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Abstract. Atmospheric inversion models have the poten-
tial to quantify CO2 fluxes at regional, sub-continental scales
by taking advantage of near-surface CO2 mixing ratio ob-
servations collected in areas with high flux variability. This
study presents results from a series of regional geostatisti-
cal inverse models (GIM) over North America for 2004, and
uses them as the basis for an inter-comparison to other inver-
sion studies and estimates from biospheric models collected
through the North American Carbon Program Regional and
Continental Interim Synthesis. Because the GIM approach
does not require explicit prior flux estimates and resolves
fluxes at fine spatiotemporal scales (i.e. 1◦

× 1◦, 3-hourly
in this study), it avoids temporal and spatial aggregation er-
rors and allows for the recovery of realistic spatial patterns
from the atmospheric data relative to previous inversion stud-
ies. Results from a GIM inversion using only available at-
mospheric observations and a fine-scale fossil fuel inven-
tory were used to confirm the quality of the inventory and
inversion setup. An inversion additionally including auxil-
iary variables from the North American Regional Reanalysis
found inferred relationships with flux consistent with physi-
ological understanding of the biospheric carbon cycle. Com-

parison of GIM results with bottom-up biospheric models
showed stronger agreement during the growing relative to
the dormant season, in part because most of the biospheric
models do not fully represent agricultural land-management
practices and the fate of both residual biomass and harvested
products. Comparison to earlier inversion studies pointed to
aggregation errors as a likely source of bias in previous sub-
continental scale flux estimates, particularly for inversions
that adjust fluxes at the coarsest scales and use atmospheric
observations averaged over long periods. Finally, whereas
the continental CO2 boundary conditions used in the GIM
inversions have a minor impact on spatial patterns, they have
a substantial impact on the continental carbon budget, with a
difference of 0.8 PgC yr−1 in the total continental flux result-
ing from the use of two plausible sets of boundary CO2 mix-
ing ratios. Overall, this inter-comparison study helps to as-
sess the state of the science in estimating regional-scale CO2
fluxes, while pointing towards the path forward for improve-
ments in future top-down and bottom-up modeling efforts.
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1 Introduction

Carbon cycle scientists are increasingly called upon to pro-
vide information in support of efforts to monitor anthro-
pogenic CO2 emissions, and to provide predictions of future
changes to the carbon cycle within the context of a changing
climate and land-use choices (CCSP, 2007). Atmospheric
inverse models can contribute towards these goals by tak-
ing advantage of the information contained in atmospheric
CO2 mixing ratio measurements regarding upwind surface
CO2 exchange. Using these measurements, together with an
atmospheric transport model and within a robust statistical
framework (e.g. Enting, 2002), inverse models are used to in-
fer the spatiotemporal distribution and magnitude of surface
CO2 fluxes. In addition, inverse-modeling derived CO2 flux
estimates are potentially useful for evaluating the process-
based formulations of terrestrial ecosystem models. In fact,
atmospheric measurements of CO2 provide one of the key
means of evaluating mechanistic models (e.g. Randerson et
al., 2009; Cadule et al., 2010), given the lack of direct flux
observations at regional scales.

Inversions that can take advantage of spatial and temporal
atmospheric CO2 gradients measured in areas with high flux
variability provide the potential to resolve sub-continental
scale fluxes, thereby informing carbon management efforts
and evaluations of mechanistic models of the carbon cy-
cle. An expanding in situ continuous measurement network
across the North American and European continents (e.g.
NOAA-ESRL, 2011; CGGMN, 2011; CEAD, 2011) is mak-
ing this possible, but optimally extracting the flux signal from
these data is complicated by the combined influence on atmo-
spheric CO2 mixing ratios of the diurnal cycle of the terres-
trial biosphere, heterogeneous land cover, point source fos-
sil fuel emissions, and complex atmospheric transport (Bak-
win et al., 1998). Therefore, simultaneous improvements in
inversion setups (e.g. Law et al., 2002; Schuh et al., 2009;
Gourdji et al., 2010) and in the quality of atmospheric trans-
port models (e.g. Geels et al., 2007) have been necessary.

By limiting the domain size in regional inversions, fluxes
can be estimated at relatively fine spatial scales (e.g. 1◦

× 1◦),
thereby reducing aggregation errors (e.g. Kaminski et al.,
2001; Engelen et al., 2002) associated with estimating
coarse-scale fluxes using highly variable CO2 measurement
data, while simultaneously keeping the computational cost of
inversions manageable. In addition, with a limited domain,
it is possible to take advantage of high-resolution meteoro-
logical information and Lagrangian transport models that can
better resolve atmospheric dynamics in the near-field of mea-
surement locations (e.g. Lin et al., 2003; Gerbig et al., 2008).
However, it has proven difficult to reconcile observed differ-
ences in estimates across regional inverse modeling studies
due to a number of potential factors: atmospheric transport,
flux spatial and temporal resolution, boundary conditions, er-
rors in the bottom-up models used as priors, treatment of fos-
sil fuels, spatiotemporal flux covariance assumptions, and the

processing and filtering of observations, among other possi-
ble causes.

Similarly, large discrepancies have also been seen in inter-
comparisons of mechanistic models of biospheric CO2 flux
(Huntzinger et al., 2012a; Hayes et al., 2012). Given that
atmospheric CO2 mixing ratio observations are a key data
constraint on biospheric CO2 fluxes, a reconciliation of top-
down flux estimates across inversion studies could be espe-
cially useful for evaluating biospheric model estimates and
their process-based assumptions.

As a step towards reconciling CO2 flux estimates from re-
gional inversions and biospheric models, this study presents
a regional grid-scale geostatistical inversion (Michalak et al.,
2004; Mueller et al., 2008; Gourdji et al., 2008, 2010) for
North America in 2004, using the sampling network of 9 tow-
ers collecting continuous CO2 measurements at that time, as
well as available surface flask and aircraft data. The geosta-
tistical inverse modeling (GIM) approach implemented here
uses the optimized setup from Gourdji et al. (2010), which
resolves fluxes at finer spatial and temporal scales than other
published inversion studies for the same domain (e.g. Peters
et al., 2007; Deng et al., 2007; Schuh et al., 2010; Butler
et al., 2010), and relies strongly on the atmospheric mea-
surements and spatiotemporal flux covariance assumptions to
help constrain the problem. Also, by eliminating the require-
ment for explicit prior flux estimates and optimizing covari-
ance parameters directly with the atmospheric data, the inver-
sions presented here reduce potential biases associated with
these setup choices. Four sets of geostatistical results are
presented, with and without process-based auxiliary datasets
that can help to explain biospheric fluxes, and using two plau-
sible sets of continental boundary conditions.

Geostatistical inversion results are compared at various
spatial and temporal scales to estimates from other inver-
sion studies over North America to help illuminate poten-
tial causes of their differences and associated strengths and
weaknesses of the various approaches. Geostatistical in-
version estimates are also used to interpret the spread seen
across a collection of biospheric models participating in
the North American Carbon Program (NACP) Regional and
Continental Interim Synthesis study (RCIS; Huntzinger et
al., 2012b).

2 Data and methods

The presented inversions use the setup described as part of
a synthetic data study for June 2004 (i.e. Gourdji et al.,
2010) and further evaluated using synthetic data for a full
year. A brief overview of the setup and methods is provided
below, with methodological details available in Gourdji et
al. (2010).
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2.1 Flux domain and resolution

Fluxes are estimated at a 1◦
× 1◦, 3-hourly resolution for the

North American continent in 2004. Positive values indicate
a flux from the biosphere to the atmosphere, and conversely,
negative values refer to net uptake. The estimation domain
spans from 10◦ N to 70◦ N and 50◦ W to 170◦ W, yielding
2635 land grid-cells (Fig. 1). Altogether, 8 million fluxes are
estimated for the year (2635 regions× 366 days× 8 flux
periods per day). Resolving fluxes for a 4-day-averaged di-
urnal cycle temporal resolution, as described in Gourdji et
al. (2010), was also explored to reduce computational ex-
pense, but the penalty in terms of the quality of the flux esti-
mates was found to be unacceptable.

Flux estimates are not well-constrained at this fine spa-
tiotemporal estimation resolution by the limited atmospheric
network; however, biases due to estimating fluxes directly
at large scales, termed aggregation errors (Kaminski et al.,
2001; Engelen et al., 2002), are minimized by estimating
fluxes first at fine scales and then aggregating to better-
constrained resolutions a posteriori. Spatial aggregation er-
rors have been shown to be particularly problematic when
making use of continental, continuous CO2 measurements in
inversions (Gerbig et al., 2003b; Schuh et al., 2009). Tem-
poral aggregation errors are also a concern when the shape
of the diurnal cycle is fixed from biospheric models (Gourdji
et al., 2010; Huntzinger et al., 2012b) or assumed flat, rather
than estimated directly as in the current study.

2.2 Geostatistical inversions

GIM (e.g. Hoeksema and Kitanidis, 1984; Zimmerman et al.,
1998) has been used to identify atmospheric trace gas sources
and sinks (e.g. Michalak et al., 2004; Mueller et al., 2008;
Gourdji et al., 2008, 2010; Miller et al., 2012). Although
GIM is Bayesian, it differs from synthesis Bayesian inver-
sions (e.g. Baker et al., 2006; Peters et al., 2007; Butler et
al., 2010) in a few key ways. GIM does not rely on a set of
explicit prior flux estimates derived from biospheric models,
fossil fuel inventories, fire emissions estimates, and/or ocean
flux estimates. Traditional Bayesian inversion studies (e.g.
Peters et al., 2007; Butler et al., 2010) typically use such
explicit priors both to define a first estimate of flux mag-
nitudes and to fix the fine-scale variability in the inversion,
while the atmospheric data are used to adjust fluxes only at
larger scales. Instead, GIM estimates fluxes directly at fine
scales, and relies on a priori information on the spatiotempo-
ral covariance between estimated fluxes to help constrain the
problem. The parameters describing this covariance struc-
ture are optimized directly using the atmospheric measure-
ments. Some recent synthesis Bayesian inversion studies also
estimate fluxes at relatively fine spatial scales and rely on
spatial covariance assumptions (e.g. Rödenbeck et al., 2003;
Carouge et al., 2010a, b; Chevallier et al., 2010; Schuh et
al., 2010), with the covariance parameters based on analyses

Fig. 1. Domains of nested WRF winds, flux estimation grid, and
the locations of towers, flask and aircraft measurements used in the
inversions. See Table A1 in the Supplement for a key to the tower
names.

of variability in biospheric models, or sensitivity testing to
assess their impact on flux estimates. The GIM estimates
presented here also estimate, rather than prescribe the di-
urnal cycle based on results from Gourdji et al. (2010) and
Huntzinger et al. (2012b). We are not aware of any other re-
gional inversions that have taken this step, which is aimed at
minimizing temporal aggregation errors that can result from
fluxes being adjusted at coarser (e.g. weekly to monthly)
scales (e.g. Peters et al., 2007; Butler et al., 2010; Schuh
et al., 2010).

The objective functionLs,β for GIM is:

Ls,β =
1

2
(z−Hs)T R−1(z−Hs)+

1

2
(s−Xβ)T Q−1(s−Xβ)(1)

where z represents the atmospheric CO2 measurements
[ppm], and s are the unknown surface CO2 fluxes
[µmol (m−2 s)]. H describes the sensitivity of CO2 mea-
surements to fluxes, as quantified from an atmospheric trans-
port model, with units of [ppm/(µmol (m−2 s))]. X contains
any pre-selected flux covariates or alternately, one or more
columns of ones (see Sect. 2.4),β are the associated drift
coefficients, andXβ is the component of the flux variability
that can be explained by the covariates, a.k.a. the “trend”.
Fluxes (s) and regression coefficients (β) are optimized si-
multaneously by minimizing Eq. (1).R is the model-data
mismatch covariance matrix, describing the expected mag-
nitude of discrepancies between observed (z) and modeled
(Hs) CO2 mixing ratios (due to measurement, transport, rep-
resentation, and aggregation errors).Q is the a priori flux
covariance matrix, characterizing how flux deviations from
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the model of the trend (i.e.s−Xβ) are correlated in time and
space.

The structure ofQ andR remain the same as in Gourdji et
al. (2010), with a few minor modifications. Separate model-
data mismatch values were optimized inR for each contin-
uous measurement location, as well as for flask and aircraft
data (with these latter two representing averages across sites).
Additionally, covariance parameters are allowed to vary by
month. In particular, spatial flux covariance has been found
to have a strong seasonal cycle (Huntzinger et al., 2011) that
should be appropriately accounted for in order to yield re-
alistic estimates from the inversion. Monthly model-data
mismatch values also help to account for seasonal variations
in the quality of the transport model and inversion setup.
All covariance parameters are estimated simultaneously, per
month, using Restricted Maximum Likelihood (RML; e.g.
Kitanidis, 1995, Michalak et al., 2004) with the atmospheric
measurements, as described further in Gourdji et al. (2010).

The solution method for estimating fluxes (ŝ), drift coef-
ficients (̂β) and their a posteriori covariances (V̂s andVβ̂ ) is
described in Gourdji et al. (2010).

2.3 Atmospheric data, boundary conditions and
transport

2.3.1 Atmospheric CO2 mixing ratio measurements

This study uses continuous, high-precision, well-calibrated
CO2 mixing ratio measurements from 9 observational loca-
tions unevenly spaced across the North American continent
in 2004 (Fig. 1). These include two tall towers with a height
of 457 m (Moody, Texas) and 396 m (Park Falls, Wisconsin),
two coastal towers less than 25 m in height (Sable Island,
Nova Scotia and Barrow, Alaska), and five other inland, con-
tinental towers ranging in height from 30 to 107 m (Norman,
Oklahoma; Harvard Forest, Massachusetts; Argyle, Maine;
Fraserdale, Ontario; Candle Lake, Saskatchewan). In addi-
tion, all available flask and aircraft measurements for this
year are included, with the exception of flask samples at co-
incident tower locations and some coastal sites where the at-
mospheric transport model was deemed unreliable. Supple-
ment A provides additional details on CO2 data processing
and filtering.

Although the North American measurement network has
now expanded to more than 40 sites collecting continuous
CO2 mixing ratio measurements, many new sites are in com-
plex terrain, urban areas, or are very short, and the optimal
use of these data in inversions remains a topic of active re-
search (Mueller, 2011; Manning, 2011). This study therefore
provides a baseline for improving inversions taking advan-
tage of a more data-rich environment.

2.3.2 Continental boundary conditions

Regional inversions necessitate the use of boundary condi-
tions that represent the CO2 concentrations of air flowing into
the domain of interest (i.e. the North American land mass
here). The impact of these boundary CO2 mixing ratios on
the observations used in the inversion must be pre-subtracted
before inferring CO2 fluxes. Two plausible sets of CO2
boundary conditions are used in this study: one optimized
as part of the CarbonTracker (termed “CT” in this work)
global CO2 data assimilation system (Peters et al., 2007), and
the other derived more empirically (termed “EMP” in this
work) from marine boundary layer and aircraft observations
taken from the GLOBALVIEW-CO2 (2010) database. Sup-
plement A provides additional details on these datasets. Only
results using the EMP boundary conditions are presented at
the monthly timescale, but results with both sets of boundary
conditions are discussed at the annual timescale, where they
were seen to have a larger impact on the conclusions.

2.3.3 Atmospheric transport model

Surface influence functions (“footprints”, or adjoint sensitiv-
ities) express the sensitivity of individual CO2 measurements
at specific points in space and time to surface fluxes in the
upwind source regions. The Stochastic Time-Inverted La-
grangian Transport (STILT) model (Lin et al., 2003), driven
by meteorological fields from the Weather Research and
Forecasting (WRF) model (Skamarock and Klemp, 2008),
customized for STILT (Nehrkorn et al., 2010), was used to
derive these footprints.

The WRF-STILT framework is well-suited for this appli-
cation, because: (1) WRF meteorology is available at higher
resolution than that used in most global models, and there-
fore has the potential to be more realistic (Mass et al., 2002);
(2) the Lagrangian approach minimizes numerical diffusion
present in Eulerian models (Odman, 1997) and is thus bet-
ter able to represent plumes in the near-field of the mea-
surement locations (Lin et al., 2003; Wen et al., 2011);
(3) the WRF-STILT coupling has been specifically designed
to achieve good mass conservation characteristics by using
time-averaged winds from WRF within STILT (Nehrkorn et
al., 2010); and (4) the Lagrangian approach offers the most
efficient way to compute the grid-scale footprints, by running
transport backwards in time (Lin et al., 2003). The compu-
tational aspects of the footprint calculations are described in
more detail in Supplement A.

The footprints can also be used to assess which portions
of the continent are typically constrained by the measure-
ments included in the inversion. Given the limited network
in 2004, not all portions of North America are equally well-
constrained, as can be seen in the annual average footprint
shown in Fig. 2a. Not surprisingly, the best-constrained ar-
eas are upwind of the measurement locations, in the Central
and Northeastern continental United States (US) and a large
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Fig. 2. (a)Sensitivities of all observations used in the inversion (as
shown in Table A1 in the Supplement) to flux estimates, averaged
across all 3-hourly flux time periods for the year for each grid-cell
location. Black stars represent the nine continuous measurement
locations in 2004.(b) Three ecoregions (modified from Olson et
al., 2001) used for spatial aggregation of flux estimates. These three
ecoregions, along with the grey grid-cells, form the domain for the
aggregated North American totals in Figs. 5 and 7.

portion of central Canada. Figure 2b shows three ecoregions
across North America with similar land-cover and/or climatic
characteristics (modified from Olson et al., 2001) that are rel-
atively well-constrained by the network (although the East-
ern Temperate Forests lack sensitivity in the Southeast US)
Inversion results are aggregated a posteriori to these three
ecoregions for comparison across all presented models.

2.4 Auxiliary variables and variable selection

Geostatistical inversions can estimate fluxes with varying
levels of complexity in the flux covariate matrix (X). In ad-

dition to potentially improving flux estimates, introducing
auxiliary environmental variables as covariates inX makes
it possible to identify significant flux drivers.

As in multi-linear regression, adding all possible covari-
ates can help to improve the fit of the model to the data, al-
though at the risk of introducing spurious relationships that
could potentially bias flux estimates in under-constrained
regions and time periods. Therefore, for this study, the
Bayes Information Criterion (BIC) (Schwarz, 1978) is used
to choose covariates that optimally explain the biospheric
flux signal in the atmospheric data. The BIC was com-
bined with the Branch-and-Bound algorithm (Yadav et al.,
2012) in order to reduce computational expense. Supple-
ment A presents the details of the implementation of these
techniques.

Two main sets of inversion results are presented in this
paper. For the first inversion, we include only a fossil fuel
inventory dataset in the flux covariate matrix(X), with no
additional information regarding biospheric processes. The
fossil fuel inventory is included to help account for the spa-
tial patterns of the fossil fuel emissions, which have a very
different structure from the biospheric fluxes. This setup is
referred to as the “Simple” inversion, given that the atmo-
spheric observations, fossil fuel inventory and covariance as-
sumptions provide the only constraint on biospheric fluxes
in this setup. This inversion is conceptually similar to using
a prior of zero in a synthesis Bayesian inversion setup, and
provides an independent comparison to process-based, bio-
spheric model output. For the second inversion, we addition-
ally incorporate auxiliary variables from the North American
Regional Reanalysis (NARR; Mesinger et al., 2006) to help
explain the biospheric signal, which are selected using the
combined BIC and Branch-and-Bound algorithm. This case
is termed the “NARR” inversion.

All included flux covariates are defined at the resolution at
which fluxes are estimated, i.e. 1◦

× 1◦, 3-hourly, with each
variable defined in a single column for all flux locations and
time periods. Therefore, the inferred regression coefficients
(β̂) represent average relationships over the entire continent
and year, with these averages reflecting the portions of the
continent within the measurement footprints.

2.4.1 Fossil fuel inventory

The fossil fuel inventory used in this study is a merged data
product providing full coverage for the continent. In the con-
tinental United States, we take advantage of diurnally and
seasonally varying estimates from version 2.0 of the Vulcan
database (Gurney et al., 2009). These estimates for 2002 are
scaled up to 2004 total emissions for the region, but with-
out any changes in the underlying spatial and temporal pat-
terns. In Central America, Mexico and Canada, emission es-
timates are taken from a monthly-varying dataset specifically
for 2004, which merges information from British Petroleum
fuel statistics, remotely-sensed night lights, and the existing
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Carbon Dioxide Information Analysis Center (CDIAC) fossil
fuel emission inventory (Oda and Maksyutov, 2011).

In the NARR inversion, the impact of fossil fuels is re-
moved from the atmospheric observations a priori, by mul-
tiplying the inventory dataset by the footprints and subtract-
ing the resulting signal from the atmospheric measurements.
By pre-subtracting the fossil fuel influence from the mea-
surements, we reduce potential covariance in the inferred re-
gression coefficients between the fossil fuel inventory and
biospheric datasets due to covariance in the underlying pro-
cesses, e.g. re-growing forests and high emissions in the
Eastern continental United States, or reduced populations
and industrial activity in arid and snow-covered areas. Such
covariance would confound flux interpretation by making it
more difficult to separate the biospheric and fossil fuel sig-
nals a posteriori. In both inversions, errors in the fossil fuel
inventories will become aliased onto the inferred biospheric
fluxes, although these errors are thought to be small relative
to the uncertainties in terrestrial biosphere models (Marland
et al., 2009).

2.4.2 NARR variables

The NARR data products are a state-of-the-science meteoro-
logical reanalysis for North America, and have significantly
improved the representation of the hydrological cycle relative
to previous datasets (Bukovsky and Karoly, 2007). Eleven
datasets with diurnal variability were considered for inclu-
sion in the inversion, as well as two derived precipitation
variables (average precipitation over the previous 16 and 30
day intervals, Table 2). This superset of NARR variables pri-
marily relates to water fluxes and availability, although short-
wave radiation, evapotranspiration and canopy conductance
have a direct physiological relationship with photosynthetic
CO2 fluxes. Vegetative indices from remote-sensing datasets,
such as Leaf Area Index or Fraction of Photosynthetically
Active Radiation from the MODIS instruments (e.g. Yang
et al., 2006), could also provide useful information regard-
ing the seasonal cycle and spatial distribution of CO2 flux
(e.g. Gourdji et al., 2008). However, given that such datasets
have a diurnally-varying relationship to CO2 flux, this would
have necessitated the use of diurnally-varying drift coeffi-
cients (̂β), adding substantial complexity to the trend. Sen-
sitivity tests showed that this setup did not help to improve
flux estimates, and thus, these datasets were not included.
Also, the evapotranspiration and canopy conductance vari-
ables from NARR are calculated with the Noah Land Sur-
face Model (Ek et al., 2003), and therefore implicitly include
a measure of vegetative biomass.

2.5 Comparison of inferred fluxes to estimates from
other models

Biospheric a posteriori flux estimates from the GIM inver-
sions are compared with those from previous inversion stud-

ies (CarbonTracker 2009, i.e. Peters et al., 2007; Schuh et
al., 2010; Butler et al., 2010) for the same domain, and
also with a suite of bottom-up flux estimates from 16 terres-
trial biosphere models that participated in the NACP RCIS
(Huntzinger et al., 2012a). Table 1 compares the features
of the GIM inversions conducted here and the synthesis
Bayesian inversions included in the inter-comparison. In ad-
dition to the details presented in Table 1, each inversion has
its own particularities in terms of data processing and se-
lection, identification of covariance parameters, and numeri-
cal approaches for implementing the inversion scheme. De-
spite these differences, the available atmospheric measure-
ments for this year are the same across studies, and the well-
constrained areas of the continent should therefore also be
similar. The biospheric models from the NACP RCIS in-
cluded in the inter-comparison are also described in more
detail in Huntzinger et al. (2012a).

Model estimates are compared at monthly and annual
timescales, and at grid and aggregated ecoregion and con-
tinental spatial scales. The analysis of grid-scale patterns
helps to visually assess model output, despite high uncer-
tainties at this fine scale, while the comparison at aggregated
spatial scales helps to evaluate the quality of the biospheric
models within the inferred 95 % uncertainty bounds from the
GIM inversions. Net annual flux estimates from all models
are less reliable, given that they represent a small residual on
a strongly-varying seasonal cycle, although they are particu-
larly important for understanding the carbon budget of North
America, and the locations of net sources and sinks within
the continent. Overall, this model inter-comparison gives in-
sight into the CO2 fluxes at various spatiotemporal scales and
the strengths and weaknesses of various model formulations.
However, an important caveat is that models may still agree
with one another for the wrong reasons, e.g. due to system-
atic errors in the transport models across inversion studies.

3 Results and discussion

3.1 Optimized covariance parameters

The monthly flux covariance parameters inQ provide in-
sights into the underlying variability of the flux field, and
how this variability changes throughout the year, while
the inferred monthly model-data mismatch parameters inR
quantify the ability of the inversion to take advantage of in-
formation contained in the CO2 mixing ratios.

The spatial flux covariance parameters inQ have a strong
seasonal cycle (Fig. 3), consistent with that observed in bio-
spheric model estimates (Huntzinger et al., 2011), with the
highest variance in July and August and the lowest in the
dormant season from November through April. The spatial
correlation lengths are shortest during the height of the grow-
ing season (850 and∼600 km respectively for the Simple
and NARR inversions in July), with average values across
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Table 1. Comparison of setup and input data across published inversion studies for North America in 2004.

Domain Spatial and
temporal
resolution

A priori flux
covariance

Prior – biospheric Prior – fossil fuels Winds &
transport model

Butler et al. (2010) Global 10 sub-regions
in North Amer-
ica, monthly

None SiB3
(hourly)/CASA
(monthly mean)

Erickson et
al. (2008)

GEOS-4/
PCTM

CarbonTracker 2009
(http://www.esrl.
noaa.gov/gmd/ccgg/
carbontracker/)

Global 25 eco-regions
in North Amer-
ica, weekly

Spatial covariance
within ecosystem
types

CASA-GFEDv2
(3-hourly)

Spatial patterns
from EDGAR-4
(http://edgar.jrc.ec.
europa.eu/index.
php), with
additional seasonal
cycle

ECMWF/ TM5

Schuh et al. (2010) North
America

1◦x1◦, weekly Spatial covariance
using fixed correla-
tion length scales

SiB3 (hourly) Vulcan in continen-
tal US (Gurney
et al., 2009);
Andres et al. (1996)
elsewhere

RAMS/LPDM

GIM – Simple North
America

1◦
×1◦,

3-hourly
Monthly-varying
spatial covariance
using correlation
length scales and
variances estimated
with atmospheric
data

None Vulcan in continen-
tal US (Gurney et
al., 2009); CDIAC/
Night Lights
dataset elsewhere
(Oda & Maksyutov,
2011)

WRF/ STILT

GIM – NARR Linear trend
with 3-hourly
NARR variables,
calibrated with
atmospheric data

the year of∼1700 and∼1400 km respectively. The temporal
correlation range varied from∼5 days in October, a time of
sharp seasonal transitions across the continent, to∼50 days
in January, with an average value of 22 days throughout the
year for both inversions. In the NARR inversion, the vari-
ances and correlation lengths of the portion of the flux not
explained by the trendXβ are reduced relative to the Sim-
ple inversion, indicating that the NARR variables explain a
portion of the variability in the flux distribution.

The yearly weighted average of the monthly model-data
mismatch variances for each measurement site (or rather, the
square root of this weighted average,σR, with the weights
defined by the number of data points per month) is shown
for the Simple inversion in Fig. 3. The tower with the high-
est average model-data mismatch is Harvard Forest, which is
located in a highly-productive forest (Urbanski et al., 2007)
about 100 km west of Boston, and even closer to Worces-
ter and Springfield, Massachusetts, while the 1◦

× 1◦ grid-
cell containing this site includes several other small towns
and developed areas. The difficulty in matching the data at
this tower is likely due to spatial aggregation and representa-
tion errors associated with fossil fuel emissions and heteroge-
neous land cover in the surrounding region. The two towers

with the lowest model-data mismatch are BRW and CDL, the
two northernmost sites in the domain, where the 1◦ longitu-
dinal grid-cell size is smaller (see Fig. 1). This could point to
potential improvements in inversion performance that would
be obtained by resolving fluxes at finer spatial scales, perhaps
the resolution of the driving winds in the transport model (in
this case 40-km or finer for all of North America).

Model-data mismatch can also have significant seasonal
variations. For example, the optimized model-data mismatch
standard deviation at ARM is 4.7 ppm in April, 0.8 ppm in
July, and 0.0004 ppm in September. The high model-data
mismatch in April for ARM implies that the full strength of
local uptake evident in the measurement data in this month
(see Fig. A1 in the Supplement), most likely due to the winter
wheat crop planted upwind of the tower (McPherson et al.,
2004), is not fully represented by the inversion.
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Table 2. Candidate NARR environmental covariates, with associ-
atedβ̂ values for those variables selected using BIC for inclusion
in the NARR inversion with the EMP boundary conditions. Auxil-
iary variables were normalized to zero mean and unit variance, such
that β̂ values are directly comparable. Variables with dashes (“–”)
were considered but not selected by the BIC/ Branch & Bound al-
gorithm. Also shown are the coefficients of variation (CV) for the

selected variables (i.e.
∣∣∣σβ̂

/β̂

∣∣∣).
β̂ CV

Canopy conductance – –
Downward shortwave radiation – –
Evapotranspiration −1.16 0.05
Precipitation rate 0.28 0.13
Relative humidity – –
Specific humidity 0.48 0.12
Soil moisture – –
Air temperature (@ 2m) −0.22 0.25
Plant canopy water content – –
Snow depth – –
Snow cover (%) – –
16-day average precipitation – –
30-day average precipitation – –

3.2 Auxiliary variables and drift coefficients

3.2.1 Fossil fuel emissions inventory

If the fossil fuel emissions inventory and atmospheric trans-
port model used in this study were perfect, the associated
drift coefficient should be approximately one, whereas other
values could imply problems with the inversion setup, sys-
tematic transport model errors, a lack of atmospheric con-
straint, covariance between the fossil fuel and biospheric flux
signals, and/or errors in the spatiotemporal patterns and mag-
nitudes of emissions in the inventory dataset. The drift coeffi-
cients for the Simple inversions were not significantly differ-
ent from one (̂β = 0.91 and 0.95 for the EMP and CT bound-
ary conditions, respectively, andσβ̂ = 0.06 for both cases),
providing support both for the quality of the inventory and
the inversion setup. In addition, this result makes it relatively
easy to separate the biospheric and fossil fuel contributions
to the total flux a posteriori.

3.2.2 Selected NARR variables

The variables selected by the BIC approach (Sect. 2.4 and
Supplement A), and their inferred relationships to CO2 flux
(Table 2) are consistent with process-based understanding of
the biospheric carbon cycle. For example, evapotranspira-
tion explains the largest portion of the uptake signal (as in-
dicated by a large negativêβ), which is consistent with the
physiological relationship between plant photosynthetic and
transpiration fluxes (Bonan, 2008), and similar relationships

Fig. 3. (a, b)Optimized covariance parameters using the RML algo-
rithm with the atmospheric measurements, for the GIM inversions
with the EMP boundary conditions.(a) Monthly flux standard devi-
ations (σQ) for the Simple and NARR inversions.(b) Square root of
the yearly average model-data mismatch variances (σR) (weighted
by the number of data-points in each month) for 9 towers, flask and
aircraft data from the Simple inversion. Location information for
each measurement code is included in Table A1 in the Supplement.

between evapotranspiration and CO2 flux have been found
in other regression studies using eddy-covariance measure-
ments (e.g. Mueller et al., 2010; Yadav et al., 2010). Combin-
ing evapotranspiration estimates with basin-wide estimates
of water-use efficiency has also proven to be a robust method
for estimating gross primary production (GPP) at watershed
scales (Beer et al., 2007). Canopy conductance, which has a
similar mechanistic correlation with photosynthesis, was not
selected as a significant variable, potentially due to the diffi-
culty in up-scaling this value to landscape scales (Anderson
et al., 2003).

The positivêβ value associated with specific humidity is
consistent with known drivers of heterotrophic respiration
(Lloyd and Taylor, 1994; Ise and Moorcroft, 2006), given
that this variable, or the mass of water vapor per unit mass
of air, scales with both air temperature and surface moisture.
The NARR specific humidity and air temperature variables
have a correlation coefficient of 0.83 for 2004, and, conse-
quently thêβ uncertainties (derived fromVβ̂ ) on these two
variables have a strong a posteriori anti-correlation (see Ta-
ble B1 in the Supplement). This implies that the air tem-
perature variable is primarily helping to correct the signal

Biogeosciences, 9, 457–475, 2012 www.biogeosciences.net/9/457/2012/



S. M. Gourdji et al.: North American CO 2 exchange 465

associated with specific humidity. The positiveβ̂, or source
associated with precipitation rate at a 3-hourly timescale is
consistent with flux tower studies showing pulses of respira-
tion following rain events (Baldocchi, 2008).

While the selected NARR variables and inferredβ̂ ’s are
consistent with process-based understanding of biospheric
CO2 flux, not all processes can be easily included in a statis-
tical regression model like the one used here. For example,
disturbance (e.g. storms, flooding, insect infestation) may not
be fully reflected in the auxiliary variables available for anal-
ysis. In addition, this study only chose to examine diurnally-
varying variables from the NARR, and excluded other pos-
sible datasets that could help to explain fluxes at daily or
weekly timescales (e.g. a fire emission inventory). Third,
while evapotranspiration and canopy conductance implicitly
incorporate a measure of live biomass, there are no variables
within the NARR superset that can directly represent dead
substrate availability for heterotrophic respiration, e.g. crop
residues after agricultural harvesting or downed woody de-
bris following a storm. Finally, the NARR variables them-
selves have known biases and limitations (e.g. Bukovsky and
Karoly, 2007; West et al., 2007; Markovic et al., 2009). By
design, however, any portion of the flux variability that is vis-
ible in the atmospheric observations, but that cannot be rep-
resented using the available auxiliary environmental datasets,
can still be included in the best flux estimates in GIM through
the spatiotemporally-correlated stochastic component. (See
Eq. (5) in Gourdji et al. (2010), and Fig. B1 in the Sup-
plement for an example of the contribution to net grid-scale
fluxes in April by each component of the best estimate).

3.3 Seasonal cycle of biospheric fluxes

This section compares monthly biospheric fluxes from the
GIM Simple and NARR inversions, aggregated a posteriori
from the fluxes estimated at the 3-hourly timescale, to results
from other inversion studies and from biospheric models par-
ticipating in the NACP RCIS (Huntzinger et al., 2012a). The
median of the biospheric models is used to represent the cur-
rent consensus of the terrestrial ecosystem modeling com-
munity, although it may still be subject to systematic errors
across models. Although the mean has also been shown
to have high skill relative to individual models in previous
studies (Schwalm et al., 2010), the median is used here to
reduce the impact of outliers. Both the mean and median
showed better agreement with GIM estimates than any indi-
vidual biospheric model included in the inter-comparison.

3.3.1 Grid-scale estimates

Grid-scale spatial patterns are similar between the Simple
and NARR inversion monthly fluxes (Fig. 4), implying that
these patterns are primarily informed by the atmospheric
observations and spatiotemporal flux correlations, and can
therefore be used to evaluate biospheric model estimates.

The NARR auxiliary variables add some realistic hetero-
geneity to the grid-scale flux estimates relative to the Sim-
ple inversion, as seen by a slightly stronger correspondence
with the biospheric model median, particularly in under-
constrained regions like the Pacific coast.

The grid-scale GIM estimates have a stronger seasonality
relative to the biospheric model median, with larger sources
in the winter and stronger sinks in the growing season, but the
locations with net uptake and release are generally consis-
tent, especially during months with net uptake. The stronger
seasonality of the GIM fluxes may be due to errors in the bio-
spheric model median caused by ignoring models that show
the strongest sources or sinks in each month. In addition,
GIM inversions that account for both the temporal and spa-
tial covariance of fluxes perform better in terms of capturing
grid-scale spatial patterns, but in some cases lead to stronger
flux variability relative to inversions that account only for
spatial covariance.

The GIM estimates exhibit spatial patterns that are more
consistent with the biospheric models during the growing,
relative to the dormant season. The spatial correlation coef-
ficient between the NARR inversion estimates and the bio-
spheric model median is 0.57 and 0.48 respectively in April
and July, compared to only 0.27 and−0.14 in January and
October, respectively. Similarly, results for the dormant sea-
son show a larger number of biospheric models being sig-
nificantly different from the GIM results in more areas of
the continent (Fig. 4, last column), where the significance is
defined as a biospheric model being outside the 95 % confi-
dence intervals of the GIM NARR estimates.

The greater similarity during the growing season is likely
due to, first, both the inversions and biospheric mod-
els having greater skill during periods with net uptake.
The increased skill during the growing season has previ-
ously been documented for biospheric models in model
inter-comparison studies using eddy-covariance data (e.g.
Schwalm et al., 2010). For inversions, this greater skill is due
to the stronger atmospheric signal during this season, thereby
making it easier for inversions to constrain fluxes.

Second, errors in the magnitude or spatial patterns of the
fossil fuel inventories, or an inability to properly interpret
fossil fuel plumes within the inversion, impact the GIM bio-
spheric fluxes. These errors would be most evident in the
dormant season when fossil fuel emissions represent a larger
proportion of the total CO2 flux. For example, some of the
strong sources in the GIM results in the south-central por-
tion of the continent in January may be due to representation
errors associated with emission plumes at the Moody, Texas
tower.

Third, most of the biospheric models in the NACP RCIS
do not specifically account for managed agricultural pro-
cesses (i.e. fertilizer, irrigation, crop harvest and lateral trans-
port, etc.). While this would reduce model skill throughout
the year in agricultural areas of the continent (Lokupitiya et
al., 2009; Corbin et al., 2010; Huntzinger et al., 2012a) and in
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Fig. 4. Monthly-averaged grid-scale biospheric fluxes for January, April, July and October from the Simple and NARR inversions using
the EMP boundary conditions, and the median of biospheric models participating in the NACP RCIS. Also shown are the grid-scale spatial
correlation coefficients (ρ) and Root Mean Squared Difference (RMSD; µmol m−2 s−1) between the inversion and the biospheric model
median fluxes. Please note the different scales for each month. The plots in the right-most column show the percent of individual biospheric
models that are outside the 95 % confidence intervals of the NARR inversion for each month and location.

areas with a large consumption of agricultural products (e.g.
by human or livestock populations), it would be particularly
evident in the presented October fluxes. The strong sources
seen in the inversions in this month reflect a strong build-up
of CO2 relative to background air at three towers in heavily
agricultural areas (Candle Lake, Saskatchewan, Park Falls,
Wisconsin and Norman, Oklahoma; see Fig. A1 in the Sup-
plement), and are most likely associated with the decay of
residual biomass after crop harvesting (Johnson et al., 2006).
The stronger GIM sinks northwest of the Norman, Oklahoma
tower in April and in the agricultural Midwest during July,
are also supported by process-based studies showing stronger
productivity in well-irrigated and fertilized agricultural crop-
lands relative to unmanaged grasslands, or the native vegeta-
tion of these areas as parameterized in many of the biospheric
models (Lokupitiya et al., 2009; Corbin et al., 2010; Smith
et al., 2010).

3.3.2 Ecoregion-scale estimates

Test inversions using synthetic data showed that monthly in-
version results at aggregated spatial scales should be reliable
in well-constrained areas of the continent (barring substan-

tial transport errors). Therefore, spatially-aggregated GIM
results are compared to other inversions and the biospheric
models (Fig. 5) for the three ecoregions presented in Fig. 2b,
as well as for the full continent.

At the ecoregion scale, similarly to the grid-scale, inclu-
sion of NARR auxiliary variables is seen to have no signif-
icant impact on GIM flux estimates, consistent with results
from Gourdji et al. (2008). Yet, the across-model spread for
both inversion studies and biospheric models at these aggre-
gated scales is quite large, and generally wider than the GIM
confidence intervals throughout the year, particularly in the
Eastern Temperate Forest and the Temperate, Grass, Savan-
nah, Shrub ecoregions. More generally, the spread across
inversion studies is smaller than that seen in the biospheric
models, thereby supporting the use of the atmospheric data
constraint to evaluate biospheric models.

Compared to the other inversion studies, the seasonal
cycle of the GIM estimates is within the spread of the
other estimates. The spread across inversions is nar-
rower in the better-constrained ecoregions (i.e. Temperate
Grass/Savannah/Shrub, and Boreal Forest), pointing to the
value of an expanded measurement network for reducing the
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Fig. 5. Seasonal cycle of monthly-averaged fluxes aggregated to the three well-constrained ecoregions, as well as to the full continent
(Fig. 2b). GIM fluxes using the EMP boundary conditions are compared to other inversions (top row) and individual biospheric models
(bottom row) that have coverage in at least 85 % of the given regions. Inversions with the same line color use similar biospheric model output
for their prior flux estimates.

impact of inversion setup choices and assumptions on flux
estimates. The spread between inversions is also narrowest
for the two largest examined regions (Boreal Forest and the
full continent), indicating a better constraint on flux estimates
at progressively larger spatial scales, at least with the limited
2004 measurement network.

In terms of individual inversions, GIM flux estimates are
relatively similar to those from CarbonTracker, particularly
in the Eastern Temperate and Boreal Forests, despite signif-
icantly different estimation resolutions and transport models
(Table 1). The strong growing season uptake in the Butler et
al. (2010) study relative to the other inversions, particularly
in the Boreal and Eastern Temperate Forests, may be due
to aggregation errors associated with using measurements
from highly productive areas, and extrapolating this signal
too strongly across that study’s coarser estimation regions
(see Table 1). The monthly concentration-averaging intervals
and flux estimation timescale used in the Butler et al. (2010)
study also support this conclusion. Aggregation errors could
also be affecting the CarbonTracker results in the Temper-
ate Grass/Savannah/Shrub ecoregion, where this inversion
shows stronger peak uptake in July and August relative to the
other studies. The Schuh et al. (2010) results show a weaker
seasonal cycle and an earlier peak uptake relative to the other
inversions in the Eastern Temperate Forests, and Temperate
Grass/Savannah/Shrub. Among other potential factors, this
result could be due to a strong adherence to the seasonal cycle
of the prior (SiB3), which also has relatively early peak up-
take in the continental US relative to other biospheric models.

This would imply tighter prior flux uncertainties in Schuh et
al. (2010) relative to the Butler et al. (2010) study, where the
use of CASA vs. SiB3 as a prior changes flux estimates only
slightly at the ecoregion scale.

The spread among the biospheric models is generally
larger than that seen across inversion studies, especially in
the Temperate Grass/Savannah/Shrub ecoregion, which has
a relatively high proportion of agricultural land-cover. In this
ecoregion, the GIM inversions show a stronger, later peak up-
take relative to the majority of the biospheric models, as well
as stronger sources in the dormant season, particularly in Oc-
tober. The lack of agreement in this region may again reflect
the lack of skill in modeling agricultural processes in the bio-
spheric models (Lokupitiya et al., 2009; Corbin et al., 2010).
In the Eastern Temperate Forests, the GIM results fall within
the wide biospheric model spread. EC-MOD and MOD17+,
the two biospheric models with the strongest growing sea-
son uptake in the Eastern Temperate Forests, appear unreal-
istic when compared to GIM estimates and uncertainties. In
the Boreal Forests and at the continental scale, the spread in
the biospheric models is narrower and also more consistent
with the GIM results. In the Boreal Forests, all models agree
reasonably well on the timing of the seasonal cycle, and the
biospheric model median falls within the GIM 95 % confi-
dence intervals for all months. At the continental scale, the
spread in both the biospheric model estimates and the inver-
sion studies is the narrowest, pointing to errors that cancel at
large spatial scales in both bottom-up and top-down models
for the seasonal cycle.
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Fig. 6. Annually-averaged grid-scale biospheric fluxes from the
GIM NARR inversions using the EMP and CT boundary condi-
tions. Also shown are significant sources and sinks (at 67 % and
95 % confidence levels) for each inversion.

3.4 Net annual sources and sinks

Net annual fluxes represent the small residual of a strong sea-
sonal cycle. Therefore, relatively small monthly uncertain-
ties represent a larger proportion of the annual totals. Also,
any biases in the inversions or biospheric models may ac-
cumulate at longer timescales. In addition, many biospheric
models are specifically not designed to capture net annual
sources and sinks at all. For these reasons, the annual flux
estimates presented here are considered to be less robust than
the monthly estimates.

3.4.1 Grid-scale estimates

Although the annual grid-scale GIM flux estimates (Fig. 6)
show relatively few areas with statistically significant sources
or sinks, the spatial patterns are quite consistent between
the two sets of boundary conditions and also with inventory-
based estimates of CO2 flux. The GIM inversions show net
annual uptake in the Eastern US, the midwestern agricul-
tural areas in the US and Canada, and parts of the conti-
nental western US, which is consistent with bottom-up in-
ventory estimates from the State of the Carbon Cycle Re-
port (SOCCR; CCSP, 2007) and a recent inventory study by
Hayes et al. (2012). Results for these regions are also con-
sistent with Crevoisier et al. (2010), who used an indepen-
dent carbon budgeting method for North America based on
vertical profiles of CO2 mixing ratios collected from aircraft
observations.

The GIM estimates show net annual sources in the south-
west US, along the Canadian Pacific Coast, and in the Yu-
catan peninsula of Mexico. The existence of net sources in
the Southwest is consistent with Hayes et al. (2012), who
hypothesized that livestock and human consumption of agri-
cultural products grown elsewhere could be contributing to
sources in these heavily-populated but arid areas, as did
Crevoisier et al. (2010). The lack of annual sources in these
areas in the majority of the biospheric models (results not
shown) is consistent with the fact that many do not explicitly
account for the lateral transport of agricultural products. The
net sources from the Mexican tropical forests in GIM are also
consistent with inventory-based estimates of emissions from
land-use change in this region (Cairns et al., 2000; de Jong
et al., 2010), while the GIM sources in the Pacific Northwest
most likely represent an artifact of the NARR auxiliary vari-
ables in this highly under-constrained region.

While inversions with the two boundary condition datasets
return similar spatial patterns, magnitudes differ for net an-
nual flux estimates, with stronger sinks and weaker sources
evident in almost all regions with the CT relative to the EMP
dataset. Most of these differences at the annual timescale are
due to a difference in net uptake from March through August,
consistent with the seasonally-varying offset between the two
sets of boundary conditions (see Fig. A2 in the Supplement).

3.4.2 Ecoregion-scale estimates

At the ecoregion scale (Fig. 7), all inversions and biospheric
models show a net biospheric uptake in the Eastern Temper-
ate Forests. In this region, the CarbonTracker and Schuh et
al. (2010) results fall within the 95 % confidence intervals for
3 of the 4 geostatistical inversions, while the majority of the
biospheric models fall within the confidence intervals of the
GIM Simple inversion with EMP boundary conditions. The
strong uptake of approximately 1 PgC yr−1 seen here in the
Butler et al. (2010) results is inconsistent with the other in-
versions and all but two of the biospheric models, and may
reflect the impact of aggregation errors, as discussed previ-
ously. In the Boreal Forests, all inversion studies show net
uptake, while the biospheric models span both net sources
and sinks. CarbonTracker and the Butler et al. (2010) esti-
mates fall within the confidence intervals of the GIM inver-
sions with EMP and CT boundary conditions, respectively,
while the Schuh et al. (2010) inversion does not cover this
region. In the Temperate Grass/Savannah/Shrub ecoregion,
the GIM inversions show a more neutral flux relative to the
other inversion models and the biospheric models. It is pos-
sible that the biospheric models are under-estimating sources
in this region due to their lack of skill in modeling residual
biomass and the fate of harvested products, as discussed pre-
viously, and the other inversions would then also be biased
by their use of these same biospheric models as prior flux es-
timates. As described previously, the GIM sources in these
regions in spring and fall are supported by CO2 mixing ratio
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time series at the tower locations, as shown in Fig. A1 in the
Supplement.

Differences across models in net annual fluxes are most
evident at the continental scale (Fig. 7). The spread in the
continental budget seen here is larger than that for the conti-
nental seasonal cycle (Fig. 5), although this partially reflects
a difference in units between Fig. 7 (PgC yr−1), which is not
normalized by area, and Fig. 5 (µmol m−2 s).

At this coarsest scale of comparison, the GIM results are
strongly affected by the choice of boundary conditions (as in
Göckede et al., 2010a, which estimated fluxes for the state
of Oregon), where the consistent offset between these two
datasets leads to an additive effect on flux estimates in both
space and time. With the EMP boundary conditions, GIM
returns a biospheric flux that is not significantly different
from zero, and reduces the net North American sink by ap-
proximately 0.7 to 0.9 PgC yr−1 relative to the GIM inver-
sion with CT boundary conditions. The CarbonTracker (Pe-
ters et al., 2007) estimates are statistically consistent with the
GIM inversions with CT boundary conditions at the annual
continental scale, supporting the conclusion that boundary
conditions are the primary control on fluxes at this coarsest
scale, whereas flux resolution, priors, transport model and
data choices, have a stronger impact at sub-domain scales.
An inventory-based estimate of the North American carbon
balance from Hayes et al. (2012) found a net biospheric up-
take of 0.33 PgC yr−1, which is statistically consistent with
the GIM Simple inversion using the EMP boundary con-
ditions, suggesting that these boundary conditions may be
more realistic relative to those from CT. The main conclu-
sion, however, is that the uncertainty associated with bound-
ary conditions must be reduced if regional inversions are to
be able to accurately pinpoint net biospheric uptake for the
entire spatial domain of interest.

4 Conclusions

The primary goal of this study was to perform an inter-
comparison of North American CO2 flux estimates for a
single year (2004) across inverse modeling studies and bio-
spheric models, using results from a geostatistical inversion
approach as a benchmark. Fluxes were quantified in the GIM
inversions at a 1◦ × 1◦ spatial and 3-hourly temporal resolu-
tion, and covariance parameters and process-based auxiliary
information were also optimized using the atmospheric data.
By estimating fluxes at substantially finer scales relative to
previous inversions, this study reduces spatial and tempo-
ral aggregation errors associated with using continental mea-
surements sited in areas with high flux variability, and allows
for the recovery of sub-continental spatial patterns from the
atmospheric CO2 measurements. In addition, avoiding the
use of prior flux estimates from biospheric models avoids any
biases caused by shortcomings in process-based representa-

tions, and allows for a more independent comparison to flux
estimates from terrestrial ecosystem models.

The GIM Simple inversion, that included only a fossil
fuel inventory as ancillary data, yielded results that support
the quality of the inventory as well as the GIM setup and
assumptions. Significant regional-scale spatial and tempo-
ral variability was recovered, indicating that the information
content of atmospheric observations is greater than implied
in past studies. The introduction of NARR auxiliary vari-
ables into the second, NARR inversion confirmed that flux
patterns in the majority of the continent are constrained by
atmospheric observations rather than ancillary data, although
these did help to extrapolate the signal to particularly poorly-
constrained regions. NARR inversion results are also consis-
tent with process-based understanding of the drivers of CO2
fluxes from photosynthesis and respiration, with evapotran-
spiration explaining a substantial portion of the net uptake
signal.

For the grid-scale seasonal cycle, the GIM inversions were
found to have more consistent spatial patterns with bio-
spheric models during the growing relative to the dormant
season. This could be due to errors in the fossil fuel inven-
tories that are aliased onto the inferred fluxes, which would
be more evident in the dormant season when emissions dom-
inate the total CO2 flux, or errors in the biospheric models
themselves which may have less skill outside of the growing
season (e.g. Schwalm et al., 2010). Finally, the fluxes dur-
ing the growing season are stronger and more variable, and
therefore perhaps easier to identify from the atmospheric sig-
nal.

At the ecoregion-scale, comparisons of inferred seasonal
cycles across inversion studies pointed to the strong im-
pact of setup on flux estimates, particularly adherence to
the bottom-up prior flux estimates and aggregation errors as-
sociated with estimating fluxes at coarse-scales relative to
the fine-scale variability embedded in the priors. A strong
atmospheric data constraint reduced this impact somewhat,
with inversions that estimate fluxes at different spatial scales
showing more consistent results in well-constrained regions,
i.e. the Boreal Forests and Temperate Grass/Savannah/Shrub.
This suggests that an expanded measurement network will
further help to reduce the sensitivity of inversion results to
setup assumptions, although systematic transport model er-
rors will still remain a concern.

The comparison of GIM results to the biospheric models
at the ecoregion-scale pointed to the need for the biospheric
models to better account for crop parameterizations, land-
management practices, and the fate of harvested products in
the agricultural areas of the continent. For example, the geo-
statistical inversions showed strong sources in the center of
the continent in March and October, which were not seen in
the majority of the biospheric models. The fact that these
sources were also absent in some of the examined inver-
sion studies may also point to the impact of these biospheric
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Fig. 7. Annual biospheric flux estimates spatially aggregated to the three ecoregions and North America (Fig. 2b). Results from the Simple
and NARR inversions using the EMP and CT boundary conditions are compared to results from other inversions and the biospheric models
participating in the NACP RCIS. GIM results are shown within their 95 % confidence intervals.

model limitations on a posteriori flux estimates for inversions
based on these models.

At the annual timescale, the GIM inversions showed net
uptake in the Eastern Temperate and Boreal Forests, but more
of a neutral flux in the Temperate Grass/Savannah/Shrub.
This latter result is inconsistent with other inversion stud-
ies and bottom-up models, which may not have properly ac-
counted for the fate of harvested agricultural products and
residual biomass. Net annual sources inferred in the South-
west are also consistent with inventory-based estimates of
livestock and human consumption of agricultural products in
these sparsely-vegetated areas.

While the boundary conditions used as input into regional
inversions were found to have only minor impact on recov-
ered grid-scale spatial patterns, they were found to lead to
large differences in the GIM flux estimates at the coarsest
spatial and temporal scale of comparison, i.e. the annual con-
tinental scale. The use of an empirically-derived boundary
condition dataset eliminated the North American carbon sink
for this year relative to an inversion relying on model output
from CarbonTracker for boundary CO2 concentrations. This
result points to the importance of accurately pinpointing the
CO2 concentrations of incoming air for appropriate carbon
budgeting at the scale of countries in North America.

Overall, the North American geostatistical inversion for
2004 presented here provides a robust inversion framework
suitable for ingesting the large data volumes associated with
the recent expansion of the in situ CO2 monitoring network
over North America (Mueller, 2011). In particular, the pre-
sented GIM approach estimates fluxes at unprecedented spa-
tiotemporal scales that help to optimally take advantage of

the information contained in highly variable continental mea-
surement data. The GIM approach also provides an inde-
pendent comparison to bottom-up model estimates, thereby
helping to provide insight into the currently large spread of
biospheric model estimates of regional CO2 flux, while pro-
viding a path forward for improving their formulation of pro-
cesses at regional scales in future work.

Supplementary material related to this
article is available online at:
http://www.biogeosciences.net/9/457/2012/
bg-9-457-2012-supplement.pdf.
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