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Abstract. The orbital-timescale dynamics of the Quaternary
Asian summer monsoons (ASM) are frequently attributed
to precession-dominated northern hemispheric summer in-
solation. However, this long-term continuous ASM variabil-
ity is inferred primarily from oxygen isotope records of sta-
lagmites, mainly from Sanbao cave in mainland China, and
may not provide a comprehensive picture of ASM evolu-
tion. A new spliced stalagmite oxygen isotope record from
Yangkou cave tracks summer monsoon precipitation vari-
ation from 124 to 206 thousand years ago in Chongqing,
southwest China. Our Yangkou record supports that the evo-
lution of ASM was dominated by the North Hemisphere so-
lar insolation on orbital timescales. When superimposed on
the Sanbao record, the precipitation time series referred from
Yangkou cave stalagmites supports the strong ASM periods
at marine isotope stages (MIS) 6.3, 6.5, and 7.1 and weak
ASM intervals at MIS 6.2, 6.4, and 7.0. This consistency
confirms that ASM events affected most of mainland China.
Except for the solar insolation forcing, the large amplitude
of minimum δ18O values in Yangkou record during glacial
period, such as MIS 6.5, could stem from the enhanced pre-
vailing Pacific trade wind and/or continental shelf exposure
in the Indo–Pacific warm pool.

1 Introduction

Climate in East Asia, the most densely populated region in
the world, is profoundly influenced by the Asian monsoon
(AM), which includes the Indian monsoon and East Asian
monsoon sub-systems. Asian summer monsoon (ASM) pre-
cipitation strongly governs regional vegetation, agriculture,
culture, and economies (e.g., Cheng et al., 2012a), and even
affected the stability of Chinese dynastic rule (Zhang et al.,
2008; Tan et al., 2011).

Our current understanding of ASM variation over the past
500 kyr BP (before AD 1950) has been reconstructed using
oxygen isotope records of Chinese stalagmites (Wang et
al., 2008; Cheng et al., 2012b) with the advantages of ab-
solute and high-precision chronologies (e.g., Cheng et al.,
2000, 2013; Shen et al., 2002, 2012). Stalagmite-inferred
orbital-scale ASM intensity closely follows the change in
precession-dominated northern hemispheric (NH) summer
insolation (NHSI) (Wang et al., 2008; Cheng et al., 2012b).
However, these 100s kyr records were mainly from a sin-
gle cave, namely Sanbao cave, located in Hubei Province,
China (Fig. 1; Wang et al., 2008; Cheng et al., 2012b). Uti-
lizing only one site leads to uncertainties in the spatial ex-
tent of Quaternary ASM evolution. These uncertainties stem
from differences in local or regional climatic and environ-
mental conditions (Lachniet, 2009), hydrological variability
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Figure 1. (A) Map of precipitation anomaly (mm day−1) in June,
July, and August (JJA) of AD 1998–2000 during a La Niña
event from July 1998 to April 2001 (http://www.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) com-
pared with the averaged state of JJA from 1980 to 2010. Triangle
symbols denote cave sites of Yangkou (this study), Sanbao (Wang
et al., 2008), and Hulu (Cheng et al., 2006). Solid circles indi-
cate marine sediment cores of ODP806B and TR163-19 (Lea et al.,
2000). Arrows depict present ground wind directions of the ISM
and EASM and also trade wind in the equatorial Pacific. Summer
precipitation intensity in eastern and southern China was enhanced
during the La Niña event.(B) An enlarged map of precipitation
anomaly with cave sites of Yangkou, Sanbao, and Hulu.

of monsoonal sources (e.g., Dayem et al., 2010; Clemens et
al., 2010; Pausata et al., 2011), and interactions between cli-
matic subsystems (e.g., Maher and Thompson, 2012; Tan,
2014).

Sanbao records, for example, show distinct ASM events at
marine isotope stages (MIS) 6.3 and 6.5 during the penulti-
mate glacial time and a weaker summer monsoon during the
penultimate glacial maximum (PGM) at MIS 6.2 (Fig. 1 of
Wang et al., 2008). To clarify whether this combination of
weak PGM ASM intensities and strong ASM events during
the penultimate glacial–interglacial (G–IG) period are local
effects, we built an integrated stalagmite oxygen stable iso-
tope record from Yangkou cave, Chongqing, China, covering
124–206 kyr BP (Fig. 1). Through comparison with records
from other Chinese caves (Cheng et al., 2006, 2009; Wang et
al., 2008) confirms the fidelity of Sanbao cave-inferred ASM
intensities.

2 Material and methods

2.1 Regional settings and samples

Stalagmites were collected from Yangkou cave (29◦02′ N,
107◦11′ E; altitude: 2140 m; length: 2245 m), located at
Jinfo Mountain National Park, Chongqing City, southwestern
China (Fig. 1) during two field trips in October 2010 and July
2011. The cave, developed in Permian limestone bedrock, is
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Figure 2. Photographs of the five stalagmites collected from
Yangkou cave. Brown dashed curves show hiatuses. Straight lines
represent subsampling routes for oxygen isotope measurement. Yel-
low curves denote drilled subsamples for U-Th dating. White dots
are the subsamples collected for Hendy test (Hendy, 1971).

400 km southwest of Sanbao cave (31◦40′ N, 110◦26′ E) in
Hubei Province (Wang et al., 2008). The cave air tempera-
ture is 7.5◦C and the average relative humidity is> 80 %
(October 2011–October 2013). The regional climate is influ-
enced by both the Indian summer monsoon (ISM) and East
Asian summer monsoon (EASM). Annual rainfall is 1400–
1500 mm, 83 % from April to October (Zhang et al., 1998).
Five stalagmites, YK05, YK12, YK23, YK47, and YK61,
which formed within a time interval of 124–206 kyr BP, were
halved and polished for U-Th dating and oxygen stable iso-
tope analysis.

2.2 U-Th dating

Chemistry and instrumental analysis were conducted in the
High-Precision Mass Spectrometry and Environment Change
Laboratory (HISPEC), Department of Geosciences, National
Taiwan University. Fifty three powdered subsamples, 60–
80 mg each, were drilled from the polished surface along
the deposit lamina of the five stalagmites (Fig. 2, Table 1),
on a class-100 bench in a class-10 000 subsampling room.
U-Th chemistry (Shen et al., 2003) was performed in a
class-10 000 clean room with independent class-100 benches
and hoods (Shen et al., 2008). A multi-collector inductively
coupled plasma mass spectrometer (MC-ICP-MS), Thermo
Fisher Neptune with secondary electron multiplier protocols
was used for the determination of U-Th isotopic contents
and compositions (Shen et al., 2012). The decay constants
used are 9.1577× 10−6 yr−1 for 230Th, 2.8263× 10−6 yr−1

for 234U (Cheng et al., 2000), and 1.55125× 10−10 yr−1 for
238U (Jaffey et al., 1971). All errors of U-Th isotopic data
and U-Th dates are two standard deviations (2σ ) unless oth-
erwise noted. Age (before AD 1950) corrections were made
using an230Th/232Th atomic ratio of 4± 2 ppm, which are
the values for material at secular equilibrium with the crustal
232Th/238U value of 3.8 (Taylor and McLennan, 1995) and
an arbitrary uncertainty of 50 %.
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Table 1.U-Th isotopic compositions and230Th ages for subsamples of five Yangkou stalagmites on MC-ICP-MS at the HISPEC, NTU.

Subsample ID Depth 238U 232Th δ234U [230Th/238U] [230Th/232Th] Age (kyr) Age (kyr, BP) δ234Uinitial
(mm) (ppb) (ppt) measureda activityc (ppm)d uncorrected correctedc,e correctedb

S
ta

la
gm

ite
:Y

K
5

YK5-01 3.0 8730± 13 553.0± 7.1 215.8± 2.1 1.0192± 0.0024 265626± 3445 179.7± 1.3 179.6± 1.3 358.5± 3.7
YK5-02 24.0 7335± 14 263.1± 7.1 218.4± 2.7 1.0235± 0.0027 471128± 12563 180.4± 1.6 180.4± 1.6 363.6± 4.8
YK5-03 57.0 4322.4± 7.6 5997± 17 192.9± 2.3 1.0002± 0.0024 11903± 39 181.2± 1.4 181.1± 1.4 321.9± 4.1
YK5-04 79.0 5041± 10 500.2± 5.7 187.7± 2.9 0.9997± 0.0026 166348± 1928 183.2± 1.7 183.2± 1.7 315.1± 5.0
YK5-05 88.0 5729.6± 9.4 356.1± 5.1 184.6± 2.4 0.9986± 0.0027 265267± 3814 184.2± 1.6 184.1± 1.6 310.6± 4.2
YK5-06 103.0 5375.3± 9.9 593.2± 5.0 202.1± 2.6 1.0161± 0.0022 152028± 1290 184.2± 1.5 184.1± 1.5 340.1± 4.7
YK5-07 128.0 4986.2± 8.8 137.6± 5.8 201.6± 2.3 1.0175± 0.0023 608876± 25827 185.1± 1.4 185.0± 1.4 340.0± 4.1
YK5-08 149.0 6076± 14 269.0± 5.2 205.0± 3.0 1.0259± 0.0028 382639± 7471 187.2± 1.8 187.2± 1.8 348.1± 5.3
YK5-09 177.0 8808± 11 1103.7± 7.2 215.0± 1.9 1.0374± 0.0016 136699± 889 187.9± 1.1 187.8± 1.1 365.7± 3.5
YK5-10 188.0 12100± 19 168.3± 6.1 210.0± 2.5 1.0368± 0.0027 1230671± 44610 189.9± 1.7 189.8± 1.7 359.2± 4.7

S
ta

la
gm

ite
:Y

K
12

YK12-01 3.6 6262.6± 4.1 3895± 24 309.6± 1.2 0.9620± 0.0015 25540± 164 133.76± 0.46 133.69± 0.46 451.8± 1.9
YK12-02 10.5 5016.7± 2.5 12393± 25 296.1± 1.2 0.9590± 0.0017 6410± 17 135.88± 0.51 135.78± 0.51 434.7± 1.8
YK12-03 21.5 6384.1± 3.6 1050± 21 296.2± 1.1 0.9796± 0.0014 98334± 1947 141.43± 0.46 141.36± 0.46 441.8± 1.7
YK12-04 40.0 5675.3± 5.8 9675± 32 273.0± 1.6 0.9792± 0.0017 9483± 34 147.07± 0.67 146.98± 0.67 413.7± 2.6
YK12-05 57.5 13314± 13 1488± 21 259.4± 1.5 0.9840± 0.0015 145382± 2094 152.20± 0.62 152.14± 0.62 398.9± 2.4
YK12-06 78.0 1746.6± 5.5 1425± 24 253.54± 0.90 0.9852± 0.0013 134061± 2272 154.30± 0.49 154.24± 0.49 392.1± 1.5
YK12-07 80.0 8830.3± 5.3 38573± 98 212.8± 1.2 0.9796± 0.0027 3702± 14 165.3± 1.1 165.1± 1.1 339.4± 2.2
YK12-08 92.0 7106.6± 3.6 7546± 25 199.70± 0.89 0.9823± 0.0014 15274± 55 171.08± 0.64 170.99± 0.64 323.9± 1.5
YK12-09 101.0 9513.1± 6.5 4483± 23 203.4± 1.1 0.9976± 0.0013 34954± 182 175.80± 0.72 175.73± 0.72 334.3± 2.0
YK12-10 105.0 5118.6± 6.7 2378± 21 185.4± 1.9 0.9924± 0.0018 35265± 317 181.0± 1.1 180.9± 1.1 309.3± 3.3
YK12-11 109.5 6109.1± 3.8 572± 18 178.4± 1.2 0.9875± 0.0013 174125± 5633 181.93± 0.77 181.87± 0.77 298.4± 2.1

S
ta

la
gm

ite
:Y

K
23

YK23-01 2.4 2893.2± 2.3 13899± 26 102.8± 1.5 0.8935± 0.0018 3070.9± 8.0 172.8± 1.0 172.6± 1.0 167.6± 2.4
YK23-02 9.6 2608.9± 1.7 13210± 23 99.6± 1.1 0.9008± 0.0016 2937.3± 7.1 177.70± 0.95 177.53± 0.95 164.5± 1.9

Hiatus
YK23-03 11.2 2705.2± 1.3 1370± 17 59.55± 0.91 0.8799± 0.0016 28683± 355 187.3± 1.0 187.3± 1.0 101.1± 1.6
YK23-04 14.8 2541.1± 1.2 10313± 20 60.06± 0.89 0.8830± 0.0015 3592.3± 8.9 188.73± 0.98 188.57± 0.98 102.4± 1.5

Hiatus
YK23-05 16.8 3255.5± 2.0 1365± 14 32.5± 1.1 0.8632± 0.0012 33986± 363 193.47± 0.99 193.40± 0.99 56.1± 1.8
YK23-06 27.6 3084.7± 1.5 2354± 14 32.53± 0.92 0.8671± 0.0012 18764± 112 195.87± 0.93 195.79± 0.93 56.6± 1.6
YK23-07 35.6 2208.7± 1.3 2343± 15 47.1± 1.0 0.8848± 0.0014 13768± 89 197.5± 1.1 197.5± 1.1 82.2± 1.8
YK23-08 42.4 1917.04± 0.90 4503± 17 39.3± 1.1 0.8795± 0.0013 6182± 25 199.3± 1.1 199.2± 1.1 68.9± 1.9

Hiatus
YK23-09 43.0 2720.4± 1.5 1128± 14 21.23± 0.90 0.8633± 0.0013 34369± 430 201.0± 1.1 200.9± 1.1 37.5± 1.7
YK23-10 62.4 3355.3± 2.2 698± 23 16.2± 1.0 0.8657± 0.0014 68753± 2263 206.2± 1.2 206.1± 1.2 29.0± 1.8
YK23-11 77.2 2262.6± 1.5 899± 19 15.0± 1.1 0.8655± 0.0015 35976± 777 206.9± 1.3 206.8± 1.3 26.9± 2.1

S
ta

la
gm

ite
:

Y
K

47

YK47-01 118.8 812.37± 0.81 6437± 11 395.2± 1.8 1.0173± 0.0022 2120.0± 6.0 130.19± 0.61 129.99± 0.61 570.7± 2.8

YK47-02 137.5 765.96± 0.70 2997.5± 7.6 398.9± 1.8 1.0295± 0.0019 4343± 13 132.27± 0.57 132.14± 0.57 579.7± 2.8

S
ta

la
gm

ite
:Y

K
61

YK61-01 13.6 3427.4± 2.1 13736± 25 295.8± 1.2 0.9172± 0.0019 3779± 10 125.39± 0.51 125.26± 0.51 421.5± 1.8
YK61-02 15.5 3636.8± 1.9 4502± 12 275.4± 1.2 0.9027± 0.0013 12039± 37 125.80± 0.41 125.72± 0.41 393.0± 1.8
YK61-03 17.0 3974.8± 2.4 4663± 10 261.5± 1.2 0.8936± 0.0013 12577± 32 126.29± 0.41 126.21± 0.41 373.6± 1.8
YK61-04 20.0 3418.6± 3.7 1271.0± 8.9 302.6± 1.8 0.9278± 0.0013 41205± 291 126.64± 0.48 126.58± 0.48 432.9± 2.6
YK61-05 22.4 1520.4± 2.4 3627± 33 340.2± 2.4 0.9619± 0.0024 6658± 63 127.60± 0.72 127.50± 0.72 487.8± 3.5
YK61-06 26.0 2414.5± 4.3 2217± 29 315.2± 2.4 0.9448± 0.0027 16993± 229 128.33± 0.80 128.25± 0.80 453.0± 3.6
YK61-07 28.3 4454.4± 4.8 801.0± 8.8 313.7± 1.7 0.9452± 0.0013 86784± 959 128.70± 0.47 128.63± 0.47 451.4± 2.5
YK61-08 30.1 2434.4± 2.3 657.4± 8.6 314.5± 1.6 0.9479± 0.0012 57958± 756 129.21± 0.43 129.15± 0.43 453.1± 2.3
YK61-09 40.8 3633.5± 4.6 207± 25 302.5± 2.1 0.9389± 0.0019 271567± 32442 129.37± 0.64 129.31± 0.64 436.1± 3.2
YK61-10 47.8 3140.5± 3.0 132.3± 7.0 305.6± 1.6 0.9459± 0.0013 370865± 19563 130.52± 0.45 130.46± 0.45 441.9± 2.3
YK61-11 61.3 5420.5± 6.6 3648± 10 306.2± 1.8 0.9502± 0.0016 23311± 67 131.47± 0.55 131.39± 0.55 443.9± 2.7

Hiatus
YK61-12 63.1 2307.3± 1.8 1947.5± 8.3 303.9± 1.3 0.9801± 0.0012 19171± 84 139.78± 0.45 139.70± 0.45 451.0± 2.0
YK61-13 74.0 5853.2± 7.4 3435± 11 287.2± 1.7 0.9743± 0.0017 27409± 90 142.09± 0.63 142.01± 0.63 429.2± 2.7
YK61-14 88.0 3614.8± 7.1 352± 20 321.2± 2.9 1.0365± 0.0027 175586± 9727 151.4± 1.1 151.3± 1.1 492.7± 4.7
YK61-15 110.0 4705.3± 8.5 672± 16 320.3± 2.6 1.0476± 0.0026 121199± 2976 154.9± 1.1 154.9± 1.1 496.2± 4.4
YK61-16 130.0 5173.2± 8.0 646± 18 303.7± 2.3 1.0495± 0.0022 138661± 3763 160.25± 0.98 160.18± 0.98 477.6± 3.8
YK61-17 137.8 6174.8± 8.5 405.3± 7.9 299.4± 2.0 1.0514± 0.0019 264459± 5140 162.16± 0.87 162.10± 0.87 473.5± 3.4
YK61-18 167.8 4766.3± 5.3 347.8± 7.3 274.1± 1.7 1.0478± 0.0014 237115± 4998 169.06± 0.77 168.99± 0.77 441.9± 3.0
YK61-19 185.8 2984.1± 2.9 1897.4± 9.4 239.0± 1.7 1.0238± 0.0015 26585± 135 172.56± 0.84 172.49± 0.84 389.2± 2.9

Chemistry was performed during 2011–2012 (Shen et al., 2003) and instrumental analyses on MC-ICP-MS (Shen et al., 2012). Analytical errors are2σ of the mean.
a δ234U = ([234U/238U]activity − 1) · 1000.
b δ234U initial corrected was calculated based on230Th age (T ), i.e.,δ234Uinitial = δ234U · eλ234·T , andT is corrected age.
c
[
230Th/238U]activity = 1− e−λ230T + (δ234U/1000)[λ230/(λ230− λ234)](1− e−(λ230−λ234)T ), whereT is the age.

Decay constants used are available in Cheng et al. (2000).
d The degree of detrital230Th contamination is indicated by the[230Th/232Th] atomic ratio instead of the activity ratio.
e Age [yr BP (before AD 1950)] corrections were made using an230Th/232Th atomic ratio of4± 2 ppm.
Those are the values for material at secular equilibrium, with the crustal232Th/238U value of 3.8. The errors are arbitrarily assumed to be 50 %.

www.clim-past.net/10/1211/2014/ Clim. Past, 10, 1211–1219, 2014



1214 T.-Y. Li et al.: Stalagmite-inferred variability of the Asian summer monsoon

2.3 Stable isotopes

Five-to-seven coeval subsamples, 60–120 µg each, were
drilled from one layer per stalagmite to measure the oxy-
gen and carbon isotopic compositions as part of the so-called
“Hendy test” (Hendy, 1971). To obtain oxygen time series,
604 subsamples, 60–120 µg each, were drilled at 0.5–3.0 mm
intervals along the maximum growth axis. Measurement of
oxygen stable isotopes was performed by two isotope ratio
mass spectrometers, including a Finnigan Delta V Plus in
the Southwest University, China, and a Micromass IsoPrime
instrument at the National Taiwan Normal University. Oxy-
gen isotope values were reported asδ18O (‰) with respect
to the Vienna Pee Dee Belemnite standard (V-PDB). An in-
ternational standard, NBS-19, was used in both laboratories
to confirm that the 1σ standard deviation ofδ18O was better
than±0.1 ‰.

3 Results and discussion

3.1 Chronology

U-Th isotopic and concentration data and dates of all stalag-
mite subsamples are given in Table 1. High uranium levels
range from 0.8 to 13 ppm and relatively low thorium contents
from 100 s to 10 000 ppt. Corrections for initial230Th are
less than 90 years, much smaller than dating uncertainties of
400–1800 years that are common for stalagmites with these
230Th ages (Table 1). Determined age intervals are 179.6–
189.8, 133.7–181.9, 172.6–206.8, 130.0–132.1, and 97.2–
172.5 kyr BP for stalagmites YK05, YK12, YK23, YK47,
and YK61, respectively (Fig. 3). One to two hiatuses are ob-
served for stalagmites YK12, YK23, and YK61 (Figs. 2, 3).
The chronology of each stalagmite was developed using lin-
ear interpolation between U-Th dates, which are all in strati-
graphic order (Fig. 3).

3.2 Yangkou oxygen isotope data

The well-known Hendy test has been taken as an essential re-
quirement when assessing the ability of stalagmites to serve
as paleoclimate archives (Hendy, 1971) (Fig. 4). Despite rel-
ative largeδ13C variations of 0.1–0.4 ‰ (1σ ) for coeval sub-
samples on the five selected layers (Fig. 4a), only a small
variations inδ18O of ±0.1− 0.2 ‰ (1σ ) are observed on in-
dividual horizons of coeval subsamples (Fig. 4b). There is no
relationship (0.01< r2 < 0.36) betweenδ18O andδ13C val-
ues for coeval subsamples of four layers (Fig. 4c), which is
an additional part of the Hendy test. Although an apparent
high correlation (r2

= 0.94) for the plot ofδ18O versusδ13C
is expressed for the depth of 134.3 mm of stalagmite YK61
(Fig. 4c), theδ18O values, from−8.2 ‰ to−8.4 ‰, change
only 0.2 ‰. The absence of a clear increasingδ18O trend out-
ward on the same layer (Fig. 4b) also suggests an insignif-
icant effect of kinetic fractionation. The replication of the
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Figure 4. Hendy test on the arbitrarily selected laminae of five sta-
lagmites with coeval data of(A) δ13C and(B) δ18O. (C) Plots of
δ18O versusδ13C for coeval subsamples.

δ18O records both within Yangkou cave (Fig. 5) and between
Chinese caves (Fig. 6), as well as successful Hendy tests, in-
dicates that the stalagmites formed under an oxygen isotopic
equilibrium condition. The Yangkou stalagmiteδ18O data
therefore represent rainfall oxygen isotopic change, which
is a reflection of regional hydrological variability in the AM
territory (e.g., Wang et al., 2001, 2008; Cheng et al., 2009;
Li et al., 2011).

The oxygen isotope sequences for all of the Yangkou sta-
lagmites are illustrated in Fig. 5a. The spliced record covers a
time interval from 124 to 206 kyr BP, with three narrow hia-
tuses at 132.1–133.5, 190.4–193.2, and 200.3–200.9 kyr BP.
This δ18O record varies from−10 ‰ to−4 ‰. The highest
δ18O data of−5 ‰ ~−4 ‰ occurs at 128–136 kyr BP, the
PGM.
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3.3 Comparison with other Chinese stalagmite records

The new spliced stalagmiteδ18O sequence from Yangkou
cave over the time period of 124–206 kyr BP shows four
strong ASM intervals at MIS 5.5, 6.3, 6.5, and 7.1 and four
weak ASM intervals corresponding to MIS 6.2, MIS 6.4,
MIS 7.0, and MIS 7.2 (Fig. 5a). This variation of stalagmite-
inferred ASM recorded in Yangkou cave is aligned with
previous ASM changes from other Chinese caves, such as
Sanbao (Wang et al., 2008; Cheng et al., 2009) and Hulu
(32◦30′ N, 119◦10′ E) (Cheng et al., 2006), from MIS 5.5 to
7.2 (Fig. 5).

The onsets of strong ASM intervals at MIS 5.5, 6.5, and
7.1 are at 128.3± 0.8, 179.9± 0.9, and 201.5± 1.1 kyr BP,
respectively, in the Yangkou record and concurrent with
their counterparts in Sanbao (Wang et al., 2008; Cheng et
al., 2009) and Hulu (Cheng et al., 2006). Transients from
strong to weak ASM states occur at 135–136 kyr BP dur-
ing MIS 6.2–6.3, and 164–165 kyr BP during MIS 6.4–6.5.
These also match changes in the Sanbao and Hulu records.

Over the past 200 kyr BP, the weakest ASM interval has
been suggested to be at MIS 6.2 in the Sanbao records (Wang
et al., 2008). For example, theδ18O data are 1 ‰ higher
than those at weak ASM intervals of MIS 6.4, 7.0, and 7.2
(Fig. 5). Concurrence between ASM records and ice-rafted
debris events in the North Atlantic supports the hypothesis
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Figure 6. Comparison of Chinese caveδ18O records of
(A) Yangkou and(B) Sanbao (Wang et al., 2008; Cheng et al., 2009)
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2005). Numbers of MIS 5.5–8 are given by LR04 record. Gray line
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of a NH high-latitude forcing of the ASM (Cheng et al.,
2009).δ18O values at MIS 6.2 in Yangkou record are 1.5–
2 ‰ higher than those at MIS 6.4, 7.0, and 7.2 (Fig. 5). This
large difference suggests that this event in Chongqing may
have been relatively intensified through NH forcing as com-
pared with the Hubei regions during the PGM.

The Sanbao record indicates that the strongest ASM con-
dition over the past 500 kyr BP occurs at MIS 6.5 (Cheng et
al., 2012b). This ASM event, lasting 13 kyr, is 3 kyr longer
than a comparable event (in terms of intensity) at interglacial
MIS 5.3, and was stronger than at any time during MIS 1, 5.5,
7.3, 9.5, and 11.3, which experienced higher sea level and
NH insolation (Fig. 1 of Cheng et al., 2012b). The lowest
contemporaneousδ18O data in the Yangkou record (Fig. 5)
show a similar ASM intensity at MIS 6.5 in southwest China.

During the MIS 5, the variations of Chinese stalagmite
δ18O records are not consistent among caves (Cheng et
al., 2012). In Sanbao record (Wang et al., 2008), theδ18O
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minimum at MIS 5.3 is more depleted than at MIS 5.5. This
phenomenon is seemingly illustrated in Yangkou records
(Fig. 5a). However, Dongge (Kelly et al., 2006) and Tian-
men (Cai et al., 2010a) stalagmite records are characterized
by the most depletion in18O at MIS 5.5 (Fig. 2 of Cai et
al., 2010a). This discrepancy may be attributable to differ-
ent hydrological conditions at MIS 5. Long time series from
more Chinese caves are required to derive a clear picture of
amplitude changes in relation to orbital forcing at MIS 5.

Overall, consistency of the stalagmiteδ18O sequences
between Yangkou and other Chinese caves supports the
idea that ASM intensity primarily follows NHSI on orbital
timescales and is driven by precessional forcing and is punc-
tuated by NH high-latitude climatic fluctuations (e.g., Wang
et al., 2001, 2008; Cheng et al., 2009). Agreement in the am-
plitude and the transition ofδ18O dynamics during different
MIS also confirms that the Sanbao stalagmite-inferred ASM
events at MIS 6, including a very weak one at MIS 6.2 and
the strongest one at MIS 6.5, are likely predominant over the
entire mainland during the penultimate G–IG cycles (Cheng
et al., 2012a) (Fig. 6).

3.4 Forcings for the abnormally strong ASM at MIS 6.5

The extraordinarily strong ASM condition at MIS 6.5 dur-
ing the penultimate glacial period is one of the most striking
features revealed by stalagmite records from three different
Chinese caves (Fig. 5). This strong summer monsoon event
is also observed in Chinese Loess plateau record (Rousseau
et al., 2009). Modeling experiments suggest this increased
monsoon intensity is primarily attributed to high NH insola-
tion (Masson et al., 2000).

Wang et al. (2008) found a correlation between the
stalagmite-inferred ASM intensity and the atmosphericδ18O
records from Antarctic Vostok ice-core O2 bubbles (Sowers
et al., 1991; Petit et al., 1999), and suggested that the Dole
effect (Dole, 1936; Bender et al., 1994) can explain this
similarity. A minimum atmosphericδ18O (δ18Oatm) peak at
170 kyr BP in the Vostok ice core (Petit et al., 1999), for ex-
ample, matches the strong-ASM period at MIS 6.5.

The evolution ofδ18Oatm inferred from the Vostok ice
core most likely results from changes in summer insolation
and precipitation in NH, where land provides space for the
growth of vegetation and photosynthesis during glacial pe-
riods (Sun et al., 2000). However, the summer insolation at
MIS 6.5 is less than the interglacial periods at MIS 5.5 and
7.3 (Fig. 5), suggesting that the minimal stalagmiteδ18O val-
ues at MIS 6.5 could also be associated with additional sec-
ondary forcing(s).

Climate conditions around Yangkou and Sanbao caves are
influenced by the Indian summer monsoon (ISM) and East
Asian summer monsoon (EASM) (Fig. 1). The ISM is pri-
marily driven by a south–north land–sea thermal gradient; in-
stead, the EASM is controlled by both south–north and east–
west land–sea gradients (Wang and Lin, 2002). The EASM

precipitation is influenced by the northwestern Pacific trop-
ical high, developed by the mainland-Pacific thermal gradi-
ent (Wang et al., 2003). The Pacific climatic variability can,
therefore, affect EASM precipitation (Tan, 2014).

Cai et al. (2010b) and Jiang et al. (2012) argued for a
significant impact of the western tropical Pacific sea sur-
face temperature (SST) on the EASM precipitation. They
proposed that the evolution and spatial asynchroneity of
stalagmite-inferred Holocene precipitation histories at dif-
ferent AM regions could be attributed to SST changes in
the western Pacific. Planktonic foraminiferal-inferred SST
records of the marine sediment core ODP806B (0◦19′ N,
159◦22′ E) in the western Pacific warm pool (WPWP) and
TR163-19 (2◦16′ N, 90◦57′ W) in the eastern equatorial Pa-
cific (EEP) (Lea et al., 2000) are plotted in Fig. 6, along
with the LR04 stacked benthicδ18O sequence (Lisiecki and
Raymo, 2005) and Yangkou and Sanbao cave time series. A
SST gradient between the WPWP and EEP during the glacial
periods of MIS 6 and 8 is 2◦C, larger than the 0.5–1.5◦C
gradient during the warm interglacial windows of MIS 5.5
and 7 (Fig. 6). Combined with salinity gradient data, Lea et
al. (2000) suggested that the transport of water vapor to the
western Pacific was enhanced during glacial times. This large
SST gradient could result in an enhanced Walker circulation
in the Pacific, similar to the modern La Niña state, which
moves the rainfall zone westward and intensifies EASM pre-
cipitation (Clement et al., 1999) (Fig. 1). Under a weak
Walker circulation, analogous to present El Niño conditions,
the rainfall zone in the Pacific migrated eastward and EASM
precipitation was reduced (Clement et al., 1999). We specu-
late that the extremely strong EASM precipitation at MIS 6.5
was not only governed by high NHSI, but also partially af-
fected by the Pacific SST gradient.

This speculation is supported by modern meteorological
observations (e.g., Xue et al., 2007; Tan, 2014) and resolved
decadal marine records (Oppo et al., 2009). La Niña years
accompany precipitation probabilities above normal in main-
land China (Tan, 2014, and references therein). However,
comparison of SST histories in the South China Sea and east-
ern equatorial Pacific SST suggests an El Niño-like condition
for the last glacial time (Koutavas et al., 2002), opposite to
the findings by Lea et al. (2000). The study by Koutavas et
al. (2002) does not support our argument at MIS 6.5.

Sea level change could be one of the secondary factors.
Marine proxy records and model simulations show that the
exposure of the Sunda shelf at the Last Glacial Maximum
(LGM) associated with a low sea level condition can alters
regional hydrologic pattern in Southeast Asia (DiNezio and
Tierney, 2013). During the LGM, the strong Pacific equa-
torial SST gradient could strengthen the Pacific Walker cir-
culation and increase rainfall in the west tropical Pacific. As
pointed out by DiNezio and Tierney (2013), both of the prox-
ies and model simulations are highly uncertain renditions of
climate history, and thus multi-proxy records and high pre-
cise models are critical to understand paleoclimate.
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3.5 Abrupt ASM changes

One prominent feature of ASM dynamics is the occurrence
of suddenδ18O shifts at about the midpoint of precession-
dominated NHSI change expressed in all Chinese caves over
the study time window (Kelly et al., 2006; Cai et al., 2010a;
Wang et al., 2008; Cheng et al., 2012a) (Fig. 5). For ex-
ample, the jumps from weak to strong ASM states lasted
< 100 years from MIS 6.2 to 5.5 and 500 years from MIS 7.2
to 7.1 (this study; Wang et al., 2008; Cheng et al., 2009). Cli-
mate in Hulu Cave is primarily dominated by EASM; on the
other hand, Yangkou and Sanbao caves are located in a region
influenced by both EASM and ISM. This agreement of local
abruptδ18O changes supports the synchroneity of both mon-
soon sub-system variations on precessional timescale (e.g.,
Cheng et al., 2012a) and confirms the robustness and region-
ality of these abrupt transitions in the vast ASM territory.
Yangkou records also support the phase lag between ASM
and NHSI (Cheng et al., 2009, 2012a). This phase lag could
be attributed to the influence of millennial-scale abrupt cli-
mate change in NH high latitudes (Porter and An, 1995; Sun
et al., 2012), which delayed the response of ASM to the ris-
ing NHSI (Ziegler et al., 2010; Cheng et al., 2012a).

4 Conclusions

In this study, our new splicedδ18O record of five stalagmites
from Yangkou cave, Chongqing, exhibits ASM variability
over the time period during 124–206 kyr BP. The prominent
consistency between the Yangkou and previous Chinese cave
δ18O sequences confirms the duration and intensity of the
encompassed ASM events in the entire mainland. Our data
supports the hypothesis that the ASM change primarily fol-
lows NHSI on a precessional timescale. The weakest ASM
condition during low-insolation MIS 6.2 was influenced by
forcing originating from the North Atlantic. The strongest
ASM intensity at MIS 6.5 over the past 500 kyr BP (Cheng
et al., 2012b) was presumably partially related to zonal forc-
ing and/or sea level change associated with G–IG dynamics
of Walker circulation in the Pacific. More robust geological
archives and model simulations are needed to decipher de-
tailed mechanism and forcings for G–IG ASM evolution.
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