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Abstract. Melting of the Greenland Ice Sheet (GrIS) is ac-
celerating and will contribute significantly to global sea level
rise during the 21st century. Instrumental data on GrIS melt-
ing only cover the last few decades, and proxy data extend-
ing our knowledge into the past are vital for validating mod-
els predicting the influence of ongoing climate change. We
investigated a potential meltwater proxy in Godthåbsfjord
(West Greenland), where glacier meltwater causes seasonal
excursions with lower oxygen isotope water (δ18Ow) val-
ues and salinity. The blue mussel (Mytilus edulis) potentially
records these variations, because it precipitates its shell cal-
cite in oxygen isotopic equilibrium with ambient seawater.
As M. edulisshells are known to occur in raised shorelines
and archaeological shell middens from previous Holocene
warm periods, this species may be ideal in reconstructing
past meltwater dynamics. We investigate its potential as a
palaeo-meltwater proxy. First, we confirmed thatM. edulis
shell calcite oxygen isotope (δ18Oc) values are in equilib-
rium with ambient water and generally reflect meltwater con-
ditions. Subsequently we investigated if this species recorded
the full range ofδ18Ow values occurring during the years
2007 to 2010. Results show thatδ18Ow values were not
recorded at very low salinities (< ∼ 19), because the mus-
sels appear to cease growing. This implies thatM. edulis
δ18Oc values are suitable in reconstructing past meltwater
amounts in most cases, but care has to be taken that shells
are collected not too close to a glacier, but rather in the mid-
region or mouth of the fjord. The focus of future research

will expand on the geographical and temporal range of the
shell measurements by sampling mussels in other fjords in
Greenland along a south–north gradient, and by sampling
shells from raised shorelines and archaeological shell mid-
dens from prehistoric settlements in Greenland.

1 Introduction

The Greenland Ice Sheet (GrIS) is the world’s second largest
ice mass. Current global warming causes accelerated melting
(Andresen et al., 2012; Howat et al., 2005; Rignot and Kana-
garatnam, 2006), resulting in increased runoff since the early
1990s (Box et al., 2006; Hanna et al., 2011) and significantly
contributing to global sea level rise (IPCC, 2007; Krabill et
al., 2000; Price et al., 2011). The natural variability in GrIS
mass balance over time is reconstructed by means of mod-
elling studies, using instrumental data (covering the most re-
cent decades) and proxy data (Alley et al., 2010; Israelson et
al., 1994). Uncertainties in model projections are still con-
siderable (Applegate et al., 2012; IPCC, 2007). In order to
reduce these uncertainties and validate models, it is vital to
collect proxy data on past ice sheet behaviour, such as sur-
face mass balance and runoff (Alley et al., 2010; Applegate
et al., 2012; Hanna et al., 2011).

Sclerochemical analysis of the marine bivalveMytilus
edulis(blue mussel) may provide such valuable information.
The species is common in West and South Greenland, but
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currently absent north of central East Greenland. Subfossil
shells, however, can be found in archaeological shell mid-
dens of prehistoric people, and raised palaeo-shorelines dat-
ing to 5500–8000 before present (BP) (Hjort and Funder,
1974; McGovern et al., 1996). As such there is a rich supply
of shells from previous Holocene warm periods, potentially
giving insight in GrIS dynamics during those time intervals.

Many biomineralising organisms faithfully record envi-
ronmental variability in the chemistry of growth increments
in their skeletons, e.g. corals (Swart, 1983; Watanabe et al.,
2011), coralline algae (Halfar et al., 2008; Williams et al.,
2011), land snails (Goodfriend and Ellis, 2002; Yanes et
al., 2011), freshwater snails (Abell and Hoelzmann, 2000;
Stevens et al., 2012), freshwater bivalves (Kaandorp et al.,
2003; Versteegh et al., 2010b, 2011) and marine bivalves
(Jones and Quitmyer, 1996; Santos et al., 2012; Schöne et al.,
2005). The oxygen isotope composition (δ18O values) of ma-
rine bivalves is often used as a proxy for temperature (Carré
et al., 2005; Wanamaker et al., 2011). It can, however, also
be applied to reconstruct waterδ18O (δ18Ow) values (Freitas
et al., 2012; Khim, 2002), which usually directly relate with
salinity (Ingram et al., 1996).

M. edulisproduces prominent annual growth increments
(Richardson et al., 1990) and precipitates its shell in oxy-
gen isotopic equilibrium with the environment (Wanamaker
et al., 2006, 2007). In combination with its wide geographic
distribution, and its common occurrence in the archaeolog-
ical and (sub-) fossil record, this makes the species highly
suitable for reconstructing pre-instrumental temperatures or
salinities. These applications, however, have so far been lim-
ited. Donner and Nord (1986) showed thatM. edulis cal-
cite δ18O (δ18Oc) values reflect water composition, and can
be used to estimate past temperatures. Ingram et al. (1996)
demonstrated that the amount of freshwater discharge into
San Francisco Bay is accurately reflected in shellδ18Oc val-
ues, and thatM. edulisshells can be used to reconstruct pre-
instrumental freshwater fluxes. Here we investigate the po-
tential ofδ18Oc records ofM. edulisin the reconstruction of
past glacier meltwater fluxes in a Greenland fjord.

We aim to establish if the shellδ18Oc composition ofM.
edulis can be used as a proxy for ambientδ18Ow values,
reflecting the amount of meltwater, in Godthåbsfjord, West
Greenland. We pose the following research questions:

1. Does the mixing of seawater and meltwater in the fjord
yield a linear relationship between salinity andδ18Ow
values?

2. Do seasonalδ18Oc records accurately reflect the full
seasonalδ18Ow cycle, includingδ18Ow excursions that
are coincident with glacier meltwater input?

2 Material and methods

2.1 Study area

The Godth̊absfjord is situated in the sub-Arctic SW Green-
land (64◦ N, 51◦ W; Fig. 1). The fjord system is made up of
a number of fjord branches. Tidal range varies from 1 to 5 m
(Richter et al., 2011). The inner part of the main fjord is in
contact with three tidal outlet glaciers. The distance from the
mouth to the head of the fjord is 187 km. A general descrip-
tion of bathymetry and water masses in the fjord is provided
by Mortensen et al. (2011).

2.2 Shell collection and water monitoring

In May 2010 and June 2011, 10M. edulisspecimens were
collected in the low intertidal on rocky shores along a tran-
sect from the glacier to the mouth of Godthåbsfjord. They
were all adults and varied between 55 and 81 mm in length
(Fig. 1, Table 1). Soft tissues were removed and the rinsed
shells were dried at 50◦C for 24 h.

At time intervals of 2 to 4 weeks, water samples were col-
lected at 1 m depth for oxygen isotope analyses. Water tem-
perature and salinity were measured using a Sea-Bird Elec-
tronics SBE 19plus SEACAT Profiler CTD (conductivity,
temperature and depth). The SBE 19plus was calibrated by
the manufacturer every 1–2 yr, and uncertainties of the salin-
ity after calibration were typically within the range 0.005–
0.010. Temperature uncertainties were near to the initial ac-
curacy of the instrument of 0.005◦C. At location GF3 moni-
toring started on 5 October 2005; at locations GF10 and GF5
measurements started on 9 January 2009 and 16 May 2009,
respectively (Fig. 1). For oxygen isotope analysis, 2 mL wa-
ter samples from each station were collected in gas-tight vials
and analysed on a Picarro Isotopic Water Analyzer, L2120-I
(Picarro, Sunnyvale, CA, USA). Water samples were intro-
duced into the vaporization chamber using an attached PAL
autosampler (Leap Technologies, Carrboro, NC, USA). Each
sample was analysed three times (three consecutive replicate
injections;σ < 0.005–0.007 ‰) alongside a set of three lab-
oratory reference materials, which had previously been cali-
brated to the VSMOW (Vienna Standard Mean Ocean Water)
scale (Coplen, 1994).

2.3 Genetic identification

In the North Atlantic two species ofMytilus can be found:
M. edulisandM. trossulus(McDonald et al., 1991; Varvio
et al., 1988) sometimes occurring together and interbreeding
(Riginos and Cunningham, 2005). Since these species can-
not be distinguished solely on morphological grounds, DNA
fingerprinting was performed using four PCR (polymerase
chain reaction)-based nuclear markers (two RFLP (restric-
tion fragment length polymorphism) markers) to determine
the species of the shells collected. These markers are diag-
nostic forM. edulis, M. trossulus, andM. galloprovincialis.
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Table 1.Specifications of shell samples.

Sample ID Location Collection date Shell length (mm)

Godth̊absfjord archipelago 1a 64◦02.003′ N, 51◦45.592′ W 14/05/2010 71
Godth̊absfjord archipelago 1b 64◦02.003′ N, 51◦45.592′ W 14/05/2010 68
Nipisat Sound 2 64◦11.088′ N, 51◦55.127′ W 14/05/2010 68
Ice Fjord north 3a 64◦38.679′ N, 51◦01.114′ W 01/06/2011 53
Ice Fjord north 3b 64◦38.679′ N, 51◦01.114′ W 01/06/2011 61
Ice Fjord south 4a 64◦38.354′ N, 50◦47.766′ W 01/06/2011 77
Ice Fjord south 4b 64◦38.354′ N, 50◦47.766′ W 01/06/2011 81
Akia 10a 64◦15.812′ N, 51◦43.908′ W 02/06/2011 73
Kapisillit 13a 64◦26.648′ N, 50◦13.397′ W 04/06/2011 56
Kapisillit 13b 64◦26.648′ N, 50◦13.397′ W 04/06/2011 55

Prior to DNA extraction, shells were washed in sterile
deionised water and dried at 100◦C in an incubator for
4 h (Doherty et al., 2007). DNA was extracted using the
E.Z.N.A. kit (Omega Biotek, Norcross, GA, USA) follow-
ing the manufacturer’s protocol except for increased diges-
tion time from 5 to 30 h (Doherty et al., 2007). The proto-
col for the two RFLP markers, Mal-1 treated with restriction
enzymeSpeIand ITS followed by restriction withHhaI, is
outlined in Rawson et al. (2001) and Heath et al. (1995), re-
spectively. The applications of Glu-5 and Me 15/16 markers
are outlined in Rawson et al. (1996a) and Inoue et al. (1995),
respectively (Table 2). For three of the PCR-based mark-
ers, products were visualized on 2 % agarose gels, while
Me15/16 was analysed using an automated sequencer (ABI
3130 Genetic Analyser; Applied Biosystems, Foster City,
CA, USA) due to relatively small differences in allele sizes
(Inoue et al., 1995; Kijewski et al., 2009). For all four mark-
ers it was consistently confirmed that all 10 samples belong
to M. edulis.

2.4 Shell sampling and analysis

One valve of each shell was embedded in epoxy resin, and a
slab of∼ 2 mm was cut along the longest growth axis. Pow-
der samples for oxygen isotope analysis were drilled from
the calcite outer layer, parallel to the internal growth lines,
using a New Wave micromill. Drill bit diameter was 80 µm;
sampling resolution varied between 250 and 1000 µm, and
drilling depth was∼ 500 µm.

Samples were measured via a Finnigan MAT Delta Plus
XL mass spectrometer in continuous flow mode connected to
a GasBench II with a CombiPAL autosampler at Iowa State
University (Department of Geological and Atmospheric Sci-
ences). Reference standards (NBS-18, NBS-19, LSVEC)
were used for isotopic corrections, and to assign the data to
the appropriate isotopic scale. At least one reference standard
was used for every five samples. The average combined un-
certainty (1σ analytical uncertainty and average correction
factor) for δ18O values was±0.12 ‰ (VPDB –Vienna Pee
Dee Belemnite).

Godthåbsfjord

Akia

Kapissillit

Ice capNipisat Sound

Godthåbsfjord archipelago

Ice Fjord north Ice Fjord south

GF3

GF5

GF10

10 km

Fig. 1. Map of Godth̊absfjord with locations of shell collections
(black circles) and water measurements (white circles).

2.5 Calculation of predictedδ18Oc values

Many calcitic bivalve species precipitate their shells in oxy-
gen isotopic equilibrium with the ambient water (Chauvaud
et al., 2005; Freitas et al., 2012; Hickson et al., 1999), largely
following the equation for inorganic calcite (Kim and O’Neil,
1997):

1000 lnα(calcite-water) = 18.03
(
103T −1

)
− 32.42. (1)

For M. eduliscalcite, a species-specific equation has been
established, which is not statistically different from the above
equilibrium equation (Wanamaker et al., 2007):

1000 lnα(calcite-water) = 18.02
(
103T −1

)
− 31.84. (2)
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Table 2.PCR-based nuclear markers forMytilus.

Marker Enzyme Fragment sizes (bp) References

M. edulis M. trossulus M. galloprovincialis

Mal-1 SpeI ∼ 650 ∼ 425/350/275 Rawson et al. (1996b, 2001)
ITS HhaI 200 200/450 200 Heath et al. (1995)
Glu-5’ – 350/380 240 300/500 Rawson et al. (1996a)
Me 15/16 – 180 168 126 Inoue et al. (1995), Kijewski et al. (2009)
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Fig. 2. Environmental data at water monitoring locations. Solid grey circles and lines are temperature; grey diamonds and dashed lines are
salinity. Black diamonds are measuredδ18Ow values; dashed black lines showδ18Ow values calculated from the linear relationship between
salinity andδ18Ow values (Eq. 4). Solid black lines indicateδ18Opredvalues based on temperature andδ18Ow values, calculated according
to Eq. (2).

In both equationsT is the temperature in K andα is the iso-
tope fractionation factor:

αc−w =

(
1000+ δ18Oc (VSMOW)

)(
1000+ δ18Ow (VSMOW.)

) (3)

For calculation of predictedδ18Oc (δ18Opred) values, we use
the species-specific Eq. (2).

2.6 Alignment of δ18Opred and δ18Oc values

In order to align measuredδ18Oc values withδ18Opred val-
ues, seasonal shellδ18Oc records were separated into calen-
dar years, allowing for a growth cessation at the peakδ18Oc
value as well as at the summer lowδ18Oc value (Goewert
et al., 2007; Goodwin et al., 2003; Versteegh et al., 2009).
Peaks and troughs of theδ18Opred and δ18Oc records were
first aligned, and subsequently the points in between, shift-
ing theδ18Oc values point-by-point along the time-axis, to

match corresponding values on theδ18Opredcurve (Freitas et
al., 2006; Goewert et al., 2007; Versteegh et al., 2010a).

3 Results

3.1 Water data

Water temperature varied between minima of around−1◦C
and maxima of 6 to 9◦C in all three locations. Salinity
and δ18Ow values are close to those of full marine condi-
tions (33.5 and−0.7 ‰, respectively) during the first half
of the year (January–June), and show sharp excursions to-
wards much lower values during the following months. Salin-
ity minimum values vary between∼ 19 at GF3 and GF5,
down to 4.6 at GF10. Minimumδ18Ow values show a similar
behaviour with−9.1 and−9.8 ‰, for GF3 and GF5 respec-
tively, and a very low−18.6 ‰ at GF10 (Fig. 2a–c).

Biogeosciences, 9, 5231–5241, 2012 www.biogeosciences.net/9/5231/2012/



E. A. A. Versteegh et al.: Bivalves as archives of Greenland meltwater 5235

Fig. 3. Box and whisker diagram ofδ18O values of all shells. Grey
boxes are 50 % of data, whiskers 25 % of data each; outliers are in-
dicated with+ symbols. At the left side of the graph are the shells
that were collected closest to the open ocean and show least influ-
ence of freshwater in theirδ18Oc values. At the right side are the
shells collected closest to the glacier, with most profound freshwa-
ter influence on theirδ18Oc values.

3.2 Measuredδ18Oc values in shells

Microsampling of the 2 to 3 last growth increments, counted
from the ventral margin, yielded between 14 and 40 samples
per shell. Bulk shell composition is shown as the range of
data in a box and whisker diagram (Fig. 3). Shellδ18Oc val-
ues vary between 3.7 and−8.0 ‰ (VPDB). In proximity of
the glacier, seasonalδ18Oc minima are∼ 9.0 ‰ lower than
nearer the coast (−8.0 ‰ in Ice Fjord north 3a vs. 1.0 ‰ in
Godth̊absfjord Archipelago 1a); maximumδ18Oc values dif-
fer by only 2.9 ‰ (0.8 ‰ in Ice Fjord north 3a vs. 3.7 ‰ in
Godth̊absfjord Archipelago 1a; Fig. 3).

Shell δ18Oc values along the growth axis are plotted as
a function of distance from the ventral margin. The ven-
tral margin represents the shell material precipitated imme-
diately before shell collection. The distance axis is therefore
reversed. Theseδ18Oc records show typical periodic patterns
of seasonal growth, influenced by seasonally varying tem-
perature andδ18Ow values. Winters are represented by peaks
in δ18Oc values because of low temperatures and low melt-
water input. Summers are troughs inδ18Oc values because
of higher temperatures and higher meltwater input (see also
Discussion). Winter peaks are sharper than summer troughs
in δ18Ow values, and are therefore likely truncated by sea-

sonal growth cessation (Fig. 4a–j) (Goewert et al., 2007;
Goodwin et al., 2003).

Conspicuous dark lines (under reflected light) within the
shells correspond to a slowing of growth prior to growth ces-
sation, and roughly correspond to winter growth cessations in
the δ18Oc records (Fig. 4a–j). The number of years counted
by dark growth lines and the number ofδ18Oc peaks are the
same in all shells, except Ice Fjord north 3a, which has insuf-
ficient resolution to discern annual cycles, and Kapisillit 13a,
which appears to have one extra growth cessation during the
summer of 2008 (Fig. 4g and i). Lighter growth lines than the
annual ones can be seen in several specimens (Godthåbsfjord
archipelago 1a & 1b, Ice Fjord south 4b, Ice Fjord north 3b,
Kapisillit 13a; Fig. 4a, b, f, h and i). These lighter lines appar-
ently correspond with troughs in theδ18Oc records, and are
probably caused by an additional cessation of growth during
maximum meltwater input (see Discussion). Using growth
lines andδ18Oc values, calendar years can be assigned in all
but one shell (Ice Fjord north 3a; Fig. 4g). This specimen is
therefore excluded from subsequent analysis.

4 Discussion

4.1 Relationshipδ18Ow–salinity

Regression analysis yields a linear relationship between
δ18Ow values and salinity:

δ18Ow = 0.631· S − 21.84, (4)

whereS is salinity (R2
= 0.9778;p<0.0005;n = 202). An

ANOVA showed there is no significant difference in regres-
sion coefficient between locations (Fig. 5). From this rela-
tionship it follows that glacier meltwater has aδ18Ow value
of −21.8 ‰ (VSMOW) and seawater has a salinity of∼ 33.5
and aδ18Ow value of∼ −0.7 ‰ (VSMOW). From the lin-
ear mixing of freshwater and seawater, it follows that there
is a direct and simple relationship between glacier meltwater
amounts and salinity (δ18Ow) at any point in the fjord.

4.2 Equilibrium precipitation of calcite

Although it is known from experiments thatM. edulisprecip-
itates its shell in oxygen isotopic equilibrium with the ambi-
ent water (see Wanamaker et al., 2006, 2007), we aimed to
confirm this for the specimens presented here in a field set-
ting. A valid approach is to compare theδ18Oc value of the
ventral margin withδ18Opred values calculated fromδ18Ow
values and temperature on the date of shell collection (Ver-
steegh et al., 2010a). Five shells were selected that were col-
lected closest to the water monitoring locations.δ18Opredval-
ues were calculated using Eq. (2) andδ18Ow values calcu-
lated from salinity (Eq. 4).δ18Opredandδ18Oc values are pre-
sented in Table 3. There is a good correspondence between
δ18Opred andδ18Oc values. They differ only by 0.1 to 0.3 ‰,
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Fig. 4. Seasonalδ18Oc graphs of shells. In dark grey distinct dark growth lines (expected to be annual growth cessations) are indicated, in
light grey less profound dark lines observed in the shell.
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Fig. 5. Scatter plot showing the relationship betweenδ18Ow val-
ues and salinity for the three sampling locations:δ18Ow = 0.631·

S−21.84(R2
= 0.9778;p<0.0005;n = 202). Black diamonds and

solid line are GF3; open diamonds and black dashed line are GF5;
grey diamonds and solid line are GF10.

with the exception of shell Ice Fjord north 3b, which dif-
fers by 0.7 ‰ fromδ18Opred values. It is likely that this shell
did not precipitate any calcite immediately before it was col-
lected.

4.3 Predicted and measured shellδ18Oc

δ18Opred values were calculated using Eq. (2), the seasonal
temperature record, andδ18Ow values based on salinity
(Eq. 4). The influence ofδ18Ow on δ18Opred values is dom-
inant over that of temperature, resulting inδ18Opred curves
that are similar in shape toδ18Ow curves (Fig. 2a–c).

Seasonalδ18Oc records of the five shells selected above
can now be compared with seasonalδ18Opred values. As the
shellδ18Oc peaks are sharper than theδ18Opred records, it is
likely that shells cease growing during winter. Similarly, dur-
ing several summer seasons, the shellδ18Oc records appear
“dampened” and do not record lowδ18Ow values (see further
discussion below), suggesting an additional summer growth
cessation. Theδ18Opred andδ18Oc records were aligned by
first matching peaks and troughs, and subsequent point-by-
point time-axis shifting (Freitas et al., 2006; Goewert et al.,
2007; Versteegh et al., 2010a).

At the locations GF3 and GF5,δ18Opred andδ18Oc values
correspond well, with the shells faithfully recording almost
the entire range ofδ18Opredvalues. In the shell Nipisat Sound
2, the meltwater peaks of 2007 and 2008 do not seem to be
recorded entirely, probably due to time-averaging within one
shell powder sample (Goodwin et al., 2003). The same is true
for the very lowδ18Opredvalues at GF5 and in the shell Akia
10a during 2010.

This difference of up to 1.9 ‰ can alternatively be caused
by a summer growth cessation, occurring when ambient wa-
ter becomes too fresh for the mussels to thrive (Qiu et al.,
2002). This certainly seems to be the case in the three shells
collected near GF10, and probably in the Akia 10a shell
as well. None of them recorded the very lowδ18Ow val-
ues during 2010. Many shells also show a faint dark line
(slow growth prior to growth cessation) during periods of
low δ18Oc values (Fig. 4a–j). It is known that marine bi-
valves, includingM. edulis, have a reduced size and growth
rate in low-salinity conditions (Schöne et al., 2003; Wester-
bom et al., 2002), and that salinities lower than 9.6 are lethal
to the mussels within 10 days (Almada-Villela, 1984; Qiu et
al., 2002). In response to a sudden drop in salinity,M. edulis
withdraws its mantle and siphons, and closes its valves (Qiu
et al., 2002). It is likely that the mussels in Godthåbsfjord
show this behaviour when exposed to very low salinities and
as such cease growing and fail to record large meltwater
pulses.δ18Oc values suggest that the threshold salinity value
for shell growth is at∼ 19. However, the abrupt decrease in
salinity/δ18Ow values at the beginning of the melt season,
combined with the limitations given by the resolution of data,
makes it difficult to establish a precise threshold for growth.

5 Conclusions

Observations on salinity andδ18Ow values show that there
is linear mixing of seawater and meltwater in Godthåbsfjord,
implying that the meltwater contributions andδ18Ow values
follow a simple and predictable relationship at any location
in the fjord. This indicates that glacier meltwater is the dom-
inant source of freshwater in the fjord system.

Our results corroborate previous findings thatM. edulis
precipitates shell calcite in oxygen isotopic equilibrium with
the ambient water, not only under controlled laboratory con-
ditions (Wanamaker et al., 2006, 2007), but also under natu-
ral conditions. Oscillatingδ18Ow values in Godth̊absfjord are
faithfully recorded, at least at salinities∼ >19, below which
shell growth apparently ceases.

Comparison ofδ18Oc values and growth lines, visible in
shell cross-section, shows that conspicuous dark lines are
winter growth cessations, whereas growth cessations caused
by low salinities are visible as a thinner and lighter growth
lines within annual bands.

We conclude that this species can be suitable for recon-
structing past meltwater amounts in ice sheet influenced
fjords, and may offer an opportunity to investigate GrIS melt-
ing during previous Holocene warm periods. Care has to be
taken, however, that individuals are used that lived not too
close to a glacier, but rather in the centre or mouth of a fjord,
so the full amplitude of localδ18Ow variations is captured.
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Table 3.Comparison of ventral marginδ18Oc andδ18Opredvalues.

Sample ID Collection date Station δ18Opred (‰ VPDB) Ventral marginδ18Oc (‰ VPDB)

Nipisat Sound 2 14/05/2010 GF3 2.50 2.82
Akia 10a 02/06/2011 GF5 1.85 1.73
Ice Fjord north 3b 01/06/2011 GF10 0.67 1.39
Ice Fjord south 4a 01/06/2011 GF10 0.67 0.73
Ice Fjord south 4b 01/06/2011 GF10 0.67 0.49

A B

C

Fig. 6. Comparison ofδ18Opred andδ18Oc values for three different sites. In addition to a winter growth cessation that is visible in most

shells, a summer growth cessation appears to occur whenδ18Ow values (i.e. salinity) become too low.

Future research will focus on expanding the geographical
and temporal range of these shellδ18Oc records, by sam-
pling modern mussels from other fjords in Greenland along a
south–north gradient. In addition shells will be sampled from
raised shorelines (6000–8000 BP) and archaeological shell
middens from prehistoric settlements in Greenland.
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