use. One also needs

to decide which data to analyse. The full 3000-year control

simulation is an adequate choice that provides a large sam-

ple representing unforced (internal) simulated climate vari-

ability. The quantity 1− r , where r is the sample correla-

tion between regions, appears intuitively meaningful as a dis-

tance metric. Fig. 3 shows the result of a cluster analysis us-

ing nearest-neighbour linkage (Matlab, 2008). By choosing

seven clusters, we obtain a geographically and climatologi-

cally meaningful grouping of regions: northern Scandinavia

(JAMT, TORN), continental Europe (PYR, ALPS, TATRA),

eastern Asia (ASIA2k), Oceania (TASM, NZ), northwest-

ern Siberia (AVAMT, YAMC), northwestern North America

(GOA, FIRTH, CT, CANR) and northeastern Siberia (YAK).

We set the weights cj such that each cluster contributes one-

seventh to the total. Within each cluster, the contributing re-

gions are equally weighted. This gives cluster-based weights

as listed in Table 3.

4.5 Calibration of the tree-ring records

The tree-ring data need to be re-calibrated to appropriate re-

gional and seasonal mean temperatures. Thus, the GISS1200

seasonal mean temperatures are averaged within each region

and calibration is made for the chosen calibration periods,

following procedures explained in Sect. 4 of SUN12 under

the assumption that instrumental noise variance accounts for

5 % of the total observed temperature variance in each region

(see Sect. 3.2). Moreover, as explained in Sect. 3.3, we as-

sume that the statistical precision of each tree-ring record in

the calibration period is also representative back to the start

of the record. Table 3 lists correlations between each tree-

ring record and the corresponding instrumental temperature

record, ranging from 0.42 to 0.79. These correlations pro-

vide the information on the statistical precision of proxies

that is used when calculating weights w. For each region, the

calibrated tree-ring data sequence is then taken as the z se-

quence to compare with the corresponding model sequence

x. The variance contribution from the calibration uncertainty

has not been considered in our analysis.

4.6 Selecting analysis period

Another decision concerns the time window for which UR
and UT measures are computed. With our choice of data, the

longest possible window would be 1000–2000 CE, which in-

cludes both pre-industrial conditions and the increasingly an-

thropogenically influenced industrial period. Our focus, how-

ever, is on natural forcings, which motivates exclusion of

the industrial period. We choose to analyse the period 1000–

1849 CE to make it possible to directly compare our results

with those from Hind and Moberg (2013). Thus, z sequences

in our model–data comparison do not include any instrumen-

tal data. If we had chosen to include data after 1880, we

would have used GISS data after 1880 and re-calibrated tree-

ring data before 1880 (see Sect. 2).

4.7 Selecting time unit

Finally, a time unit must be selected, i.e. the length of time

periods over which we average temperatures to obtain the

pairs of simulation (xi) and observation (zi) values to be

compared. It should be noted, though, that the precise choice

of time unit is not crucial. Empirically, this can be seen in

Fig. 6. We must compromise between arguments for longer

and shorter units of time, a matter regarded as a question of

principle. Arguments for long units are a reduced autocor-

relation in the reference simulation and a partial efficiency

gain, provided there is little variation in the externally forced

temperature component of x or z and in the weight w within

units. Arguments for short units are the anticipated within-

unit variation in the forced component and (sometimes) in

w, together with the need to estimate sample variances (see

Sect. 5 in SUN12). The latter can be problematic, in partic-

ular, because the length of the available instrumental record

poses an upper limit on the length of time units that can be

used. For example, with 120 years of instrumental observa-

tions, only four samples would be present for estimation of

the instrumental temperature variance if the chosen time unit

were 30 years. We have aimed to make time units short while

controlling the autocorrelation.
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Figure 1. Correlation between each tree-ring chronology and the GISS1200 instrumental temperature field, based on first-differenced data for

seasonal averages and time periods as used for calibration by each original investigator (see Tables 1 and 3). Colours are muted where correla-

tions are not significant at the 5 % level. Analysis made on the KNMI Climate Explorer (http://climexp.knmi.nl, Trouet and van Oldenborgh,

2013).

The shortest possible time unit is dictated by the resolu-

tion of tree-ring data, which is 1 year. Thus, letting the time

unit be 1 year would maximize the sample size. Therefore,

we have always used the 1-year unit for calibration of the

tree-ring records (in Sect. 4.5). However, before calculating

UR and UT statistics, we need to check that the choice of

time unit there will not seriously violate the assumption that

unforced temperature variability can be approximated by an

AR(1) process (see Appendix A).

To determine this, we analyse the autocorrelation in the

3000-year control simulation in two ways for each region.

First, the lag-1 autocorrelation is computed for all time units

from 1 to 30. Then, for a few selected time units (1, 3, 5, 8,

12 years), the autocorrelation function is estimated for lags

up to 30. Figure 4 suggests that the lag-1 autocorrelation is in

agreement with white noise except in some regions at short

time units. Further, Fig. 5 (top) reveals that an AR(1) pro-

cess is not sufficient at the 1-year unit within four regions

(GOA, ASIA2k, TASM, NZ), which show a clear oscillatory

behaviour with a period of about 3–4 years. As these four re-

gions are located near the Pacific Ocean, a reasonable guess

is that the model’s El Niño–Southern Oscillation could be

the cause. For the other four selected time units (Fig. 5, mid-

dle and bottom), we find support for either a white noise or

an AR(1) assumption. Thus, for this study, we choose time

units of 3, 5, 8 and 12 years to compute UR and UT statistics

and compare the results. We use the AR(1) adjustment from

Appendix A whenever the estimated lag-1 autocorrelation

is positive. Although negative lag-1 autocorrelations may be

physically meaningful in some cases (see e.g. Vyushin et al.,

Clim. Past, 11, 425–448, 2015 www.clim-past.net/11/425/2015/
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Figure 2. Location of regions that the 15 tree-ring records represent,

plotted on the land/sea mask of the MPI-ESM model. Regions’ short

names are explained in Table 1.
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Figure 3. Hierarchical cluster tree based on nearest-neighbour link-

age with (1− r) as distance metric, where r is the sample correla-

tion. Data from the 3000-year-long unforced control simulation, for

seasons as specified in Table 1, are used for the cluster analysis.

2012), we assume white noise is reasonable whenever esti-

mated values are negative. Hence, we are on the safe side

since negative lag-1 correlation is associated with a reduced

standard deviation of the T statistics. Moreover, when com-

paring two forced simulations directly, as in Appendix B, we

also need to check that the forced simulated temperatures do

not violate the AR(1) assumption. Thus, as we use this new

approach to compare the low and high solar ensembles (E1

and E2 simulations), we also made the same checks for those

data (results are not shown). As expected, we found evidence

for stronger lag-1 autocorrelation than in the unforced con-

trol simulation, but an AR(1) assumption is valid in the large

majority of cases. A few regions in the E2 (high solar) simu-

lations showed more persistence than expected from AR(1),

but this does not affect our results since only E1 (low so-

lar) data are used to estimate the autocorrelation (see Ap-

pendix B4).

5 Results and conclusions from calculation of UR and

UT statistics

Figure 6 shows calculated UR and UT statistics for individ-

ual regions and when all regions are combined in different

ways, for the four selected time units. Notably, none of the

single-forcing simulations robustly show UR values above

the 5 % significance threshold. Only the volcanic simulation

shows some (barely) significant UR values for the combined

regions, but only for one or two time units. Regionally com-

binedUR values for each individual simulation in the E1 (low

solar) multiple-forcing ensemble are often, but not always,

above the 5 % significance threshold. The corresponding val-

ues for the E2 (high solar) ensemble are higher and always

above the significance threshold. Regionally combined UR
values for the ensemble averages are significant for both the

low and high solar ensembles (E1 and E2). This holds for

all four regional weightings – with p values actually much

smaller than 0.05.

These results provide some general information. First,

they illustrate how the combination of several forcings con-

tributes to give significant correlations with the observed

temperature variation, despite the often non-significant re-

sults for the individual forcings alone. Note, however, that

also greenhouse-gas and orbital forcings are included in the

E1 and E2 simulations, although no single-forcing simula-

tions are available with these two forcings. Therefore, we

cannot judge how much the latter contribute to the significant

test values. Second, the variation among UR values between

individual members in the E1 and E2 ensembles illustrates

the degree of randomness that is due solely to different initial

conditions among the simulation ensemble members. This is

essential to bear in mind when considering results where no

such ensemble is available, such as for the solar and volcanic

single-forcing simulations used here. Third, the results show

that the forced component in simulated temperatures stands

out more clearly in an ensemble average than in a single sim-

ulation. This holds for both E1 and E2, but the effect should

be strongest for the larger E1 ensemble size.

We can conclude that both multiple-forced ensembles ex-

plain a statistically highly significant proportion of the tem-

poral variation seen in tree-ring data. Thus, it is a meaningful

exercise to see whether they also fit the observations better

than unforced simulations. Figure 7 is an attempt to graphi-

cally illustrate how well the low and high solar ensemble (E1

and E2) simulation time series match the tree-ring-based ob-

servations and how they compare with the unforced control

simulation. Although UR and UT values are calculated sep-

arately for each region, the figure for simplicity shows data

averaged over all regions (and only for the 12-year unit). By
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Figure 4. Estimated lag-1 autocorrelation for time units from 1 to 30 years in the 3000-year-long unforced control simulation. Two-sided

5 % significance levels for a white noise process are shown with dashed lines. Data for each region, identified by the colour legend to the

right, are for the season as specified in Table 1.

eye, one can see a correlation between proxy data and both

types of multiple-forced simulations, but it is not easy to see

whether these forced simulations are significantly closer to

the observed temperature variations than the control simu-

lations. This, however, is precisely what the UT statistic can

tell. It turns out that the ensembleUT values for the combined

regions are negative for both the low (E1) and high (E2) solar

ensembles (i.e. they are plotted above the zero line in Fig. 6),

although this does not hold for some individual simulations

within the ensembles. Thus, when the entire multiple-forced

ensembles are considered, both of them show smaller calcu-

latedD2
w distances to the tree-ring-based observations than if

unforced simulations are used. However, ensemble UT val-

ues are not always significant at the 5 % level – but they are

significant for some time units, or regional weightings, for

both high and low solar ensembles. Because the two ensem-

bles have different size, their UT statistics calculated in this

way should not be compared to judge whether one of them

fits the observations better than the other. But this can instead

be tested by using the relaxed assumption in Appendix B,

which permits the computation of UT to test directly whether

one of the two simulation ensembles is significantly closer to

the proxy data than the other.

Figure 8 shows these UT values for all four time units.

Negative values (upwards) indicate where the high solar (E2)

ensemble is closer to the observed temperatures, whereas

positive values (downwards) indicate where the low solar

(E1) ensemble is closer. The UT values obtained when re-

gional information is combined are always insignificant. In

most cases, the individual regional UT values are also not

statistically significant, but some significant values of both

negative and positive sign are found.

Clearly, neither of the E1 (low) and E2 (high) solar ensem-

bles is significantly closer to the observed temperature varia-

tions than the other. Moreover, results vary between regions.

As concerns the effect of including or excluding the three

tree-ring records where RCS was not used, the regionally

weighted results change very little. However, it may be noted

that the non-RCS GOA record provides significant positive

UT values in three of the four cases illustrated in Fig. 8,

whereas the relatively nearby non-RCS CT record always

provides negativeUT values, of which one is significant. This

further underscores the large variation of results among the

regional data series.

6 Final discussion and conclusions

Practical application of the SUN12 framework (Sundberg

et al., 2012) and certainly also other methods for palaeocli-

mate model–data comparison, e.g. in data assimilation or de-

tection and attribution studies, involve several decisions to

be made by the investigator. A possible solution to handle

this situation is to make a few alternative decisions and study

how sensitive the results are. This approach is relevant in the

current study, which is mainly methodological in nature. We

studied the effect particularly related to two decisions: the

choice of weighting information from different regions and

the choice of time unit (time resolution). The latter was fa-

cilitated by an improvement in the framework to allow un-
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Figure 5. Estimated autocorrelation function for lags up to 30 in the 3000-year-long unforced control simulation, for time units of 1, 3, 5, 8

and 12 years. Two-sided 5 % significance levels for a white noise process are shown with dashed lines. Data for each region, identified by

the colour legend to the right in Fig. 4, are for the season as specified in Table 1.

forced simulated temperatures to follow an AR(1) process

rather than just white noise as in SUN12. This made it possi-

ble to choose time units down to 3 years, which is consider-

ably shorter than the 20 or 30 years used in earlier studies by

Hind and Moberg (2013) and Hind et al. (2012). Although an

AR(1) assumption was empirically found valid for climate

model data at time units used here, it could be motivated

with further development of the framework to also account

for the possibility that simulated climate shows stronger per-

sistence, such as a power law, as has been found by, for ex-

ample, Vyushin et al. (2012).
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Figure 6.UR andUT statistics from comparisons between simulated temperatures and tree-ring-based temperature observations in the period

1000–1849 CE, for time units of 3, 5, 8 and 12 years. Results are shown for single-forcing simulations (land use, low-amplitude solar, high-

amplitude solar, volcanic), each individual simulation in the E1 and E2 multiple-forcing ensembles (including low and high solar forcing,

respectively), and for the whole E1 and E2 ensembles. UR and UT values for each region are denoted with site short names. Results where

all sites are combined are shown with symbols to distinguish between different cj weightings (© equal, 3 area, + cluster, × equal without

non-RCS series). Solid lines show 5 % significance levels. Note the reversed vertical axis in the UT graphs.

In this study, we used an ensemble of climate model sim-

ulations run with forcing conditions for the last millennium

(Jungclaus et al., 2010), which we compared with a set of

15 tree-ring-based temperature proxy data series represent-

ing regions of different size, different seasonal mean tem-

peratures and with different lengths and statistical precision.

Our results showed that, among the single-forcing simula-

tions (land use, small-amplitude solar, large-amplitude solar,

volcanic), only the one with volcanic forcing could, with sta-

tistical significance, explain any of the observed variations in

the pre-industrial period 1000–1849 CE – but only for one or

two of four time units tried, depending on which regional

weighting was used. Preferably, ensembles of simulations

with single forcings would be needed to study whether this

result is robust to randomness associated with simulated in-

ternal (unforced) variability. Nevertheless, we note that this

finding – that only the effect of volcanic forcing, but not so-

lar forcing, could be significantly detectable in proxy data –

is in agreement with results from detection and attribution

studies both at a hemispheric scale (Hegerl et al., 2007) and

a European scale (Hegerl et al., 2011). A more recent detec-

tion and attribution study (Schurer et al., 2014) confirms that

volcanic (and also greenhouse gas) forcing seems to have an

important influence on temperature variability in the period

1000–1900 CE, while the contribution from solar forcing was

found to be modest.

When all forcings were combined (land use, small-

amplitude or large-amplitude solar, volcanic, orbital,

greenhouse-gas) and also used in small simulation ensem-

bles, the simulations were, however, highly able to capture

some of the observed temperatures as recorded in tree-ring

data. The reasons behind the significant test values are partly

due to the combination of the effect from several forcings and

partly because the response to forcings is expected to stand

out more clearly in an ensemble average than in a single sim-

ulation, as has been demonstrated previously in pseudoproxy

experiments (Hind et al., 2012) and here using tree-ring tem-

perature proxy data. Both multiple-forced simulation ensem-
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Figure 7. Time series illustration of data used for the UR and UT
analysis at the 12-year time unit. Green curves show the arithmetic

average of all calibrated proxy series (z series). Blue and red curves

show the corresponding values for simulated multiple-forced tem-

peratures (x series), averaged over the low solar (E1, blue) and

high solar (E2, red) ensemble members. Light-blue and light-red

bands show the range between the highest and lowest regionally

averaged simulated temperatures within the E1 and E2 ensembles.

Grey bands show the corresponding range for the control simula-

tion ensemble. Temperatures are shown as anomalies with respect

to long-term averages, as used for the UR and UT calculations. The

bottom graph shows how the number of regions change with time.

bles are closer to the tree-ring-based observations than if un-

forced control simulations are used, implying that the tem-

perature response to the combination of forcings is realistic.

However, results at the individual regional level differ greatly

and significance is not reached for all time units and choices

of weights when regions are weighted together. A conclusion

here is that an average of many sites is needed, or the sepa-

rate sites/records need to be more clearly classified as less or

more reliable and representative than others.

Another improvement to the SUN12 framework made it

possible to test directly whether one of the two multiple-

forced simulation ensembles (i.e. including either small- or

large-amplitude solar forcing) is closer to the observed tem-

perature variations than the other. However, results were

highly variable at the regional level, which made it impossi-

ble to judge whether any simulation ensemble is more realis-

tic than the other. Thus, this new analysis based only on tree-

ring data from several regions did not show any clearer re-

sults than a previous northern hemispheric-scale study based

on several compilations of different proxy data (Hind and

Moberg, 2013)3. This inconclusiveness is perhaps not sur-

prising given that differences between simulations with fre-

quently used weaker or stronger solar forcing are rather small

(Masson-Delmotte et al., 2013).

Although the weaker solar forcing is more in line with

most recent viewpoints (Masson-Delmotte et al., 2013;

Schurer et al., 2014), it is still possible that none of the two

alternative solar forcings used here is correct and that the

truth is somewhere in between. An extension of the frame-

work to allow estimation of how well the amplitude of a true

external forcing is represented in a simulation could perhaps

help to provide a more informative answer. As already ar-

gued in SUN12 (Sect. 9), such an extension would also bring

their framework closer to that used in detection and attribu-

tion studies (e.g. Hegerl et al., 2007; Schurer et al., 2013,

2014).

One may ask as to what extent the choice of using only

tree-ring data has influenced the results. For example, their

inability to correctly capture the long-term trend on millen-

nial scales has been discussed by Esper et al. (2012). Such

a long-term temperature trend is expected to result from the

slowly changing orbital climate forcing, which is large in ex-

tratropical regions within the growing season (see e.g. Phipps

et al., 2013). This problem should be most prominent in

records where RCS standardization was not used. Omitting

the three non-RCS records in our collection, however, did

not change the main result. Instead we noted that the indi-

vidual non-RCS records could give opposite results regard-

ing the question of whether the low or high solar ensemble

is closer to the observations. This further accentuates that

many proxy sites are needed in order to obtain robust results.

We have also argued that variance stabilization procedures

(Osborn et al., 1997) applied to many tree-ring chronologies

are in conflict with assumptions in the SUN12 framework.

This may affect results, presumably making statistical test

values too high. Another potential problem is the observed

spectral biases in many tree-ring records (they are often too

“red”; Franke et al., 2013). This does not affect the validity

of the tests, but will affect their power. It remains to analyse

how these and other problems, e.g. regarding the different na-

ture of response in TRW and MXD data to volcanic forcing

(D’Arrigo et al., 2013; Esper et al., 2013; Jones et al., 2013),

affect results from model vs. tree-ring data comparisons.

Deficiencies in the climate model may also influence the

results. The model used in this study is a low top model

(Charlton-Perez et al., 2013) without interactive ozone and

with the solar variation implemented only by modulating

3Hind and Moberg (2013) used the inside averaging method,

which we do not use in the present study. Therefore, we have now

repeated their experiment but using instead the outside averaging

method. None of their main conclusions are affected by this change.
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Figure 8. UT statistics comparing the multiple-forcing simulation ensembles with low and high solar forcing amplitude. Negative values

(upwards) indicate where the high solar (E2) ensemble is closer than the low solar (E1) ensemble to the tree-ring-based observations.

Symbols show results where all regions are combined with different cj weightings (© equal, 3 area, + cluster, × equal without non-RCS

series). Results are shown for four time units. Dashed lines show 5 % significance levels for testing the null hypothesis that no simulation

ensemble is closer to the observations than the other.

the total solar irradiance (not the spectral irradiance). It is

therefore possible that it may lack possible dynamical re-

sponses (see e.g. Gray et al., 2010) and the highly variable

regional results may reflect such deficiencies of the climate

model. Moreover, these model simulations have an interac-

tive carbon cycle, which, although the model hopefully be-

comes more realistic than if a prescribed CO2 forcing is used,

can induce an increased potential source of error. Here, this

leads to somewhat different time evolution of the simulated

CO2 concentrations in the two ensembles, where both show

discrepancies compared to the reconstructed CO2 concentra-

tions (see Fig. 6 in Jungclaus et al., 2010). This might affect

our results in one direction or the other. An additional reason

for the inconclusive results could be the small ensemble size

for the simulations; the signal-to-noise ratio would increase

when averaging over a larger ensemble.

Information also from other types of proxy data should

potentially help to more conclusively compare a set of al-

ternative simulations with proxy-based climate observations.

All our proxy records reflect temperatures only in the tree-

growth season, i.e. mostly a summer or an extended summer

season. Perhaps the regions used here are too small, or too

few, or not sufficiently well distributed in space. In combina-

tion with a lack of information from winter, this might cause

internal unforced variability to dominate too much over the

response to external forcings. A model study by Servonnat

et al. (2010) suggested that the responses to external forc-

ings are only detectable within regions larger than approxi-

mately the size of Europe, thus pointing to the importance of

not using regions that are too small in studies like this. On

the other hand, the pseudoproxy study by Hind et al. (2012)

suggested that annual-mean temperature data, with realistic

proxy noise levels, from at least 40 randomly distributed sin-

gle grid-boxes are needed to clearly separate between the two

sets of multiple forcings used here. Thus, averaging informa-

tion from a sufficient number of small regions can be mean-

ingful, even if each region by itself is too small to clearly

separate the externally forced signal from internal climate

variability.

There are certainly many more published proxy records

(and more are expected to appear in the future) that could

potentially be used in this type of model–data comparison

study. But it is still somewhat open regarding whether proxy

data are best used as individual records, as is the case with

most records in this study, or aggregated into larger-scale

averages such as in the PAGES2k data set (PAGES2k Net-

work, 2013). In that study, seven continental-scale annual-

mean or summer-mean temperature reconstructions (includ-

ing ASIA2k used here) were derived from different types of

proxy data. This latter approach has the potential advantage

of reducing the influence from various types of noises, both

in proxy data and from internal variability in both models

and real climate. A drawback, though, is that seasonally spe-

cific information in each proxy is partially lost and the op-

timal region and season for each large-scale data aggregate

is essentially unknown. Thus, more theoretical and practical

work addressing questions such as the optimal spatial anal-

ysis scale is motivated – in parallel with continued develop-

ment of climate models, forcing data sets and climate proxy

records.
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Appendix A: Adjustment for autocorrelation in the

reference climate model simulation series

This is a derivation of an adjustment factor for the correlation

test statistic R and for the D2-based test statistic, necessary

to allow autocorrelation in the reference climate model sim-

ulation series, in particular under an AR(1) model for this

autocorrelation. Finally, an MA(1) model and the effects of

a k-years time unit are also treated.

A1 Model

Suppose we have a climate model4 x with time-varying

forcing and another, x∗, as a reference free from such

forcings. We also have an observation series for the same

period as the forced model, denoted z. The observations zi
(time step i = 1, . . .,n) represent instrumental measurements

when such are available, or otherwise a proxy assumed to be

correctly calibrated. We want to test first whether the forced

model x shows evidence of a correlation with the observa-

tions (R test), and next whether it fits the observations better

than the reference model x∗ (D2-based test). Of concern

here is the performance of the test statistics when there is

autocorrelation present in both climate models. To represent

the hypothesis model H0, x and x∗ are taken to be mutually

equivalent (because H0 implies lack of forcing effect) and

autocorrelated, but uncorrelated with the true and measured

temperatures, τ and z:

Statistical model under H0: Climate model simulation se-

quences {xi} and {x∗i }, true climate sequence {τi}, and ob-

servation sequence {zi} are described by the following sta-

tionary model:

xi = µx + δi , Corr(δi, δi−k)= ρk ,

x∗i = µx + δ
∗

i , Corr(δ∗i , δ
∗

i−k)= ρk ,

τi = µτ + ηi ,

zi = τi + εi .

Note that the model treats x and x∗ the same, the rea-

son being that there is no forcing effect in this H0 model.

The test statistics, however, were designed to be sensitive to

a forcing effect that x and τ have in common. The variates xi
and x∗i have the same mean value µx , and mutually indepen-

dent “noise terms” δi and δ∗i . Other terms representing un-

explained variability (random fluctuations, internal variabil-

ity, noise) are ηi and εi . Here ηi represents the true climate

variability around the mean value µτ , including the possible

forcing effect on the true climate (which we hope to find in x

4With “climate model”, we think of a realization of an

atmosphere–ocean general circulation model or an Earth system

model integrated in time, with or without time-varying external

forcings. The variable x represents simulated temperatures in a cer-

tain region and season of interest.

but assume under H0 to be missing in x). We need not make

any specific assumption about that variability. In particular,

autocorrelation is allowed in the τ and z sequences without

need for adjustment. Technically, the observed z series is re-

garded as given and fixed, and the statistical properties of

the test statistics are conditional on this given series. Weights

wi ≥ 0 and w̃i ≥ 0 (see Sects. 5 and 8 in SUN12) are also

regarded as given and fixed. Concerning the definition of w̃i ,

note the footnote in Sect. 2 of the current study.

We consider the correlation test and the D2-based test,

based on the same basic statistics as in the absence of au-

tocorrelation, but we have to modify their variances (or stan-

dard errors) in order to allow autocorrelation. For the corre-

lation test we do not need the unforced climate model, since

the hypothesized correlation is known, being zero.

A2 Correlation test statistic

The weighted empirical regression coefficientR(x,z) is used

as a test statistic, after normalization by its standard error

(see Eqs. 19 and 20 in SUN12). Now, R(x,z) differs only

by a constant factor from the weighted covariance
∑
w̃i(xi−

µx)zi . We need an expression for its variance, allowing some

degree of autocorrelation.

First we note that, since w̃i and zi are both regarded as

fixed and given quantities, we may introduce a new weight

factor ẇi = w̃izi , which is their product. Thus, we consider

the variance of∑
ẇi(xi −µx)

or, equivalently,∑
ẇixi .

We start by the general formula for the variance of a linear

expression,

Var

(∑
i

ẇixi

)
= σ 2

x

∑
i,j

ẇiẇj ρ|j−i|

= σ 2
x

(∑
i

ẇ2
i + 2

∑
i<j

ẇiẇj ρj−i

)
. (A1)

If we know the autocorrelations, this exact value can be

used. Here we continue by assuming that the xi time series is

a stationary AR(1) process with lag-1 correlation ρ:

xi −µx = ρ(xi−1−µx)+ δ̃i, |ρ|< 1, (A2)

where δ̃ is a white noise error term. In such a model, the lag

j − i correlation ρj−i for j ≥ i decreases exponentially with

the time distance j − i, ρj−i = ρ
j−i . We may then rewrite

Eq. (A1) as

Var

(∑
i

ẇixi

)
= σ 2

x

(∑
i

ẇ2
i + 2

n−1∑
k=1

ρk
∑
i;i>k

ẇiẇi−k

)
. (A3)
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This exact value can be used, but we will also give a simple

upper bound to it that we have used in this paper. We first

assume ρ ≥ 0, which appears realistic if xi is AR(1). We use

Cauchy’s inequality
∑
i>kẇiẇi−k ≤

∑
iẇ

2
i to get the upper

bound

Var

(∑
i

ẇixi

)
≤ σ 2

x

∑
i

ẇ2
i

(
1+ 2

∑
k>1

ρk

)

≤ σ 2
x

∑
i

ẇ2
i

1+ ρ

1− ρ
.

The last inequality is obtained when the finite sum of ρk up

to k = n− 1 is majorized by the corresponding infinite sum.

Thus we have an upper bound for the variance as a func-

tion of ρ. The variance factor

(1+ ρ)/(1− ρ) (A4)

is what differs from the case ρ = 0. This formula was derived

under the assumption ρ ≥ 0. When ρ < 0, factor (A4) can

be replaced by the value 1, so no adjustment is needed. For

the standard error, we use of course the square root of factor

(A4). For ρ small, the variance factor (A4) is about 1+ 2ρ,

or for the standard error 1+ ρ, but this approximation is no

longer an upper bound, so (1+ ρ)/(1− ρ) is preferable.

The second inequality above, where the finite sum was re-

placed by an infinite sum, should typically be very close to

an equality. On the other hand, the inequality motivated by

Cauchy’s formula is likely to be a large exaggeration of the

actual value. There are two parts in this inequality. First, the

sum of squares,
∑
iẇ

2
i , contains n terms, whereas the sum

of products,
∑
i>j ẇiẇi−j , contains only n− j terms. How-

ever, since the contributions from ρj with small j are likely

to dominate, this will make little difference.

The second part concerns the magnitude of sums of prod-

ucts relative to the sum of squares. Here we must bring in

the structure of the z series of real climate plus noise. A sum

of products relates to the covariance of the z series, and if

there is no very high autocorrelation in the z series, the sum

of products will be much smaller than the sum of squares

(representing the variance). Thus, multiplying the variance

in Eq. (20) in SUN12 by the factor (1+ ρ)/(1− ρ) is likely

to substantially exaggerate the effects of an AR(1) autocorre-

lation in the x series. Nevertheless, this is how we made the

adjustments in this study. When data from different regions

are combined, an adjustment factor has to be calculated for

each region separately. Then, the covariances in Eq. (21) in

SUN12 are multiplied by the square root of the product of

the pairs of adjustment factors.

A3 D2 difference test statistic

Here we investigate the effects of autocorrelation on the D2

difference test statistic T (x, x∗, z)=D2
w(x, z)−D

2
w(x
∗, z)

(see Eq. 1). By expanding the quadratics of xi − zi and of

x∗i − z, it is seen that T can be expressed in the form

T (x, x∗, z)= w(x−µx)2−w(x∗−µx)2

− 2w(x− x∗) (z−µx), (A5)

with overlines denoting averaging over time (n time steps).

Because x and its corresponding reference x∗ are equivalent

under H0, the first two terms have equal expected values and

the third term will have an expected value of zero, so T has

an expected value of zero. Autocorrelation in x and x∗ does

not change this. To specify a test statistic we only also need

the variance of T in the hypothesis model. This will be influ-

enced by autocorrelation.

The first two terms of Eq. (A5), right-hand side, are mutu-

ally uncorrelated, since x and x∗ are mutually independent.

Each of them is also uncorrelated with the third term, under

an assumption of Gaussian noise δ and δ∗ in x and x∗, re-

spectively (already made in SUN12). This is because the co-

variances will be proportional to the third-order central mo-

ments of δ (or δ∗), which are zero because of the symme-

try of the Gaussian distribution around its mean value (the

only property of the Gaussian needed, in fact). Note that

x− x∗ = δ− δ∗. Thus, all three terms are mutually uncor-

related, so we need only consider the sum of their respective

variances.

The last term is linear in x, and it is the difference between

two mutually uncorrelated expressions of the same type as

the statistic studied in Appendix A2. By referring to the same

argument as there, we conclude that a safe variance adjust-

ment factor is (1+ ρ)/(1− ρ). It is again likely to be a rela-

tively crude upper bound. Like in Appendix A2, it is possible

to use an exact expression for that term as an alternative.

Turning to the first two terms, note that they are of identi-

cal type, so we need only study one general such statistic,∑
wi(xi −µx)

2.

Note that z is not involved here, so the weight factor is

the original relatively slowly varying wi , not the ẇi of Ap-

pendix A2. Under the AR(1) model (A2), we have

(xi −µx)
2
= ρ2 (xi−1−µx)

2
+ 2ρ (xi−1−µx) δ̃i + δ̃

2
i .

It follows that the covariance between (xi−µx)
2 and the cor-

responding preceding term is

Cov
{
(xi −µx)

2, (xi−1−µx)
2
}
= ρ2 Var

(
(xi−1−µx)

2
)
.

This is because δ̃i and xi−1 are mutually independent. Re-

peating this step back in time we get

Cov
{
(xi −µx)

2, (xi−k −µx)
2
}
= ρ2k Var

(
(xi−k −µx)

2
)
.

Now we can do the same type of calculation as for the linear

type of term in Appendix A2, but with ρ2 replacing ρ, and
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get the variance adjustment factor

1+ ρ2

1− ρ2
. (A6)

Note that the replacement of ρ by ρ2 makes this adjustment

factor much closer to 1. On the other hand, this upper bound

is not likely to exaggerate much the actual variance increase.

This is because in contrast to ẇi , wi will mostly change

slowly with i, implying
∑
wiwi−k ≈

∑
w2
i for small k.

There are two possible strategies when choosing the ad-

justment factor. Either we simply use formula (A4) for the

whole variance of T , which is then a deliberate overadjust-

ment, or we split T into its three components and use their re-

spective variances with different adjustments for the different

components. In our applications we have used the first (sim-

pler) alternative. Thus, the variance in Eq. (15) in SUN12

has been multiplied by the factor (A4). When data from dif-

ferent regions were combined, we calculated one adjustment

for each region. Then, the covariances in Eq. (16) in SUN12

were multiplied by the square root of the product of the pairs

of adjustment factors. In other words, we used the same ad-

justment for the correlation and the difference tests.

A4 Autocorrelation and time units

The results above were derived under an AR(1) model for the

unforced climate simulations. Figure 5, top, shows the corre-

sponding estimated autocorrelation functions for our annual

data. Even if some regions appear consistent with the expo-

nentially decreasing autocorrelation function of an AR(1),

other regions show a damped sine-wave-type function, in-

dicating an AR(2) process, or worse. The damping factor is

of magnitude 0.85 year−1. An AR(2) model would make the

previous calculations considerably more complicated. Going

further away from AR(1) by using a model with long-range

dependence will change the situation completely.

Hind et al. (2012) used a longer time unit to make all cor-

relation negligible. With a too short time unit, the lag-1 cor-

relation is not negligible. However, because of the time gap

between time units at lag ≥ 2 distance, correlations for lag-2

(or more) are likely to be much smaller than as prescribed by

AR(1) (which is ρ2). As a numerical example, suppose we

have an AR(1) for annual data with ρ = 0.45. If we change

time unit to 3 years, lag-1 correlation is of course reduced,

but of interest here is that the lag-2 correlation is reduced

much more, becoming a factor ρ3
≈ 0.1 times lower than the

corresponding lag-1 correlation. More generally, for a series

whose autocorrelations in the moderately long run decrease

like in an AR(1) series, only a moderately long time unit

is needed to make all lag ≥ 2 autocorrelations of the aggre-

gated series negligible. Such a time series is represented by

MA(1). Going through the derivations above, when there is

only lag-1 correlation, it is seen that the adjustment factor is

now closer to 1. More specifically, the denominator can be

replaced by the value 1 in factors (A4) and (A6).

Whether MA(1) is a reasonable description must be judged

from data. Figure 5 illustrates the situation. With a time unit

of 3 or 5 years we see a few significant lag-2 correlations of

magnitude 0.2, but for longer time units the estimated lag≥ 2

autocorrelations look like what is expected for white noise.

Even with a damping factor of 0.85 in an AR(1), we can con-

clude that the lag-2 correlation with a time unit of 8 years is

reduced relative to the lag-1 correlation by a factor of type

0.858
= 0.27, and by one more such factor for lag-2, etc.

Thus, if we use a time unit of 8 years and modify the test

statistic variances by the factor in factor (A4), where ρ is the

lag-1 correlation with this time unit, we should be on the safe

side.

Appendix B: The test statistics in the presence of a joint

forcing

Suppose we want to compare models which all include a par-

ticular underlying forcing that is not of current interest. One

model has another, additional forcing that is of current in-

terest, whereas another model is a reference model, corre-

sponding to no effect of the additional forcing. In that situ-

ation, with its absence of a null model, the correlation test

statistic R cannot be judged on its own, but the correlation

must be compared with that for the reference model. On the

other hand, it will be shown that the T -based test statistic

need not be adjusted at all. None of the forcing effects need

be present in the true climate, but the tests discussed here

are most likely of interest when the effect of the forcing of

the reference model has already been detected in the obser-

vations or is assumed for physical reasons to affect the true

climate. In Appendix B4, we extend the situation to discuss

comparison of two alternative forcings of the same type, such

as low- and high-amplitude solar forcing.

B1 Model

As in Appendix A1, suppose we have two climate models5,

represented by simulation sequences x and x∗, the latter

having a role as reference, and an observation series for the

same period, denoted z. The new feature is that we allow

a “baseline” forcing present in both climate models, and

probably also in the true temperature. This baseline forcing

is not of current interest, but there is another, additional

forcing applied in x but not in x∗. As before, the hypothesis

H0 to be tested assumes this additional forcing has no effect.

Statistical model under H0: Climate model simulation se-

quences {xi} and {x∗i }, true climate sequence {τi}, and ob-

servation sequence {zi} are mutually related through the fol-

lowing model:

xi = µx + γi + δi ,

5See footnote in Appendix A1
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x∗i = µx + γi + δ
∗

i ,

τi = µτ + ηi ,

zi = τi + εi .

Here, the term γi , in common for x and x∗, is the baseline

forcing effect, regarded as of more or less random character.

Thus, x and x∗ differ only by separate random “noise” terms

δ and δ∗. All three terms γ , δ and δ∗ are assumed mutually

uncorrelated with time-constant variances (even for γ when

it is considered random, variance σ 2
γ ). The baseline forcing

may also be present in the true climate, and is even likely to

be so. We therefore allow γi to be correlated with the term

ηi , with no need to be more specific.

In SUN12, the additional forcing of concern was repre-

sented by terms ξ and αξ in the expressions for τ and x,

respectively, but here we need not be so explicit because they

do not occur in the null model. We always know, of course,

that such an additional forcing has been implemented in the

climate model simulation represented by x in the statistical

model, but we want to investigate whether a response to this

forcing is also seen in the observations. Our tests are de-

signed to detect whether there is a strong enough such ad-

ditional forcing effect jointly present in x and τ . If the test

results lead to rejection of H0, it indicates that there is an ef-

fect of the additional forcing in the true climate sequence τ ,

because our test statistics are sensitive only to a joint effect

in x and τ .

For simplicity we assume here that there is no autocorre-

lation in the x sequences. However, such autocorrelation can

be adjusted for as described in Appendix A, and we did so

in our experiment. Generally, this is likely to be even more

needed here than before, since the baseline forcing effect γ

is likely to contribute additional autocorrelation within the

reference series.

Other terms representing unexplained variability (random

fluctuations, noise) are ηi and εi , the ηi term representing

all variability in the true climate. However, we make no as-

sumption about the true climate τ or the observed climate

series z. In particular, it may contain more or less effect from

the baseline forcing that was also behind the γ term of the

climate models. The reason we do not need assumptions is

that we will consider statistics such as the difference be-

tween two D2 values. The D2 values themselves are typi-

cally reduced if we introduce a realistic forcing effect γi in

the models that is also present in the true climate. The differ-

ence between two such characteristics, however, will not be

systematically changed. Technically, we regard the observed

z series as given and fixed, and the statistical analysis is con-

ditional on this given series. The weights wi ≥ 0 and w̃i ≥ 0

(see Sects. 5 and 8 in SUN12) will also be regarded as given

and fixed. Concerning the definition of w̃i , note the footnote

in Sect. 2 of the current study.

B2 Correlation test statistic

The test statistic denoted R(x, z) in Sect. 8 of SUN12 differs

only by a constant factor from∑
w̃i(xi −µx)zi . (B1)

Here the theoretical average µx will be replaced by the cor-

responding empirical average.

When a forcing is present in the reference model, we must

expect that this forcing causes an underlying positive correla-

tion with the observations on its own. For that reason we must

bring in the reference x∗ and show that x, as compared with

x∗, is more correlated with z. Therefore we use the difference

R(x, z)−R(x∗, z) instead ofR(x, z). The γ term cancels, so

given z, the difference consists of two mutually uncorrelated

terms with variance twice that of the single term variance in

Eq. (20) given in SUN12 as a function of σ 2
δ . It only remains

to remember what σ 2
δ stands for. This is the residual variance

in the reference simulations x∗ after adjustment for the un-

known forcing effect γ . But this variance is majorized by the

total variance of x∗, obtained when we additionally include

the variation of γi , Var(x∗i )= σ
2
δ +Var(γi)≥ σ

2
δ if γ is re-

garded as random with a variance. When the γi sequence is

regarded as fixed, we instead state that σ 2
δ is overestimated by

the total sample variance s2
x of the x∗ sequence. Thus we are

on the safe side when using the sample variance of x∗i , and

in comparison with the results of SUN12 we need not bother

about γi but simply adjust the variance in their Eq. (20) by

a factor 2 when R(x, z) is replaced by R(x, z)−R(x∗, z).

Furthermore, in many cases the relative difference between

σ 2
δ and s2

x will be small, so the majorization (upper bound) is

not only on the safe side but also innocent.

B3 D2 difference test statistic

The D2 difference test statistic T (x, x∗, z)=D2
w(x, z)−

D2
w(x
∗, z) (see Eq. 1), can be expressed in the form

T (x, x∗, z)= w(x−µx)2−w(x∗−µx)2

− 2w(x− x∗) (z−µx), (B2)

with overlines denoting averaging over time (n time steps).

(Note: Eq. B2 is identical to Eq. A5.) Under H0, saying that

x and its reference x∗ are equivalent, the first two terms have

equal expected values and the third term with its x− x∗ will

have an expected value of zero, so T has an expected value of

zero. This is true even when x and x∗ have a term γ in com-

mon. To form a test statistic we only additionally need the

variance of T under H0. Because it simplifies the derivation,

we will here regard the γ term as random.

The first two terms of Eq. (B2) are mutually uncorrelated.

Each of them is also uncorrelated with the third term, under

an assumption of Gaussian noise δ and δ∗ in x and x∗, re-

spectively (already made in SUN12). This is because the co-

variances will be proportional to the third-order central mo-

ments of δ (or δ∗), which are zero because of the symmetry
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of the Gaussian distribution around its mean value (the only

property needed, in fact). Note that x− x∗ = δ− δ∗.

The third term of Eq. (B2) yields a variance that is for-

mally the same as in SUN12. The only difference is (again,

see the previous section) in the interpretation of the unknown

σ 2
δ . By using instead the sample variance of the reference x∗

sequence we get a useful upper bound.

The first two terms of Eq. (B2) have the same variance.

In SUN12 this was given to be 2(σ 2
δ )

2, which was estimated

by the sample variance of the reference model simulation. In

the present case, when we consider γi as random (and Gaus-

sian and uncorrelated with δi), we immediately get the same

type of formula, but with Var(γ + δ)= σ 2
γ + σ

2
δ for σ 2

δ . In

practice, there is no difference, however, because the natural

estimate of this variance is still the sample variance of the x∗i
sequence.

We conclude that, also for the first two terms of Eq. (B2),

we can use the formula of SUN12, with its σ 2
δ interpreted

as the sample variance of the x∗ sequence. In other words,

for the T -based test we can use the same calculation proce-

dure as in SUN12, in particular their variance formulas in

Eqs. (15) and (16), without bothering about γi , just pretend-

ing it does not exist. With the interpretation above, it does not

matter what the γi sequence is. We have an upper bound for

the variance that will be close to the unknown true value un-

less the actual quadratic variation in the γi sequence is a sub-

stantial part of the total variance. To adjust for autocorrela-

tion in the reference model, the lag-1 correlation ρ should

be estimated from the sample x∗ sequence, and a variance

adjustment should be made as in Appendix A.

B4 Comparison of climate models with the same type

of forcing

Additionally, the result above can be used to compare two

climate models of the same kind, but driven with alternative

versions of the type of forcing of interest, to see whether one

is significantly better than the other. We then test the hypoth-

esis that the two models are equivalent, in the sense of hav-

ing the same forcing and the same magnitude of the response

to this forcing. Expressed in terms of the statistical model in

Appendix B1 above, we test the hypothesis that the two simu-

lation models have the same forcing effect term (the γ term),

and if their D2 difference is statistically significant, we can

conclude that one of the models fits better than the other. We

do the same here as when we tested a forced model against an

unforced control by forming a variance-normalized D2 dif-

ference, although this test is now two-sided since none of the

models is a reference. Thus we need the variance of the D2

difference when both models have the same forcing effect,

as in the previous section. A difference, though, is that the

estimate of σ 2
δ is now naturally taken to be the average of the

sample variances for the two models.

One additional comment is motivated here. If the two forc-

ings of interest are truly different alternatives with somewhat

different temporal evolution, then, clearly, none of the mod-

els is a reference. But if the two forcings are just differently

scaled versions of the same basic data, thus differing only

in their amplitude, then the one with the smaller amplitude

could be regarded as a reference, at least for the correlation

test.

In our experiment where we compared the E1 and E2 sim-

ulations, the situation is somewhere in between, as the so-

lar forcings differ both in low-frequency amplitude and in

temporal evolution. Because the different amplitude is of the

largest interest, we decided to estimate σ 2
δ (and ρ) only from

E1 (having the smaller solar forcing amplitude) but used

a two-sided test for the result in Fig. 8. However, we also

found that using an average of E1 and E2 parameter esti-

mates hardly changed the results at all. A final note relates to

Appendix A. When there is no hypothesis model free from

forcing effects, we must expect and allow for more autocor-

relation. This could motivate the use of longer time units than

in the tests with a reference free from forcing effects.
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