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Abstract. Reconstructions of past climatic changes from
borehole temperature profiles are important independent es-
timates of temperature histories over the last millennium.
There remain, however, multiple uncertainties in the inter-
pretation of these data as climatic indicators and as esti-
mates of the changes in the heat content of the continental
subsurface due to long-term climatic change. One of these
uncertainties is associated with the often ignored impact of
the last glacial cycle (LGC) on the subsurface energy con-
tent, and on the estimate of the background quasi steady-
state signal associated with the diffusion of accretionary en-
ergy from the Earth’s interior. Here, we provide the first es-
timate of the impact of the development of the Laurentide
ice sheet on the estimates of energy and temperature recon-
structions from measurements of terrestrial borehole temper-
atures in North America. We use basal temperature values
from the data-calibrated Memorial University of Newfound-
land glacial systems model (MUN-GSM) to quantify the ex-
tent of the perturbation to estimated steady-state temperature
profiles, and to derive spatial maps of the expected impacts
on measured profiles over North America. Furthermore, we
present quantitative estimates of the potential effects of tem-
perature changes during the last glacial cycle on the borehole

reconstructions over the last millennium for North Amer-
ica. The range of these possible impacts is estimated using
synthetic basal temperatures for a period covering 120 ka
to the present day that include the basal temperature his-
tory uncertainties from an ensemble of results from the cal-
ibrated numerical model. For all the locations, we find that
within the depth ranges that are typical for available bore-
holes (≈ 600 m), the induced perturbations to the steady-state
temperature profile are on the order of 10 mW m−2, decreas-
ing with greater depths. Results indicate that site-specific
heat content estimates over North America can differ by as
much as 50 %, if the energy contribution of the last glacial cy-
cle in those areas of North America that experienced glacia-
tion is not taken into account when estimating recent subsur-
face energy changes from borehole temperature data.

1 Introduction

The past 2000 yr are an important time period for data–
model comparisons as a means of assessing past variabil-
ity and change, as well as evaluating the performance of the
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same general circulation models (GCMs) that are used for
21st-century climate projections. (e.g.,Schmidt et al., 2013;
Phipps et al., 2013; Fernández-Donado et al., 2013; Coats
et al., 2013). With regard to the latter, the abundance of pa-
leoclimate data during this period provides numerous esti-
mates of past climatic conditions against which GCMs can
be tested (Jansen et al., 2007; Randall et al., 2007; González-
Rouco et al., 2009). While decadal to centennial variability
and change can be well characterized during the last 2000 yr
by indirect methods, instrumental records rarely exceed 100–
200 yr in duration. GCM performance on longer timescales is
nevertheless of particular relevance to future climate projec-
tions, which require accurate representations of radiatively
forced change and internal variability over decades and cen-
turies.

Among the variously available proxy indicators, geother-
mal measurements from terrestrial borehole temperature pro-
files (BTPs) provide a unique estimate of past changes in
the Earth’s surface energy balance (see Pollack and Huang,
2000, Bodri and Cermak, 2007, and Gonzalez-Rouco et al.,
2009, for reviews). These records have most widely been
used to estimate past temperature changes, but can also be
used as estimates of past energy fluxes at the land surface.
These latter reconstructions are possibly less vulnerable to
processes that could potentially interfere with the coupling
of surface air temperatures (SATs) and ground surface tem-
peratures (GSTs), which have been discussed extensively in
the literature (e.g.,Beltrami, 1996; Schmidt et al., 2001; Bel-
trami and Kellman, 2003; Stieglitz et al., 2003; Bartlett et al.,
2004, 2005; Smerdon et al., 2003, 2004, 2006, 2009; Deme-
trescu et al., 2007). In other words, subsurface heat storage
Qs is independent of any surface temperature association.
EstimatingQ does not require the solution of an ill-posed
and assumption-laden inverse problem, as is the case for GST
history inversion, but can be estimated from observed BTPs,
with only minimal assumptions about the volumetric heat ca-
pacity. If conductive processes dominate, changes in the heat
content of the shallow subsurface do not involve complicated
nonlinearities. Previous work that has used BTPs to estimate
continental heat storage over the last 500 yr has shown that
the continental subsurface was second only to the oceans in
terms of the total amount of heat absorbed in the second half
of the 20th century (Beltrami, 2002b; Beltrami et al., 2002;
Huang, 2006).

Interpretations of borehole temperatures as records of past
energy fluxes at the land surface (e.g.,Wang and Bras, 1999;
Beltrami et al., 2000; Beltrami, 2002a) are important within
the context of the quantification of the heat content (particu-
larly its rate of change) of the Earth’s major climate subsys-
tems (ocean, atmosphere, cryosphere, and continents) from
the perspective of climate system dynamics (Pielke, 2003;
Hansen et al., 2005; Trenberth, 2009; Hansen et al., 2011,
2013). Numerous studies on the contributions of these dis-
tinct components have been published (Levitus et al., 2001,
2005, 2012; Beltrami, 2002b; Bindoff et al., 2007; Davin

et al., 2007; Murphy et al., 2009; Church et al., 2011; Ortega
et al., 2013; Rhein et al., 2013). Moreover, the correct parti-
tioning of heat into the various climate subsystems is impor-
tant within climate model simulations that seek to project the
overall energy imbalance of the planet and how energy fluxes
will ultimately impact the character of each subsystem. With
regard to the continental subsurface specifically, a large in-
fusion of heat into the subsurface can impact important soil
processes, including hydrology (Zhu and Liang, 2005; Bense
and Kooi, 2004), biogeochemical processes such as CO2 pro-
duction via microbial and root respiration and long-term car-
bon storage (Risk et al., 2002, 2008; Kellman et al., 2006;
Bekele et al., 2007; Bindoff et al., 2007; Diochon and Kell-
man, 2008), and the spatial distribution and depth of per-
mafrost (Sushama et al., 2007; Lawrence et al., 2008). Not
only are these processes important for risk assessments as-
sociated specifically with soil processes and functions in the
future, they are also linked to climate feedback mechanisms
and are relevant to simulations of the climate system as a
whole.

Given the above-discussed importance of subsurface tem-
peratures and heat storage for the continents, comparisons
between paleoclimatic GCM simulations and borehole esti-
mates of past GSTs or energy fluxes comprise a valuable op-
portunity to evaluate GCM performance. These comparisons
are nevertheless dependent on the robust characterization of
past changes in the subsurface energy reservoir and the asso-
ciated uncertainties. Herein we specifically investigate an im-
portant but underappreciated uncertainty in the interpretation
of BTPs as past temperature and energy flux estimates. Our
focus is principally on the impact of the late stage of the last
glacial cycle (LGC), including the Last Glacial Maximum
(LGM, ≈ 26–21 ka), and the subsequent warming to the cur-
rent deglacial state on the background steady state of the
subsurface thermal regime. Most climatic interpretations of
BTPs rely on a principal assumption: downward-propagating
signals associated with energy balance changes at the land
surface are imprinted on a subsurface steady-state signal as-
sociated with the outward flow of heat from the Earth’s inte-
rior (changes in this outward flow occur on the order of mil-
lions of yr). This steady-state signal is approximated below a
few hundred meters in BTPs by a linear function of increas-
ing temperatures with depth, assuming that this signal repre-
sents the geothermal heat flow from below (see Sect.2.2).
The thermal effects of the LGC have been discussed pre-
viously as sources of bias in estimates of this background
steady-state signal (e.g.,Hotchkiss and Ingersoll, 1934; Jes-
sop, 1971), but recent results have more quantitatively char-
acterized the important impact of the LGC on BTP interpre-
tations (Rath et al., 2012). Though known to be significant
for a long time, LGC effects on heat flow density estimations
have only recently been characterized in appropriate detail
within general geothermal studies (e.g.,Slagstad et al., 2009;
Majorowicz and Wybraniec, 2011; Westaway and Younger,
2013).
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Despite important insights gained from earlier work on the
LGC and its relation to BTPs (Hartmann and Rath, 2005;
Jaupart and Marechal, 2011; Rath et al., 2012), results were
based on highly idealized GST histories used to represent the
temperature evolution from the LGM to the present day. Ice
sheets are, however, inexorably linked to climate in a com-
plex set of relationships; they are a dynamical system re-
sponding to climate change on the local scale, but also gener-
ate large-scale climate variability. Ice sheets store fresh wa-
ter, are reflectors of shortwave radiation, alter surface topog-
raphy, change large-scale atmospheric circulation patterns,
and create a subsurface thermal environment that varies in
spatial and temporal scale throughout their history (e.g.,Mar-
shall et al., 2002; Rolandone et al., 2003). Characterizing the
actual impacts on observed BTPs in North America therefore
requires modeling of the complexities of surface conditions
originating from the last glaciation. This is far from trivial,
as these surface conditions do not only include the effects of
the ice sheet and its partly unknown dynamics, but also other
effects related to the full glacial cycle. These include the in-
fluence of oceanic transgressions due to the timing of isotatic
effects, as well as proglacial lakes, which could be relevant
in stages of progressive deglaciation.

Herein we study the effect of the buildup and retreat of the
Laurentide ice sheet on subsurface temperature profiles using
basal temperatures derived from the Memorial University of
Newfoundland (MUN) glacial systems model (MUN-GSM).
Details on the procedures employed for constructing surface
temperatures from the MUN-GSM and the methods relevant
to modeling and inversion of the resulting synthetic BTPs are
given in Sects.2.1and2.2, respectively. In Sect.3, we inves-
tigate the perturbation of the background steady-state signal,
which in turn perturbs the corresponding heat flux profile and
therefore the overall subsurface heat storage. Subsequently,
in Sect.4, we quantify the effect of this perturbation on GST
inversions from synthetic BTPs, focusing on the depth ranges
typical for borehole measurements that have been used in
global or hemispheric studies.

2 Theoretical framework

Energy balance changes at the surface of the Earth propa-
gate into the subsurface and, depending on their magnitude
and duration, can leave a detectable signature after periods
as long as 100 kyr. This characteristic of heat propagation
in the terrestrial subsurface has been exploited to estimate
past changes in GST and energy fluxes from BTPs measured
across all continental regions. Inversion of BTPs to derive
GST histories is an operation that transforms a temperature–
depth profileT (t0,z) at a given timet0 (the time of measure-
ment) into a temperature–time profileT (t,z0) at the ground
surfacez0 (e.g.,Beltrami and Mareschal, 1991; Pollack and
Huang, 2000; Huang et al., 2000; Harris and Chapman, 2001;
Beltrami, 2002a; Rath and Mottaghy, 2007). If the rock prop-

erties are assumed to be vertically homogeneous, depth and
time are linked by the thermal diffusivityκ. This is a bulk
thermophysical property of the subsurface soil and rock de-
fined as the ratio between thermal conductivityλ and the vol-
umetric heat capacityC = ρcp. More information on the rel-
evant physics and methodologies can be found in the recent
reviews of the borehole paleoclimatology literature byBodri
and Cermak(2007) andGonzález-Rouco et al.(2009). In the
following section, we briefly expand on the theoretical basics
of BTP modeling and interpretation, as far as they are rele-
vant to our subsequent analysis. Our first focus, however, is
a more detailed description of the MUN-GSM that we em-
ploy to estimate the ground surface temperature history over
North America over the LGC.

2.1 The MUN-GSM

We use the MUN-GSM to simulate the thermal history of
the ground surface underneath the Laurentide ice sheet dur-
ing the LGC. This simulated temperature history will then
be used to forward model the subsurface propagation of
the associated thermal perturbation in BTPs down to sev-
eral thousand meters in depth. The MUN-GSM is a 3-D
thermomechanically coupled ice sheet model that includes a
permafrost-resolving thermal model at its base, and is asyn-
chronously coupled to a viscoelastic model of the glacial iso-
static adjustment process. Ice dynamics are computed under
the shallow ice approximation (SIA) with fast flow due to
sliding or subglacial till deformation when the basal temper-
ature approaches the pressure melting point. The SIA, de-
scribed in detail byGreve and Blatter(2009), is appropri-
ate for long-term simulations of continental-scale ice sheets
away from fast-moving ice streams. The model was origi-
nally described byTarasov and Peltier(1999), while sub-
sequent improvements were discussed in follow-up publica-
tions (Tarasov and Peltier, 1999, 2002, 2004, 2007; Tarasov
et al., 2012). In contrast to other GSMs, it has been calibrated
against a comprehensive body of available data (Tarasov
et al., 2012) using a Bayesian methodology. The calibration
produces a posterior distribution of higher-likelihood ensem-
ble parameter sets given model fits to a diverse set of con-
straint data. This model is driven by a climate based on in-
terpolation between a modern state from the NCAR/NCEP
reanalysis (Kalnay et al., 1996) and an LGM state derived
from PMIP II archived 21 ka slice GCM simulations (http:
//pmip.lsce.ipsl.fr/). The interpolation uses an index function
derived from Greenland ice cores (Tarasov and Peltier, 2003,
2004). The interpolation and definition of the LGC climate
state are all subject to a set of calibrated ensemble parame-
ters.

The gridded output from the MUN-GSM is available in
the domain defined by the corner points (172.5◦ W, 34.75◦ N)
and (42.5◦ W, 84.75◦ N), with a resolution of 1o longitude
by 0.5

◦

latitude, covering most of North America, at con-
stant 1000 a time intervals from 120 ka to the present. The
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region of interest in the present paper lies between (172.5◦ W,
34.75◦ N) and (52.5◦ W, 75◦ N), and is shown in Fig.1. GSTs
for each grid cell are set to the basal temperature of the ice
when ice covered, 0◦C when lake covered (simplest approx-
imation for proglacial lakes receiving ice discharge), and
to that computed by a temperature at the top of the per-
mafrost (TTOP) correction to the calibrated model climate
forcing when sub-aerial. The latter TTOP model-derived cor-
rection (Smith and Riseborough, 1996, 2002; Riseborough,
2002) seeks to correct for varying snow cover and vegetation,
and for the differing thermal conductivity of thawed versus
frozen land (Tarasov and Peltier, 2007).

There is currently no basal hydrology in the GSM used for
this study. Though there is some evidence for the existence of
subglacial lakes in the area of the Laurentide ice sheet (Liv-
ingstone et al., 2013), the lack of basal hydrology has prob-
ably limited relevance for the thermodynamics, given all the
other uncertainties. On bedrock, it will have no impact except
for some horizontal advection of heat (basal water will be as-
sociated with basal ice at the pressure melting point), which
is likely negligible given the approximately 50 km grid cell
scale. On sediment, one can likely assume that all subglacial
sediment is saturated, as is done for the permafrost calcula-
tion in the GSM.

The uncertainty estimates for the surface temperature forc-
ing are from a Bayesian calibration of the MUN-GSM
against a large and diverse set of geophysical and geologi-
cal constraints (Tarasov et al., 2012). The North American
configuration of the model had 39 ensemble parameters, en-
deavoring to capture uncertainties in the climate forcing, ice
dynamics, and ice calving. The calibration of these 39 pa-
rameters involved over 50 000 full GSM runs and Markov
chain–Monte Carlo sampling of tens of millions of parameter
sets using Bayesian artificial neural network emulators of the
GSM. As the calibration targets did not involve direct pale-
oclimatic proxies, the surface temperature chronology confi-
dence intervals are likely too narrow, especially over regions
that were predominantly ice free. For the duration of the ice
cover, given the constraints and represented physics, the cal-
ibrated results offer the best available reconstruction of sub-
glacial temperatures. The 75 % confidence intervals are in-
voked from application of Chebyshev’s inequality to the two
standard deviation sample range of the ensemble. In practice,
we invoke theSaw et al.(1984) extension that uses sample
mean and standard deviation. The assignment of a weaker
interpretation of the 2σ confidence interval avoids the as-
sumption of an underlying Gaussian distribution of misfits
required for the standard 96 % assignment.

2.2 The subsurface thermal model

Given simulated GSTs from the MUN-GSM, the subsur-
face propagation of the LGC thermal signal into the sub-
surface at specific locations can be modeled using the one-
dimensional thermal diffusion equation, assuming a homo-
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Fig. 1. Simulation domain (172.5oW,34.75oN) and (52.5oW,75oN) and grid cell locations within the MUN-

GSM. Colored stars mark the locations of the five grid cells from which simulated temperatures are used for
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Figure 1. Simulation domain (172.5◦ W, 34.75◦ N and 52.5◦ W,
75◦ N) and grid cell locations within the MUN-GSM. Colored stars
mark the locations of the five grid cells from which simulated tem-
peratures are used for subsequent studies (see, e.g., Fig.2).

geneous, isotropic half space (Carslaw and Jaeger, 1959), as

∂T

∂t
= κ

∂2T

∂z2
+

h

ρc
, (1)

whereκ is the thermal diffusivity of the rock defined asκ =
λ
ρc

(m2 s−1), λ is the thermal conductivity (Wm−1K−1), the

productρc is the volumetric heat capacity (JK−1m−3), h is
the volumetric heat production (Wm−3), z is depth (m), and
t is time (s). We assume the common convention thatz is
positive downwards.

A solution of Eq. (1) requires the specification of boundary
conditions (BCs). Temperatures in the first few hundred me-
ters of the Earth’s interior are governed by the outward flow
of heat associated with internal energy, and temperature per-
turbations propagating downward from the land–atmosphere
boundary associated with changes in the surface energy bal-
ance. Because the changes associated with the outward flow
of heat occur on timescales of millions of yr, we assume a
constant heat flux (Neumann type) BC at infinity within the
half space.

The upper BC imposed atz = 0 is of the Dirichlet type
and a function of time. We parametrize this time dependence
as a series of step changes in temperature at given points in
time based on the output from the MUN-GCM. This BC at
the surface was chosen because of both physical and practi-
cal reasons. The surface condition in the area and time pe-
riod influenced by the LGC may be characterized by differ-
ent regimes. At the ice base, the temperature is continuous,
but not the gradient, because of the phase change and energy
sinks or sources at the boundary. These result from a variety
of processes. They include phase change (melting/freezing),
advective heat transport, and heating related to sliding and
ice deformation work, which are both source terms in MUN-
GSM. Though it is possible to construct a Neumann bound-
ary condition at the ice base, there is much better control on
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the temperature, as the melting temperature of the ice is well
known as a function of pressure, and thus of ice thickness. In
the water-covered times and areas, the temperature is again
better constrained than the gradient, as the density maximum
is well known for water of a different salinity, and can be
used to define the BC, though this may be a matter of discus-
sion. For the shallow proglacial lakes (as opposed to oceanic
transgressions), it is set to the melting temperature for the
current study. For direct contact with the atmosphere, mete-
orological simulations use a complex parametrization of the
boundary layer physics (e.g.,Stensrud, 2007). For the long
time periods involved here, however, it has been shown that
the GST is related to the SAT following a simple relationship
(see Smerdon et al., 2003, 2006, and Stieglitz and Smerdon,
2007).

Given the above-described BCs, an analytic solution to
Eq. (1) gives the temperature anomaly at depthz and time
t , for a series ofK step changes at the surface, as

T (z, t) = Ts(z) + Tt(z, t), (2)

where Ts(z) represents the linear steady-state temperature
profile depending only on thermal conductivity and basal
heat flow density, whileTt(z, t) represents the perturbation
by transient changes in the surface temperature boundary
condition (Mareschal and Beltrami, 1992). The equilibrium
BTP is written as

Ts(z) = T0 +
q0

λ
z −

h

2λ
z2. (3)

Here, the third term, representing the volumetric heat produc-
tion h, is often neglected for borehole paleoclimatic studies
that use shallow boreholes (< 1000 m) and estimate changes
on a timescale of several centuries. Equation (3) reduces to a
linear relationship between temperature and depth when h is
assumed zero. This linear component can be removed from
BTPs, thus reducing Eq. (2) to only the transient compo-
nent of the temperature signal associated with the downward-
propagating surface perturbation. This transient component
can be expressed as

Tt(z, t) =

K∑
k=1

Tk

[
erfc

(
z

2
√

κtk

)
− erfc

(
z

2
√

κtk−1

)]
. (4)

The subsurface anomalyTt(z, t) described by Eq. (4) rep-
resents the cumulative effect of the energy balance at the
surface. The magnitude ofTt(z, t) is directly proportional
to the subsurface cumulative heat integral over depth, and it
represents the total heat absorbed or released by the ground
according toQs = ρc

∫ z

0 T (z)dz. Here,ρc is the volumetric
heat capacity, chosen here as 3× 10+6 Jm−3K−1 after Čer-
mák and Rybach(1982).

A discrete version of the transient part of Eq. (2) at N

depthszi can be derived, leading to a linear matrix equation
defined as

Tobs
= MT gst, (5)

whereT is a vector of borehole temperatures at depthsz, and
Tgst represents the vector of discrete temperature stepsTk

at timestk. A detailed derivation of this equation was lately
given by Brynjarsdottir and Berliner(2011). Equation (5)
can thus be inverted to estimateTgst given a measurement
of Tobs. The equation is nevertheless not easily invertible be-
cause the problem is ill posed (see Hansen, 1998, and Aster et
al., 2013, for a detailed introduction). In the case considered
herein, the truncated singular value decomposition (SVD; see
Lanczos, 1961, Varah, 1973, and Lawson and Hanson, 1974)
is used to perform the inversion. This approach was intro-
duced in the context of GST estimation byBeltrami et al.
(1992), and has since been a standard tool for analyzing bore-
hole temperatures as paleoclimatic indicators. In this method,
stabilization is achieved by keeping only thep largest singu-
lar values ofM , using an appropriate thresholdε. A general-
ized inverse,Mg

p, can then be formed:

Tgst
= Mg

pTobs
= VpS−1

p UT
p Tobs. (6)

In this equation,Tobs is a vector of borehole temperature ob-
servations,USVT is the SVD ofM , andp is the number of
singular values λi

λmax
> ε. Many methods exist to determine

the optimal number of singular values (seeHansen, 1998,
2010). Herein we select the number of singular values based
on a fixed value ofε = 0.025, which has been defined in pre-
vious studies according to the precision of borehole temper-
ature measurements.

In practice, this method requires the determination of the
equilibrium surface temperatureT0, the geothermal heat flow
density q0, the bottom boundary condition and the time-
varying upper boundary condition from the measuredT (z)

data. Assuming uniform thermophysical properties of the
subsurface, a simple estimate of the geothermal gradient can
be used for inversions:q0 is calculated from the the linear
trend determined from the deepest part of the temperature
profile, which is assumed to be least affected by the recent
ground temperature changes.T0 then follows from upward
continuation of this linear trend.

3 Impact of postglacial warming on the determination
of the steady-state heat flux profile

Here, we use basal temperature values from the MUN-GSM
simulation to quantify the extent of the perturbation resulting
from postglacial warming to steady-state temperature pro-
files. We then use this simulated perturbation to derive spa-
tial maps of the estimated impacts on GST inversions and
estimates of subsurface energy storage over North America
that do not account for the LGC perturbation in their anal-
ysis. In order to assess the subsurface temperature anomaly
field induced by the ensemble of the GSM basal temperature
field, we express the temperature time series (120 time steps
of 1000 yr with constant temperatures) at each grid point as
an anomaly from the local mean over the entire simulation
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means. Figure 2b plots the modeled subsurface temperature anomalies associated with the selected

basal temperatures as a function of depth. A thermal diffusivity of κ = 10−6 m2s was assumed as280

representative of common nonporous crustal rocks (e.g., Drury, 1986; Beardsmore and Cull, 2001;
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Figure 2. (a)Basal temperature evolution simulated by the MUN-
GCM for the last 120 ka.(b) Resultant present-day subsurface tem-
perature perturbations associated with the basal temperature time
series shown in panel(a). (c) Resultant present-day subsurface heat
flux perturbations associated with the basal time series shown in
panel(a).

period. We treat the 75 % probability intervals for each time
series in the same manner. The gridded basal temperature
anomalies are then used as a forcing function, i.e., the time-
varying upper boundary condition, in the forward model ex-
pressed in Eq. (4) to estimate the perturbations to the subsur-
face thermal field resulting from the MUN-GSM 120 ka sur-
face temperature variation and its corresponding uncertainty
envelope.

Basal temperatures are taken from five sites in a latitudi-
nal transect as represented in Fig.1 that also approximate the
locations of observational measurements in boreholes. The
basal temperature time series from these sites are shown in
Fig. 2a as departures from the respective site-specific means.
Figure2b plots the modeled subsurface temperature anoma-
lies associated with the selected basal temperatures as func-
tions of depth. A thermal diffusivity ofκ = 10−6 m2 s−1

was assumed to be representative of common nonporous
crustal rocks (e.g.,Drury, 1986; Beardsmore and Cull, 2001;
Pasquale et al., 2014). Each of the basal temperature histo-
ries cause perturbations within the upper 1000 m of the se-
lected profiles that could obscure the correct estimate of the
geothermal gradient (0 =

dT
dz

) as a function of depth in BTP
studies. Figure2c further plots the perturbation to the heat
flow density (q = −λdT

dz
) as a function of depth under the as-

Figure 3. Heat flux anomalies for depth intervals averaged
over depth intervals of(a) 100–200 m and(b) 500–600 m. Pan-
els below represent the corresponding distribution of the abso-
lute value of the 75 % uncertainty of each of the above heat
flux perturbations. Additional results for the full depth interval
down to 2000 m are given in the Supplement to this article at
http://editor.copernicus.org/index.php?.

sumption of a homogeneous subsurface and a constant ther-
mal conductivityλ = 3.0 W K−1 m−1.

No efforts were made to take into account any geologi-
cal differentiation, vertically or horizontally. In this respect,
it is even less developed than the subsurface module of
MUN-GSM, which includes the effects of a simplified geol-
ogy (sediment versus crystalline), laterally varying heat flux,
the TTOP thermal offset, and a simple permafrost model
(Tarasov and Peltier, 2007). This should be included in future
investigations, as variations in subsurface porosity, heat ca-
pacity, and thermal conductivity have a significant impact on
thermal diffusivity and permafrost-related processes. Thus,
the derived quantities should be seen as low-order estimates.

The subsurface thermal effect of the LGM is spatially vari-
able because of differences in the advance, extent and retreat
of the Laurentide ice sheet. Figure3a, b shows the spatial dis-
tribution of the vertically averaged heat flux perturbation for
two depth ranges of 100–200 m and 500–600 m, respectively,
while Fig. 3b, d illustrates the spatial distribution of the as-
sociated 75 % uncertainty intervals obtained from the MUN-
GSM variability. Positive perturbations refer to heat gain by
the ground subsurface. Negative ones refer to ground heat
loss. According to the MUN-GSM simulations, the heat flux
perturbation is nearly constant for the depth range and loca-
tions at which the great majority of the temperature versus
depth profiles in the borehole climatology database (Pollack
et al., 1998) are available. However, for these depth ranges,
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Figure 4b. For consistency, we used the same synthetic history as described in Beltrami et al. (2011)

over the full domain, despite the fact that these histories vary spatially over our experimental domain.

The spatially homogenous last-millennium history nevertheless simplifies our interpretation of LGC

impacts on BTP analyses by isolating only the spatial heterogeneity of the LGC basal temperature320

changes within our analysis.

We restrict ourselves to three examples of 120-ka basal temperature histories as upper bound-

ary conditions in our analysis. These curves are shown in Figure 4a. Figure 4c shows the com-

bined 119 ka of the glacial-deglacial temperature plus the 1000-year artificial history from Beltrami
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Figure 4. (a) Surface forcing function: temperature change from
the GSM for three of the given sites. (b) Theoretical GSTH for the
most recent 1000 yr to be used as a control.(c) Superposition of
temperature changes from(a) and(b), i.e., the forcing variation at
the surface.

the heat flux perturbations are not spatially homogeneous:
positive heat flux perturbations are persistent and of the same
magnitude in eastern Canada and the northeastern US, while
negative anomalies are apparent in the eastern regions of the
Canadian Arctic.

4 Impact of postglacial warming on the recent GSTH
and subsurface heat content

Section3 quantified the transient effect of the LGC on sub-
surface thermal fields using the basal temperatures simulated
by the MUN-GSM. In the subsequent section, we investigate
how the LGC signal may impact temperature and energy flux
histories estimated for the last millennium from BTP anal-
yses that do not account for the LGC impacts. All global
analyses of BTPs (Pollack et al., 1996; Harris and Chapman,
2001; Beltrami and Bourlon, 2004) have assumed that the in-
fluence of the LGC on BTPs was negligible within the first
600 m of the profiles, the maximum depth that is typically
used to estimate last-millennium surface changes. We there-
fore investigate how studies making these assumptions may
or may not include additional biases due to the unaccounted
LGC impact.

Our approach assumes a synthetic GST history for the last
millennium of the form shown in Fig.4b. For consistency,
we used the same synthetic history as described inBeltrami
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Fig. 5. (a) Subsurface temperature anomalies from the forcing functions in Figure 4c. (b) To simulate the

synthetic temperature versus depth profile shown, we added to the anomalies in (a) an assumed steady-state

with a surface temperature of 8◦C and a geothermal gradient of 20, K km−1 (black solid line). Red dots denote

resulting the steady state as modified by the subsurface anomalies in (a).

et al. (2011). The resulting present-day subsurface temperature anomalies generated by the one-325

dimensional forward model assuming isotropic thermophysical properties are shown in Figure 5a. A

long-term surface temperature of 8◦C and a constant geothermal gradient of 20 K km−1 are added

to these anomalies to generate a set of simulated BTPs based on the simulated locations from the

MUN-GCM. These background steady-state conditions were chosen after Beltrami et al. (2011) for

consistency. An example of one completed BTP is shown in Figure 5b. Note that similar BTPs were330

calculated at each grid point across the modeled domain and used in the standard inversion procedure

described in Section 2.2.

After constructing the synthetic BTPs as described above, the profiles are processed in exactly the

same manner as real-world observations. The lower section of each BTP is fit to a linear function,

which is subtracted from the whole BTP to form a temperature anomaly. Figure 6 shows three335

14

Figure 5. (a) Subsurface temperature anomalies from the forcing
functions in Fig.4c. (b) To simulate the synthetic temperature ver-
sus the depth profile shown, we added to the anomalies in(a) an as-
sumed steady state with a surface temperature of 8◦C and a geother-
mal gradient of 20 K km−1 (black solid line). Red dots denote the
steady state as modified by the subsurface anomalies in(a).

et al.(2011) over the full domain, despite the fact that these
histories vary spatially over our experimental domain. The
spatially homogenous last-millennium history nevertheless
simplifies our interpretation of LGC impacts on BTP anal-
yses by isolating only the spatial heterogeneity of the LGC
basal temperature changes within our analysis.

We restrict ourselves to three examples of 120 ka basal
temperature histories as upper boundary conditions in our
analysis. These curves are shown in Fig.4a. Figure4c shows
the combined 119 kyr of the glacial–deglacial temperature
plus the 1000 yr artificial history fromBeltrami et al.(2011).
The resulting present-day subsurface temperature anoma-
lies generated by the one-dimensional forward model as-
suming isotropic thermophysical properties are shown in
Fig. 5a. A long-term surface temperature of 8◦C and a con-
stant geothermal gradient of 20 K km−1 are added to these
anomalies to generate a set of simulated BTPs based on
the simulated locations from the MUN-GCM. These back-
ground steady-state conditions were chosen afterBeltrami
et al. (2011) for consistency. An example of one completed
BTP is shown in Fig.5b. Note that similar BTPs were calcu-
lated at each grid point across the modeled domain and used
in the standard inversion procedure described in Sect.2.2.

After constructing the synthetic BTPs as described above,
the profiles are processed in exactly the same manner as real-
world observations. The lower section of each BTP is fit to
a linear function, which is subtracted from the whole BTP to
form a temperature anomaly. Figure6 shows three examples
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examples of such anomalies as a function of depth, where the solid and dotted lines of each colour

represent the mean subsurface temperature anomaly at eachaux location and 75% uncertainty range

of the anomalies, respectively. The solid pink lines in each profile are the true subsurface temperature

anomaly for the synthetic 1000- a GSTH used as a reference. The positive biases on the subsurface

anomalies that extend to about 400 m are consistent across the profiles, and appear to have less340

impact on the shape of the temperature perturbation as a function of depth, but more implication

for estimates of the subsurface energy storage that is estimated from the integrated area between the

profiles and a line of zero anomaly.

The temperature anomaly in Figure 6 is consistent with the overall spatially-averaged subsurface

heat content of the domain shown in Figure 7, where the cumulative integrals from the surface to a345

given depth are shown for the case of LGC plus the last millennium history (black), synthetic last

millennium history (red), and their difference (i.e., LGC contribution) (green). These results clearly

indicate that heat content estimates over the complete domain in this study can differ by as much as

50% for cases in which the LGC impact is not addressed.
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Figure 6. Color lines represent the anomaly profiles from functions
in Fig. 4c. Dotted lines denote the 75 % uncertainty range as gen-
erated from the MUN-GCM simulations. Pink lines represent the
perturbation from the artificial GSTH in Fig.4b.

of such anomalies as a function of depth, where the solid and
dotted lines of each color represent the mean subsurface tem-
perature anomaly at each location and the 75 % uncertainty
range of the anomalies, respectively. The solid pink lines in
each profile are the true subsurface temperature anomaly for
the synthetic 1000 a GSTH used as a reference. The posi-
tive biases in the subsurface anomalies that extend to about
400 m are consistent across the profiles, and appear to have
less impact on the shape of the temperature perturbation as
a function of depth, but more implication for estimates of
the subsurface energy storage that is estimated from the inte-
grated area between the profiles and a line of zero anomaly.

The temperature anomaly in Fig.6 is consistent with the
overall spatially averaged subsurface heat content of the do-
main shown in Fig.7, where the cumulative integrals from
the surface to a given depth are shown for the case of LGC
plus the last millennium history (black), synthetic last millen-
nium history (red), and their difference (i.e., LGC contribu-
tion) (green). These results clearly indicate that heat content
estimates over the complete domain in this study can differ
by as much as 50 % for cases in which the LGC impact is not
addressed.

The subsurface cumulative heat integrals do not change
much below 300 m for this specific experiment. The subsur-
face energy contribution from the LGC according to these es-
timates for the first 150 m is about 1 ZJ (1 ZJ = 1021 J), which
is about one-tenth of the energy stored in the subsurface for
the second half of the 20th century, estimated from the un-
corrected global database byBeltrami (2002a) for all con-
tinental areas, and about one-fifth of that estimated for the
Northern Hemisphere’s land (Beltrami et al., 2006); clearly,
a non-negligible quantity of energy.
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Fig. 7. Mean heat content change over the experimental domain as a function of depth. Points represents the

heat content integral from the surface to a given depth with respect to geothermal equilibrium. Contributions

from the GSTH and (LGC + GSTH) are represented by the red and black curves, respectively. The green curve

represents their difference, that is, the contribution of LGC to subsurface heat content.
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Figure 7. Mean heat content change over the experimental domain
as a function of depth. Points represent the heat content integral
from the surface to a given depth with respect to geothermal equi-
librium. Contributions from the GSTH and (LGC+ GSTH) are rep-
resented by the red and black curves, respectively. The green curve
represents their difference, that is, the contribution of LGC to sub-
surface heat content.

The overall cumulative subsurface energy contribution to
the subsurface energy content as a single quantity is shown
in Fig. 7; however, there are important spatial variations, as
expected from the variability of the LGM impact at the sur-
face. The spatial variability is displayed in Fig.8, where the
mean subsurface energy contributions are shown for several
depth ranges as stated in the caption. Figure9 shows the cor-
responding 75 % uncertainties.

These results represent the spatial distribution of the po-
tential subsurface energy that has remained unaccounted for
(Beltrami, 2002a; Beltrami et al., 2006) in previous estimates
of the ground energy contribution from geothermal data to
the energy balance of the climate system. The magnitude
of such contributions could be important, as climate mod-
els attempt to include surface processes and soil thermody-
namics in their simulations. This is particularly important,
as spatial-scale resolution continuously increases in nested
regional models; that is, local effects recorded in boreholes
may be helpful for ascertaining surface or subsurface pro-
cesses at locations where these processes can be modeled on
small scales.

To date, most borehole climate reconstructions have dealt
with estimating the ground surface temperature changes over
the last millennia, rather than estimating the subsurface en-
ergy content. Therefore, we have also estimated the temporal
variability of the upper boundary condition from inversion at
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Figure 8. Heat content contribution per unit area from the LGC.
Shown are the estimates of the contribution to the subsurface ther-
mal energy from long-term climatic changes. Results are shown for
depth ranges of(a) 0–80,(b) 0–160,(c) 0–320, and(d) 0–600 m.

each grid point using the synthetic borehole temperature pro-
files generated for two sets of artificial data; one of them gen-
erated from the forward model of the synthetic last millen-
nium history, and another generated from the LGC merged
with this time series.

Three examples of the results from inversion are shown in
Fig. 10. Here, the pink lines represent the inversion results
for the true synthetic last millennium history, and the color
lines represent the inversion results for the LGC plus the last
millennium cases. The color ranges represent the 75 % un-
certainty intervals for the LGC and last millennium cases.
In Fig. 11, we show the spatial distribution of the resulting
deviations of estimated last millennium histories at different
time intervals for each grid point. Note again that we have
assumed a constant last millennium history at all locations
in the domain; thus, the resulting spatial variations are due
entirely to differences in the LGC basal histories locally.

5 Discussion and conclusions

In this paper, we assess the potential magnitude of the ther-
mal energy contributions from the LGC to the shallow sub-
surface for those regions that had significant ice coverage
during the LGC. In this context, the results from our experi-
ments indicate that the subsurface disturbances to the semi-
equilibrium geothermal gradient are not large at depths from
the surface to 600 m, where most of the data in the bore-
hole climatology database used in existing global studies
are found. GSTHs from previous studies would show qual-
itatively similar characteristics in their temporal evolution,
although the magnitude of the temperature changes would

Figure 9. Spatial distribution of the 75 % uncertainties in subsur-
face thermal energy storage for the corresponding panels in Fig.8.

be different, because the energy contributions from the LGC
distort the quasi semi-equilibrium geothermal gradient, and
thus alter the reference against which GST changes are esti-
mated. Although some significant changes in the geothermal
gradient within this depth range are observed at some loca-
tions (e.g., the magenta line in Fig.2), they usually occur at
higher latitudes where differences may be due to permafrost
and active layer phenomena, so that the purely conductive
air–ground coupling assumption in our forward model does
not translate well into a one-dimensional conductive subsur-
face model.

Thus, according to our experimental estimates of the effect
of the LGC on the thermal regime of the shallow subsurface
from the MUN-GSM, the global temperature reconstructions
(Pollack et al., 1996; Harris and Chapman, 2001; Beltrami
and Bourlon, 2004) will not be largely affected. The effect
of the LGC on our synthetic GSTH example appears to be
small for the last 150 yr. From 1500 to 1850 CE, its effect
amounts to a suppression of the warming; thus, the most rel-
evant effect may be a larger magnitude of warming for the
recovery from the Little Ice Age (LIA) than what BTP anal-
yses have already estimated. This effect nevertheless would
be expected to have the largest influence on only a fraction
of BTPs at the northern latitudes, in other words, those areas
that have been under the ice sheet, and those that have the
subsurface signature of the LIA.

Our results present, for the first time, an estimation of the
energy contribution to the ground subsurface from the LGC.
The spatial variability of the subsurface energy remaining
from the LGC is significant. Over the complete experimental
domain, the integral for the cumulative subsurface heat con-
tent due to the thermal effects of the LGC is about 1 ZJ for the
first 100 m and 2 ZJ for the first 300 m. The magnitude of sub-
surface thermal perturbation does not change significantly
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Fig. 10. Sample mean GSTH from inversion of subsurface temperature anomalies. Dashed lines denote the 75%

confidence intervals. Pink lines denote the ”true” GSTH obtained using the theoretical function of Figure 3.
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Figure 10. Sample mean GSTH from inversion of subsurface tem-
perature anomalies. Dashed lines denote the 75 % confidence inter-
vals. Pink lines denote the “true” GSTH obtained using the theoret-
ical function of Fig.3.

below this depth, because our experiment is limited to the
maximum depth of existing global GSTH analyses (600 m).
However, this quantity of heat is on the same order of magni-
tude as the heat absorbed by the ground in the last 50 yr of the
20th century, which was estimated from geothermal data to
be 4.8 ZJ for the Northern Hemisphere, and about 8 ZJ for all
continental areas except Antarctica. The total heat absorbed
by the continental areas of the NH since the beginning of in-
dustrialization is estimated to be 13.2 ZJ. 36 % of this heat
gain occurred in the last 50 yr of the 20th century (Beltrami,
2002b; Beltrami et al., 2006).

Recent calls have noted the importance of monitoring the
temporal rate of change in the energy stored in climate sys-
tem components (Hansen et al., 2011, 2013). Although most
of the energy changes will be associated with the ocean
(Kosaka and Xie, 2013), where the majority of the energy
has been stored (Rhein et al., 2013; Goddard, 2014), it re-
mains relevant to monitor the energy stored in other climate
subsystems, including the continental subsurface.

To explore the potential of geothermal data in estimating
future continental heat storage, we assume a conservative es-
timate of a 1 K increase in surface temperature, and examine
the expected changes in the continental heat content for this
situation. The time derivative of the temperature for a step
change in the surface temperature is

∂T (z)

∂t
= T0

z

2
√

πκt3
exp

[
−

z2

4κt

]
. (7)

For a 1 K increase at 100 yr BP, this function has a maxi-
mum value at 75 m, and over a 10 yr period, the tempera-
ture change will be 0.024 K. For the same change at 50 and
20 yr BP, the maximum rates of change will be at 56 and
36 m, with changes of 0.05 and 0.12 K over 10 yr, respec-
tively (Mareschal and Beltrami, 1992). For the warming ex-
pected at most locations in central and eastern Canada (Bel-
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Fig. 11. Spatial distribution of differences in estimated GSTH with and without the influence of the LGC;

i.e. blue areas are those where reconstructions are colder than the true solution, and red areas are those where

they are warmer. Shown are the GST differences over the time intervals from (a) 0–150 years BP, (b) 150–

300 years BP, (c) 300–450 years BP, and (d) 450–600 years BP.

that the purely conductive air-ground coupling assumption in our forward model does not translate395
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Our results present for the first time, an estimation of the energy contribution to the ground sub-

surface from the LGC. The spatial variability of the subsurface energy remaining from the LGC are

20

Figure 11. Spatial distribution of differences in estimated GSTH
with and without the influence of the LGC; i.e., the blue areas are
those where reconstructions are colder than the true solution, and
red areas are those where they are warmer. Shown are the GST dif-
ferences over the time intervals from(a) 0 to 150 yr BP,(b) 150 to
300 yr BP,(c) 300 to 450 yr BP, and(d) 450 to 600 yr BP.

trami and Bourlon, 2004), the maximum temperature change
in the subsurface temperature profile should be on the order
of 50 mK in a decade, and the detection of such changes is
already achievable.

In order to estimate the expected future rate of change of
the heat stored in the subsurface due to changes in the sur-
face temperature, we can assume a 1 K step change taking
place at present; thus, the subsurface heat gain in the first
600 m will be on the order of 60, 134 and 190 MJm−2 for
10, 50 and 100 a into the future, respectively. These corre-
spond to mean rates of subsurface heat changes of about 190,
86, and 60 mWm−2, respectively. Such changes are signifi-
cantly larger than most of the energy fluxes measured from
the interior of the Earth, and should be easily detectable, par-
ticularly in areas of the Northern Hemisphere where the pro-
jected warming is expected to be much higher than 1 K.

Comparing these numbers with the estimates provided by
Beltrami et al. (2006), the mean fluxes for the period between
1780 and 1980 from existing borehole temperature data are
about 21 and 30 mWm−2, with the estimated cumulative heat
flux absorbed by the ground since the start of industrializa-
tion at about 100 mWm−2.

Preliminary subsurface heat content estimates from bore-
hole temperature data in the experimental domain for North
America are 1 ZJ from the surface to a depth of 100 m ob-
tained from 372 BTPs, and 1.96 ZJ to a depth of 200 m ob-
tained from 260 BTPs. The LGC cumulative contributions
to subsurface heat content (green curve in Fig. 9), from the
ground surface to the above depths, are 0.6 ZJ and 1.2 ZJ,
respectively. These results indicate that the contribution of
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LGC to the current subsurface heat content, according to the
MUN-GSM, is about 60 % of the measured energy, and can-
not be ignored.

Overall, our results suggest that it is potentially important
to monitor the temporal variation of temperature profiles. In
principle, such observations would allow (1) a determination
of the rate of change of continental energy storage over time
periods as short as one decade, while minimizing the un-
certainties, (2) the acquisition of robust GSTH estimates by
differentiating between stationary and transient perturbations
to the geothermal gradient, as well as increasing the GSTH
model resolution (Beltrami and Mareschal, 1995), and (3) as-
sistance in decreasing the uncertainties of the thermal regime
of the soil, of which a proper characterization plays an impor-
tant role in the modeling of near-surface phenomena, such as
those governing the spatial distribution of permafrost and the
associated active layer changes, as well as those related to
soil carbon and its stability in a future climate.

The Supplement related to this article is available online
at doi:10.5194/cp-10-1693-2014-supplement.
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Čermák, V. and Rybach, L.: Thermal conductivity and specific heat
of minerals and rocks, in: Landolt Börnstein: Physical Properties
of Rocks, Group V, Geophysics, Volume 1a, edited by: Angen-
heister, G., Springer, Berlin, 305–343, 1982.

www.clim-past.net/10/1693/2014/ Clim. Past, 10, 1693–1706, 2014

http://dx.doi.org/10.5194/cp-10-1693-2014-supplement
http://dx.doi.org/10.1029/2004JF000224
http://dx.doi.org/10.1029/2005JF000293
http://dx.doi.org/10.1016/j.foreco.2007.01.088
http://dx.doi.org/10.1029/2001GL014310
http://dx.doi.org/10.1029/2006GL025676
http://dx.doi.org/10.5194/cp-7-745-2011
http://dx.doi.org/10.10292003JB002782
http://dx.doi.org/10.1214/10--AOAS452


1704 H. Beltrami et al.: Glacial cycle impact

Church, J. A., White, N. J., Konikow, L. F., Domingues, C. M., Cog-
ley, J. G., Rignot, E., Gregory, J. M., van den Broeke, M. R.,
Monaghan, A. J., and Velicogna, I.: Revisiting the Earth’s sea-
level and energy budgets from 1961 to 2008, Geophys. Res. Lett.,
38, L18601, doi:10.1029/2011GL048794, 2011.

Coats, S., Smerdon, E., Seager, R., Cook, B., and González-
Rouco, J.: Megadroughts in Southwestern North America in
millennium-length ECHO-G simulations and their comparison
to proxy drought reconstructions, J. Climate, 26, 7635–7649,
doi:10.1175/JCLI-D-12-00603.1, 2013.

Davin, E. L., de Noblet-Ducoudré, N., and Friedlingstein, P.: Im-
pact of land cover change on surface climate: Relevance of
the radiative forcing concept, Geophys. Res. Lett., 34, L13702,
doi:10.1029/2007GL029678, 2007.

Demetrescu, C., Nitoiu, D., Boroneant, C., Marica, A., and Lu-
caschi, B.: Thermal signal propagation in soils in Romania: con-
ductive and non-conductive processes, Clim. Past, 3, 637–645,
doi:10.5194/cp-3-637-2007, 2007.

Diochon, A. and Kellman, L.: Natural abundance measurements
of 13C indicate increased mineralization in deep mineral
soil after forest disturbance, Geoph. Res. Lett., 35, L14402,
doi:10.1029/2008GL034795, 2008.

Drury, M.: Thermal Conductivity, Thermal Diffusivity, Density and
Porosity of Crystalline Rocks, Open file report 86-5, GSC. Earth
Physics Branch, Ottawa, 1986.

Fernández-Donado, L., González-Rouco, J. F., Raible, C. C., Am-
mann, C. M., Barriopedro, D., García-Bustamante, E., Jungclaus,
J. H., Lorenz, S. J., Luterbacher, J., Phipps, S. J., Servonnat, J.,
Swingedouw, D., Tett, S. F. B., Wagner, S., Yiou, P., and Zorita,
E.: Large-scale temperature response to external forcing in simu-
lations and reconstructions of the last millennium, Clim. Past, 9,
393–421, doi:10.5194/cp-9-393-2013, 2013.

Goddard, L.: Heat hide and seek, Nat. Clim. Change, 4, 158–161,
2014.

González-Rouco, J. F., Beltrami, H., Zorita, E., and Stevens,
M. B.: Borehole climatology: a discussion based on con-
tributions from climate modeling, Clim. Past, 4, 1–80,
doi:10.1029/2003GL018264, 2009.

Greve, R. and Blatter, H.: Dynamics of Ice Sheets and Glaciers,
Adv. Geophys. Environ. Mechan. Mathemat., Springer-Verlag,
Berlin Heidelberg doi:10.1007/978-3-642-03415-2, 2009.

Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Genio,
A. D., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perl-
witz, J., Russell, G., Schmidt, G. A., and Tausnev, N.: Earth’s
Energy Imbalance: Confirmation and Implications, Science, 308,
1431–1435, 2005.

Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K.:
Earth’s energy imbalance and implications, Atmos. Chem. Phys.,
11, 13421–13449, doi:10.5194/acp-11-13421-2011, 2011.

Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Acker-
man, F., Beerling, D. J., Hearty, P. J., Hoegh-Guldberg, O., Hsu,
S.-L., Parmesan, C., Rockstrom, J., Rohling, E. J., Sachs, J.,
Smith, P., Steffen, K., Van Susteren, L., von Schuckmann, K.,
and Zachos, J. C.: Assessing “Dangerous Climate Change”: Re-
quired Reduction of Carbon Emissions to Protect Young Peo-
ple, Future Generations and Nature, PLoS ONE, 8, e81648,
doi:10.1371/journal.pone.0081648, 2013.

Hansen, P. C.: Rank Deficient and Discrete Ill-Posed Problems,
SIAM, Philadelphia, 1998.

Hansen, P. C.: Discrete Inverse Problems. Insight and Algorithms.,
SIAM, Philadelphia PA, 2010.

Harris, R. N. and Chapman, D. S.: Mid-Latitude (30–60◦ N) cli-
matic warming inferred by combining borehole temperatures
with surface air temperatures, Geophys. Res. Lett., 28, 747–750,
2001.

Hartmann, A. and Rath, V.: Uncertainties and shortcomings
of ground surface temperature histories derived from inver-
sion of temperature logs, J. Geophys. Engin., 2, 299–311,
doi:10.1088/1742-2132, 2005.

Hotchkiss, W. and Ingersoll, L.: Post-glacial time calculations from
recent geothermal measurements in the Calumet copper mines,
J. Geology, 42, 113–142, 1934.

Huang, S.: 1851–2004 annual heat budget of the conti-
nental landmasses, Geophys. Res. Lett., 33, L04707,
doi:10.1029/2005GL025300, 2006.

Huang, S., Pollack, H. N., and Shen, P. Y.: Temperature trends over
the past five centuries reconstructed from borehole temperatures,
Nature, 403, 756–758, 2000.

Jansen, E., Overpeck, J., Briffa, K., Duplessy, J.-C., Joos, F.,
Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W.,
Rahmstorf, S., Ramesh, R., Raynaud, D., Rind, D., Solomina, O.,
Villalba, R., and Zhang, D.: Palaeoclimate, in: Climate Change
2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change, edited by: Solomon, S., Qin,
D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M.,
and Miller, H., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2007.

Jaupart, C. and Marechal, J.-C.: Heat Generation and Transport in
the Earth, Cambridge Univerity Press, New York, 2011.

Jessop, A. M.: The distribution of glacial perturbation of heat flow
in Canada, Can. J. Earth Sci., 8, 162–166, 1971.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu,
Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo,
K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R.,
Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis
Project, Bull. Am. Meteorol. Soc., 77, 437–471, 1996.

Kellman, L., Beltrami, H., and Risk, D.: Changes in seasonal soil
respiration with pasture conversion to forest in Atlantic Canada,
Biogeochemistry, 82, 101–109, 2006.

Kosaka, Y. and Xie, S.-P.: Recent global-warming hiatus tied to
equatorial Pacific surface cooling, Nature, advance online pub-
lication, doi:10.1038/nature12534, 2013.

Lanczos, C.: Linear Differential Operators, Van Nostrand, London,
1961.

Lawrence, D., Slater, A., Romanovsky, V., and Nicolsky, D.:
The sensitivity of a model projection of near-surface per-
mafrost degradation to soil column depth and inclusion
of soil organic matter, J. Geophys. Res., 113, F02011,
doi:10.1029/2007JF000883, 2008.

Lawson, C. and Hanson, R.: Solving Least Squares Problems, John
Wiley and Sons, Inc., New York, 1974.

Levitus, S., Antonov, J., Wang, J., Delworth, T. L., Dixon, K. W.,
and Broccoli, A. J.: Anthropogenic warming of the Earth’s cli-
mate system, Science, 292, 267–270, 2001.

Clim. Past, 10, 1693–1706, 2014 www.clim-past.net/10/1693/2014/

http://dx.doi.org/10.1029/2011GL048794
http://dx.doi.org/10.1175/JCLI-D-12-00603.1
http://dx.doi.org/10.1029/2007GL029678
http://dx.doi.org/10.5194/cp-3-637-2007
http://dx.doi.org/10.1029/2008GL034795
http://dx.doi.org/10.5194/cp-9-393-2013
http://dx.doi.org/10.1029/2003GL018264
http://dx.doi.org/10.1007/978-3-642-03415-2
http://dx.doi.org/10.5194/acp-11-13421-2011
http://dx.doi.org/10.1371/journal.pone.0081648
http://dx.doi.org/10.1088/1742-2132
http://dx.doi.org/10.1029/2005GL025300
http://dx.doi.org/10.1038/nature12534
http://dx.doi.org/10.1029/2007JF000883


H. Beltrami et al.: Glacial cycle impact 1705

Levitus, S., Antonov, J., and Boyer, T.: Warming of the
world ocean, 1955–2003, Geophys. Res. Lett., 32, L02604,
doi:10.1029/2004GL021592, 2005.

Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia,
H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov,
D., Yarosh, E. S., and Zweng, M. M.: World ocean heat content
and thermosteric sea level change (0–2000 m), 1955–2010, Geo-
phys. Res. Lett., 39, L10603, doi:10.1029/2012GL051106, 2012.

Livingstone, S., Clark, C., and Tarasov, L.: Modelling North Amer-
ican palaeo-subglacial lakes and their meltwater drainage path-
ways, Earth Planet. Sci. Lett., 375, 13–33, 2013.

Majorowicz, J. and Wybraniec, S.: New terrestrial heat flow map
of Europe after regional paleoclimatic correction application,
Int. J. Earth Sci., 100, 881–887, doi:10.1007/s00531-010-0526-
1, 2011.

Mareschal, J.-C. and Beltrami, H.: Evidence for recent warm-
ing from perturbed thermal gradients: examples from eastern
Canada, Clim. Dyn., 6, 135–143, 1992.

Marshall, S., James, T., and Clarke, G.: North American ice sheet
reconstructions at the Last Glacial Maximum, Quat. Sci. Rev.,
21, 175–192, 2002.

Murphy, D. M., Solomon, S., Portmann, R. W., Rosenlof, K. H.,
Forster, P. M., and Wong, T.: An observationally based energy
balance for the Earth since 1950, J. Geophys. Res. Atmos., 114,
D17107, doi:10.1029/2009JD012105, 2009.

Ortega, P., Montoya, M., González-Rouco, F., Beltrami, H., and
Swingedouw, D.: Variability of the ocean heat content during the
last millennium: an assessment with the ECHO-g Model, Clim.
Past, 9, 547–565, doi:10.5194/cp-9-547-2013, 2013.

Pasquale, V., Verdoya, M., and Chiozzi, P.: Geothermics. Heat
Flow in the Lithosphere, Springer, Heidelberg, doi:10.1007/978-
3-319-02511-7, 2014.

Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J. E., Neukom,
R., Stevenson, S., Ackerley, D., Brown, J. R., Fischer, M. J., and
van Ommen, T. D.: Paleoclimate Data–Model Comparison and
the Role of Climate Forcings over the Past 1500 Years, J. Cli-
mate, 26, 6915–6936, 2013.

Pielke, R. A.: Heat Storage Within the Earth System, Bulletin of the
American Meteorological Society, 84, 331–335, 2003.

Pollack, H. N. and Huang, S.: Climate reconstruction from subsur-
face temperatures, Annu. Rev. Earth. Planet. Sci., 28, 339–365,
2000.

Pollack, H. N., Shen, P. Y., and Huang, S.: Inference of ground sur-
face temperature history from subsurface temperature data: in-
terpreting ensembles of borehole logs, Pageoph, 147, 537–550,
1996.

Pollack, H. N., Huang, S., and Shen, P. Y.: Climate change record
in subsurface temperatures: a global perspective, Science, 282,
279–281, 1998.

Randall, D., Wood, R., Bony, S., Colman, R., Fichefet, T., Fyfe,
J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer,
R., Sumi, A., and Taylor, K.: Cilmate Models and Their Evalua-
tion, in: Climate Change 2007: The Physical Science Basis. Con-
tribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by:
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Av-
eryt, K., Tignor, M., and Miller, H., Cambridge University Press,
2007.

Rath, V. and Mottaghy, D.: Smooth inversion for ground surface
temperature histories: estimating the optimum regularization pa-
rameter by generalised cross-validation, Geophys. J. Internat.,
171, 1440–1448, doi:10.1111/j.1365-246X.2007.03587.x, 2007.

Rath, V., González-Rouco, J., and Goosse, H.: Impact of postglacial
warming on borehole reconstructions of last millennium temper-
atures, Clim. Past, 8, 1059–1066, doi:10.5194/cp-8-1059-2012,
2012.

Rhein, M., Rintoul, S., Aoki, S., Campos, E., Chambers, D., Feely,
R., Gulev, S., Johnson, G., Josey, S., Kostianoy, A., Mauritzen,
C., Roemmich, D., Talley, L., and Wang, F.: Climate Change
2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmen-
tal Panel on Climate Change, chap. Observations: Ocean, Cam-
bridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2013.

Riseborough, D. W.: The mean annual temperature at the top of
permafrost, the TTOP model, and the effect of unfrozen water,
Permafr. Periglac. Proc., 13, 137–143, 2002.

Risk, D., Kellman, L., and Beltrami, H.: Carbon dioxide in soil
profiles: Production and temperature dependence, Geophys. Res.
Lett., 29, 11-1–11-4, 2002.

Risk, D., Kellman, L., and Beltrami, H.: A new method for in situ
soil gas diffusivity measurement and applications in the monitor-
ing of subsurface CO2 production, J. Geopys. Res., 113, G02018,
doi:10.1029/2007JG000445, 2008.

Rolandone, F., Mareschal, J.-C., and Jaupart, C.: Heat flow
at the base of the Laurentide Ice Sheet inferred from
borehole temperature data, Geophys. Res. Lett., 30, 1944,
doi:10.1029/2003GL018046, 2003.

Saw, J. G., Yang, M. C. K., and Mo, T. C.: Chebyshev Inequality
with Estimated Mean and Variance, The American Statistician,
38, 130–132, 1984.

Schmidt, H., Rast, S., Bunzel, F., Esch, M., Giorgetta, M., Kinne,
S., Krismer, T., Stenchikov, G., Timmreck, C., Tomassini, L., and
Walz, M.: Response of the middle atmosphere to anthropogenic
and natural forcings in the CMIP5 simulations with the Max
Planck Institute Earth system model, J. Adv. Model. Earth Syst.,
5, 98–116, doi:10.1002/jame.20014, 2013.

Schmidt, W. L., Gosnold, W. D., and Enz, J. W.: A decade of air–
ground temperature exchange from Fargo, North Dakota, Glob.
Planet. Change, 29, 311–325, 2001.

Slagstad, T., Balling, N., Elvebakk, H., Midttømme, K., Olesen,
O., Olsen, L., and Pascal, C.: Heat-flow measurements in Late
Palaeoproterozoic to Permian geological provinces in south and
central Norway and a new heat-flow map of Fennoscandia and
the NorwegianGreenland Sea, Tectonophysics, 473, 341–361,
2009.

Smerdon, J. E., Pollack, H. N., Enz, J. W., and Lewis,
M. J.: Conduction-dominated heat transport of the annual
temperature signal in soil, J. Geophys. Res., 108, 2431,
doi:10.1029/2002JB002351, 2003.

Smerdon, J. E., Pollack, H. N., Cermak, V., Enz, J. W., Kresl, M.,
Šafanda, J., and Wehmiller, J. F.: Air-ground temperature cou-
pling and subsurface propagation of annual temperature signals,
J. Geophys. Res., 109, D21107, doi:10.1029/2004JD005056,
2004.

Smerdon, J. E., Pollack, H. N., Cermak, V., Enz, J. W., Kresl, M.,
Safanda, J., and Wehmiller, J. F.: Daily, seasonal and annual rela-

www.clim-past.net/10/1693/2014/ Clim. Past, 10, 1693–1706, 2014

http://dx.doi.org/10.1029/2004GL021592
http://dx.doi.org/10.1029/2012GL051106
http://dx.doi.org/10.1007/s00531-010-0526-1
http://dx.doi.org/10.1007/s00531-010-0526-1
http://dx.doi.org/10.1029/2009JD012105
http://dx.doi.org/10.5194/cp-9-547-2013
http://dx.doi.org/10.1007/978-3-319-02511-7
http://dx.doi.org/10.1007/978-3-319-02511-7
http://dx.doi.org/10.1111/j.1365-246X.2007.03587.x
http://dx.doi.org/10.5194/cp-8-1059-2012
http://dx.doi.org/10.1029/2007JG000445
http://dx.doi.org/10.1029/2003GL018046
http://dx.doi.org/10.1002/jame.20014
http://dx.doi.org/10.1029/2002JB002351
http://dx.doi.org/10.1029/2004JD005056


1706 H. Beltrami et al.: Glacial cycle impact

tionships between air and subsurface temperatures, J. Geophys.
Res., 111, D07101, doi:10.1029/2004JD005578, 2006.

Smerdon, J. E., Beltrami, H., Creelman, C., and Stevens, M. B.:
Characterizing land surface processes: A quantitative analysis
using air-ground thermal orbits, J. Geoph. Res., 114, D15102,
doi:10.1029/2009JD011768, 2009.

Smith, M. W. and Riseborough, D. W.: Permafrost monitoring and
detection of climate change, Permafr. Periglac. Proc., 7, 301–
309, 1996.

Smith, M. W. and Riseborough, D. W.: Climate and the Limits of
Permafrost: A Zonal Analysis, Permafr. Periglac. Proc., 13, 1–
15, 2002.

Stensrud, D. J.: Parameterization schemes: keys to understand-
ing numerical weather prediction models, Cambridge University
Press, 2007.

Stieglitz, M. and Smerdon, J.: Characterizing Land-Atmosphere
coupling and the implications for subsurface thermodynamics,
J. Climate, 20, 21–37, 2007.

Stieglitz, M., Dery, S. J., Romanovsky, V. E., and Ostercamp, T. E.:
The role of snow cover in the warming of the artic permafrost,
Geophys. Res. Lett., 30, 1721, doi:10.1029/2003GL017337,
2003.

Sushama, L., Laprise, R., Caya, D., Verseghy, D., and Allard,
M.: An RCM projection of soil thermal and moisture regimes
for North American permafrost zones, Geophys. Res. Lett., 34,
L20711, doi:10.1029/2007GL031385, 2007.

Tarasov, L. and Peltier, W. R.: Impact of thermomechanical ice sheet
coupling on a model of the 100 kyr ice age cycle, J. Geophys.
Res., 104, 9517–9545, 1999.

Tarasov, L. and Peltier, W. R.: Greenland glacial history and lo-
cal geodynamic consequences, Geophys. J. Int., 150, 198–229,
2002.

Tarasov, L. and Peltier, W. R.: Greenland glacial history, borehole
constraints and Eemian extent, J. Geophys. Res., 108, 2124–
2143, 2003.

Tarasov, L. and Peltier, W. R.: A geophysically constrained large
ensemble analysis of the deglacial history of the North American
ice sheet complex, Quat. Sci. Rev., 23, 359–388, 2004.

Tarasov, L. and Peltier, W. R.: Coevolution of continental ice
cover and permafrost extent over the last glacial-interglacial
cycle in North America, J. Geophys. Res., 112, F02S08,
doi:10.1029/2006JF000661, 2007.

Tarasov, L., Dyke, A. S., Neal, R. M., and Peltier, W.: A data-
calibrated distribution of deglacial chronologies for the North
American ice complex from glaciological modeling, Earth
Planet. Sci. Lett., 315/316, 30–40, 2012.

Trenberth, K. E.: An imperative for climate change planning: track-
ing Earth’s global energy, Curr. Opin. Environ. Sustainab., 1, 19–
27, 2009.

Varah, J. M.: On the Numerical Solution of Ill-conditioned Linear
Systems with Applications to Ill-posed Problems, SIAM J. Nu-
mer. Anal., 10, 257–267, 1973.

Wang, J. and Bras, R.: Ground heat flux estimated from surface soil
temperature, J. Hydrology, 216, 214–226, 1999.

Westaway, R. and Younger, P. L.: Accounting for palaeoclimate
and topography: A rigorous approach to correction of the British
geothermal dataset, Geothermics, 48, 31–51, 2013.

Zhu, J. and Liang, X.-Z.: Regional climate model simulations of
US soil temperature and moisture during 1982-2002, J. Geophys.
Res., 110, D24110, doi:10.1029/2005JD006472, 2005.

Clim. Past, 10, 1693–1706, 2014 www.clim-past.net/10/1693/2014/

http://dx.doi.org/10.1029/2004JD005578
http://dx.doi.org/10.1029/2009JD011768
http://dx.doi.org/10.1029/2003GL017337
http://dx.doi.org/10.1029/2007GL031385
http://dx.doi.org/10.1029/2006JF000661
http://dx.doi.org/10.1029/2005JD006472

