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Abstract. A comparison was made between upscaled model
results of nitrogen (N) fluxes to air and water from 450 sites
within the EU-27 and results derived for the entire EU-27
area using the model INTEGRATOR. The 450 sites were se-
lected using stratified random sampling, dividing the EU-27
into 150 strata and selecting three sites at random within each
stratum. The strata were based on important environmen-
tal factors influencing N fluxes. Hierarchical divisive cluster
analysis was used to reduce the numerous combinations of
environmental factors to the required total of 150, such that
the heterogeneity of environmental factors within strata was
as small as possible. Modelled NH3, N2O and NOx emissions
and N leaching/runoff obtained were scaled up from the 450
sites to the entire EU-27 and were within 10 % of results ob-
tained by running the model for the whole of the EU-27 using
about 36 500 sites. This implies that a reliable estimate of N
fluxes for EU-27 can be made by upscaling results of the 450
selected sites suggesting that dramatic reduction in compu-
tation time can be achieved without substantial deterioration
of results

1 Introduction

The intensification of agricultural production by enhanced
nitrogen use over the past few decades has strongly increased
global food production, but at high environmental costs (e.g.
Smil, 1999; Tilman et al., 2001). Environmental effects of the
intensification in agriculture are manifested through the loss
of nitrogen (N) to the atmosphere and hydrosphere, which
causes a number of ecological and human health effects, such

as (i) decreased biodiversity of terrestrial and aquatic ecosys-
tems caused by eutrophication and acidification, (ii) too high
NO3 concentrations in drinking water, caused by elevated ni-
trate (NO3) leaching to groundwater and (iii) global climate
change, induced by emissions of nitrous-oxide (Galloway et
al., 2003, 2008; Erisman, 2004).

To gain insight in the risks associated with N use at the
European scale, the model INTEGRATOR (De Vries et al.,
2011a, c; Kros et al., 2012) has been developed that assesses
N output fluxes from agricultural and terrestrial ecosystems
in Europe to:

1. air, i.e. emissions of ammonia (NH3), nitrous-oxide
(N2O), nitrogen oxides (NOx) and dinitrogen (N2);

2. water, i.e. N leaching to groundwater and N runoff to
surface water, in response to N inputs.

INTEGRATOR calculates these output fluxes for 36 466 cal-
culation units (NCUs: NitroEurope Calculation Units), be-
ing unique combinations of soil type, administrative region,
slope class and altitude class with a mean size of 199 km2.
To gain insight in the uncertainty of the N fluxes, a compar-
ison of model results was foreseen within the NitroEurope
project (www.nitroeurope.eu) of different complex dynamic
models that predict soil N fluxes on a European scale, such
as DayCent (Del Grosso et al., 2005), DNDC (e.g. Li et al.,
2000) and EPIC (Bouraoui and Aloe, 2007; Van der Velde
et al., 2009), thereby performing an uncertainty analysis for
each model. However, as this requires a Monte Carlo type
of uncertainty quantification/uncertainty analysis (UQ/UA)
of these complex models, this cannot be done for all 36 466
mapping units (NCUs). This would be too computationally
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demanding, given that this involves hundreds of Monte Carlo
runs for each NCU. Therefore it was decided to limit the
analysis to a sample of 450 sites within Europe, i.e. a real-
istic number to be processed in an UQ/UA with the complex
dynamic models. The UQ/UA results can be scaled up to the
whole of Europe with statistical quantification of the upscal-
ing error provided the sample of sites is chosen using proba-
bility sampling (De Gruijter et al., 2006).

In this paper, a comparison is made between upscaled
model results from 450 selected sites within Europe and the
results based on simulations for the whole of Europe (i.e. all
NCUs), using the model INTEGRATOR. To enable statisti-
cal upscaling of results to the entire EU, sites were selected
using stratified random sampling. By using appropriate sta-
tistical inference, this yields not only an estimate but also the
estimation error in statistical terms (i.e. as a probability dis-
tribution). Deterministic quantification of the upscaling er-
ror (i.e. the actual value of the error) is achieved by a direct
comparison between results from the 450 sites and those ob-
tained for the whole of EU-27. This is feasible because a sin-
gle run of INTEGRATOR takes much less computing time
than those of the more complex dynamic models.

The aim of the study was to assess whether a reliable es-
timate of the total European greenhouse gas emission can
be made by upscaling results for the selected sites. First the
model INTEGRATOR is shortly described, followed by a de-
scription of the stratified random sampling plot selection and
of the statistical methodology used to upscale results to the
European and country scale. Next the results of the plot se-
lection are presented, followed by a description of the results
on N fluxes using both methods. Results focus on the com-
parability of N inputs by fertilizer and manure, N uptake and
N surplus, NH3, and N2O emissions and N leaching/runoff.
Based on the comparison, the reliability of the sampling and
upscaling procedure is discussed.

2 Methodological approaches

2.1 The model INTEGRATOR

INTEGRATOR has been developed to assess responses of N
and greenhouse gas (GHG: N2O, CH4 and CO2) emissions
to European-scale changes in land use, land management and
climate at a high spatial resolution, both in the past and in
the future, focusing on changes in the period 1970–2030 (De
Vries et al., 2011a). It covers major agricultural and non-
agricultural ecosystems (grassland, arable land, forests, and
short vegetation) and includes interactions between agricul-
tural land and non-agricultural land via gaseous emissions
of NH3 (and NOx) and the resulting N deposition. INTE-
GRATOR includes complete N balances, and can be applied
at EU level (EU-27). To achieve all these aims, INTEGRA-
TOR (i) uses relatively simple and transparent model calcula-
tions based on the use and adaptation of available modelling

approaches, (ii) includes empirical modelling approaches,
using statistical relationships between model outputs and
environmental variables and (iii) focuses on the derivation
of high-resolution spatially explicit input data. The INTE-
GRATOR concept is based on an appropriate balance be-
tween model complexity and data availability. For N fluxes,
which is the focus of this paper, INTEGRATOR includes
sub-models to predict

– NH3, NOx, N2O and CH4 emissions from housing and
manure storage systems and agricultural soils, based on
the adapted MITERRA-Europe model (Velthof et al.,
2009);

– NOx and N2O emissions from non-agricultural terres-
trial systems, based on a meta-model of DNDC (Kesik
et al., 2005; De Vries et al., 2007) and empirical rela-
tionships relating N2O and NOx emissions to georef-
erenced N inputs and stand/site characteristics, includ-
ing meteorological parameters and soil characteristics
(Bloemerts and de Vries, 2009);

– N2O emissions from groundwater and surface waters
according to a hole-in-the-pipe-model (Keuskamp et al.,
2012);

– N deposition (an emission-deposition matrix for NH3
and NOx), accounting for the interaction between agri-
cultural and non-agricultural soils (EMEP, 2009).

To derive a complete N budget, background emissions and
energy emissions are also included in INTEGRATOR, based
on literature data (Simpson et al., 1999) and IMAGE (Bouw-
man et al., 2006) model calculations. Since this paper fo-
cuses on results from agricultural systems, obtained from
an adapted version of MITERRA-EUROPE, this model is
described briefly below. MITERRA-Europe (Velthof et al.,
2009) is a deterministic and static N cycling model that cal-
culates N emissions on an annual basis, using N emission
factors and N leaching fractions distinguishing various ma-
nure types and manure application practices. The model can
be used to assess the effects of measures and policies aiming
at emission reduction of ammonia, nitrous oxide (N2O), N
oxides (NOx), and methane (CH4) to the atmosphere, leach-
ing of N (including nitrate) to groundwater and surface wa-
ters, and on the phosphorus (P) budget at EU-27 level, coun-
try level, and regional (NUTS-2) level. INTEGRATOR in-
cludes an adapted version of MITERRA, including more de-
tail in N2O and NOx emission factors, based on a litera-
ture study (Lesschen and Velthof, 2009). Furthermore, IN-
TEGRATOR calculates at the level of homogeneous combi-
nations of land use, soil type etc., whereas MITERRA calcu-
lates at NUTS level. More information on the various differ-
ences is given in De Vries et al. (2011a).

Biogeosciences, 9, 4527–4536, 2012 www.biogeosciences.net/9/4527/2012/



G. J. Reinds et al.: Estimating nitrogen fluxes at the European scale 4529

2.2 Clustering and stratified random sampling

The set of 450 sites in Europe for which INTEGRATOR was
applied was obtained using stratified simple random sam-
pling. Since land use is considered a dominant factor, we
required that each stratum had to be homogeneous with re-
spect to land use. The EU was divided into 150 geograph-
ical strata, such that the strata were homogeneous with re-
spect to the other environmental factors that control N fluxes.
Next three sites were randomly selected within each stratum.
Simple random sampling of three sites from each of the 150
clusters was achieved by using the “spsample” function from
the gstat package forR (Bivand et al., 2008). Sampling was
based on digital representations of the NCU clusters in the
Lambert Azimuthal Equal Area projection (Geographic Co-
ordinate System GCS ETRS 1989). The sampling procedure
is explained in detail below.

2.2.1 Principle of stratified random sampling

Stratified random sampling starts by dividing the total popu-
lation of M NCUs intoK strata, ideally such that the vari-
ation of the target variable (i.e. greenhouse gas emission)
within strata is small compared to the variation between
strata. Each of theK strata containsMk NCUs (k =1,...K).
Obviously, the sum of allMk equalsM. Within each stra-
tum, a simple random sample ofmk sites is chosen using
simple random sampling. In our caseM = 36 466, and we
usedK = 150 andmk = 3. This yields a total of 450 sites.
The important advantage of usingmk > 1 is that variability
within strata can also be assessed. Using multiple sites from
the same stratum allows comparison of model results at dif-
ferent sites with similar environmental conditions.

The approach taken to define theK strata (or groups)
conforms with conventional clustering techniques from mul-
tivariate statistics; see Kaufman and Rousseeuw (1990) or
Davis (2002) for details.

2.2.2 Factors controlling clustering

The M NCUs were clustered into groups that are homoge-
neous with respect to the expected model output, in this case
annual N emission. Clustering was therefore based on impor-
tant environmental factors that are known to influence emis-
sion, i.e. (i) land use, divided in arable land, grassland (in-
cluding rough grazing) and nature (including forests but ex-
cluding wetlands), (ii) N manure application and N grazing,
(iii) N fertilizer application, (iv) mean annual temperature,
(v) total annual precipitation and (vi) soil type/texture, di-
vided in sand, clay and peat. Loamy soils were added to
the clay soils because of comparable hydrological charac-
teristics. Wetlands were excluded (220 NCUs), and so were
2 NCUs for which INTEGRATOR calculated N Manure in-
puts greater than 400 kg ha−1, because these values were
considered unrealistic. As a result the total number of NCUs

was reduced from 36 466 to 36 244. Data for precipitation
and temperature for each NCU were derived from Mitchell
et al. (2004). The assessment of N inputs for each NCU is
described in detail in De Vries et al. (2011b). Soil texture is
an attribute for each NCU, obtained from the European Soil
Database polygon map (Panagos, 2006).

Next the subsequent cluster analysis was applied
to each of the three initial clusters separately. From
the 36 244 NCUs, there were 11 375 NCUs comprising
arable land (1.763 million km2), 9789 NCUs comprising
managed grass and rough grazing (grassland in pas-
toral use, 0.866 million km2), and 15 080 nature NCUs
(1.923 million km2). Differences in inclusion probabilities
were taken into account when the results of the 450 point
sites were scaled up to the entire EU (see Sect. 2.3).

2.2.3 Initial clustering per land use type by rounding

To reduce the number of initial clusters (i.e. NCUs) for each
of the three land use types, we grouped NCUs with similar
values of continuous numerical environmental factors using
classes for these factors. For each NCU, annual precipitation
less than 50 mm was rounded to multiples of 10 mm and an-
nual precipitation greater than 50 mm was rounded to mul-
tiples of 50 mm. Mean annual temperature was rounded to
multiples of 0.5◦C.

Applications of N through chemical fertilizer and
animal manure less than 50 kg ha−1 yr−1 were rounded
to multiples of 1 kg ha−1 yr−1, and applications greater
than 50 kg ha−1 yr−1 were rounded to multiples of
10 kg ha−1 yr−1. After rounding, the original set of
36 244 NCUs was reduced to 11 629 unique combinations.
Computation-wise, this proved to be an important advantage.

2.2.4 Data transformation

The relationship between annual N emission and annual tem-
perature and precipitation is known to be non-linear. There-
fore, annual temperature and precipitation were transformed
prior to entering the cluster analysis. For temperature, a
square root transform and, for annual precipitation, a sigmoid
transformation were used:

Ttr =

√
T + T0 (1)

Ptr = 1−
1

1+ ec(P−h)
(2)

where Ttr and Ptr are the transformed mean annual tem-
perature (T ) and precipitation (P ), respectively. The coef-
ficients were taken asT0 = 7◦C, c = ln(9)/500 mm−1, and
h = 1000 mm.T0 was chosen such that no NCU had a neg-
ative value forT + T0; the sigmoid transformation param-
eters were chosen such that precipitation values of 500,
1000 and 1500 mm yielded transformed values of 0.10, 0.50
and 0.90, respectively, assuming that precipitation amounts
above 10 000 mm will lead to soils being wet for large parts
of the year with associated high N2O emissions.
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2.2.5 Calculating dissimilarities

Most clustering techniques make use of so-called dissim-
ilarity matrices, which measure the dissimilarity or “dis-
tance” between objects. The dissimilarity is calculated from
a weighted comparison of the differences between the factor
values of a pair of objects. Thus, the dissimilarity between
two objectsp andq (i.e. NCUs) may be computed as

D(p,q) =

F∑
f =1

αfDf(p,q) (3)

whereF is the number of factors, theDf are individual factor
distances and theαf are weights. In the case of NCU cluster-
ing, there are five factors: N manure application, N fertil-
izer application, transformed annual temperature and trans-
formed annual precipitation and soil texture class (recall that
land use has already been dealt with). For soil texture, we
usedDsoil(sand, clay) = 0.6,Dsoil (sand, peat) = 0.8, andDsoil
(clay, peat) = 0.4; we thus assumed the largest dissimilarity
between sand and peat soils. Soil texture dissimilarities be-
tween two NCUs with the same soil texture are zero. The dis-
tancesDf of the continuous numerical factors were computed
by taking the absolute differences of the standardised values
of the factors. Standardisation of factor values was achieved
by subtracting the mean factor value among all NCUs from
each observation and dividing by their standard deviation.
The weights were chosen asαsoil = 0.20, αNmanure= 0.40,
αNfert = 0.25, αTemp= 0.10 andαPrec= 0.05. We thus as-
sumed that e.g. differences in the amount of manure between
two sites are more important than differences in temperature
of precipitation. The weights were assigned based on the rel-
ative importance of environmental factors on N emissions,
based on literature data and expert knowledge.

2.2.6 Comparison of three cluster techniques

The dissimilaritiesD were used to group objects into clus-
ters. The general principle is that the dissimilarity between
objects of the same clusters should be as small as possible.
Different techniques were evaluated: (i) hierarchical agglom-
erative clustering (HAC), (ii) hierarchical divisive clustering
(HDC) and (iii) k-means clustering (KMC). The most satis-
factory technique was used to define the strata used for sam-
pling.

HAC techniques (Kaufman and Rousseeuw, 1990) start
with as many clusters as there are objects. At first, each ob-
ject is a small cluster by itself. Clusters are merged until only
one large cluster remains which contains all the objects. At
each stage the twonearestclusters are combined to form
one larger cluster. This requires a definition of what “near-
est” means. The “Agnes” algorithm from the R-cluster pack-
age (Maechler et al., 2009) distinguishes several options. In
the most common approach, the distance between two clus-
ters is the mean of the dissimilarities between the objects in

one cluster and the objects in the other cluster. The cluster-
ing may be stopped when the required number of clusters has
been reached. In our case we used 50 final clusters per land
use type.

HDC algorithms construct a hierarchy of clusters starting
with one large cluster containing all objects (i.e. all NCUs
of a given land use type). We used the “Diana” algorithm
from the R-cluster package (Maechler et al., 2009). Clusters
are split until each cluster contains only a single object. At
each stage, the cluster with the largest diameter was selected
and split. The diameter of a cluster was defined as the largest
dissimilarity between any two of its objects. To divide the se-
lected cluster, the algorithm first looks for its most disparate
object (i.e. the object with the largest mean dissimilarity to
the other objects of the selected cluster). This object initiates
the “splinter group”. In subsequent steps, the algorithm re-
assigns objects that are closer to the “splinter group” than to
the “old party”. The result is a branching tree that can be cut
at any desired level of number of final clusters (i.e. 50 per
land use class).

The KMC algorithm (Hartigan and Wong, 1979) is not hi-
erarchical and therefore neither divisive nor agglomerative.
In this case the algorithm starts with (arbitrary chosen) cen-
troids of the number of desired clusters. Next all objects are
assigned to their nearest cluster. Once all objects have been
assigned to clusters, the centroids are computed again. In
case of a categorical variable such as soil texture type, the
centroid takes the dominant value. Next allocation of all ob-
jects based on the new centroids is done, and the process is
repeated iteratively until no more changes occur. We used
the “PAM” algorithm that is fully described Kaufman and
Rousseeuw (1990).

The Agnes, Diana and PAM algorithms were implemented
in the “cluster” library of the R statistical software pack-
age (http://www.r-project.org/). The dissimilarity matrices
for arable, grass and nature were calculated and used to
assess the performance of the three algorithms. To evalu-
ate and compare the performance of the algorithms, the ho-
mogeneity of the 150 clusters was calculated and the clus-
ter sizes (i.e. the number of NCUs grouped into a cluster)
were calculated. Homogeneity was evaluated by calculating
the summed within-cluster variances for each of the four
continuous-numerical factors and the summed within-cluster
entropy for soil texture (Brus et al., 2008).

2.3 Spatial aggregation of model outputs to the
European scale

Since the selected 450 sites are a stratified simple random
sample from the entire EU-27, with known inclusion prob-
abilities, upscaling of the results at these sites to the entire
EU is relatively straightforward and also allows the assess-
ment of the associated estimation error. The mathematical-
statistical procedure used to obtain estimates of averaged
model outputs for the entire EU-27 and for countries within
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EU-27, including the sampling error associated with the es-
timates, is described below.

2.3.1 Upscaling to EU-27

The mean of model outputs across the EU-27,µ, was esti-
mated by (De Gruijter et al., 2006)

µ̂ =

K∑
i=1

ai · ˆ̄yi (4)

where

ai =
Ai

A
(5)

A =

K∑
i=1

Ai (6)

ˆ̄yi =
1

m

m∑
j=1

yij (7)

with K the number of strata,ai the relative area of stratumi,
Ai the area of stratumi (i = 1...K), A the total area of EU-
27, m the number of sites within each stratum (m = 3), yij

the model output at sitej of stratumi (j = 1...m; i = 1...K)

and ˆ̄yi the estimated mean of model output in stratumi. The
estimate is unbiased, implying that

E[µ − µ̂] = 0. (8)

The variance of the estimation error is estimated by

V (µ − µ̂) =

K∑
i=1

a2
i · V ( ˆ̄yi) (9)

whereV ( ˆ̄yi) is the variance of̂̄yi , which is estimated by

V̂ ( ˆ̄yi) =
1

m · (m − 1)

m∑
j=1

(yij − ˆ̄yi)
2. (10)

Assuming a normal distribution of the estimation error, the
lower and upper limit of the symmetric 95 % confidence in-

terval for the meanµ are estimated bŷµ−1.96·

√
V̂ (µ − µ̂)

andµ̂ + 1.96·

√
V̂ (µ − µ̂).

2.3.2 Upscaling to countries

Upscaling to countries instead of the EU is easy when allK

strata lie either entirely inside or entirely outside a country.
In that case the equations above can be applied to the sub-
set of strata that lie inside the country (i.e. sum only over the
strata inside the country). When some of the strata lie partly
inside and partly outside the country, then only that part of
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Fig. 1. Number of NCUs within each of the 50 clusters for arable
land obtained with agglomerative (AG), divisive (DI) andk-means
(PAM) clustering.

the stratum that lies in the country was included in the analy-
sis and replaces the original stratum (note that this affects the
stratum areaAi). The equations presented above were used
as before, but note that in this casem no longer needs to be
constant and equal to three, but may be smaller than three
for strata that are partly outside the country. In fact,m was
then replaced by the number of stratum sites that are located
inside the country. This created a problem whenm is smaller
than two. Whenm = 1, the stratum variance can no longer
be estimated, and whenm = 0 neither can the mean value.
For a stratum withm = 1, the variance could be estimated by
merging the stratum with a neighbouring stratum (collapsed
strata method, Cochran, 1977, p. 139), but in this study we
applied the approach only for strata withm > 1.

3 Results

3.1 Clustering and stratified random sampling

Dissimilarity matrices for arable, grass and nature used to
assess the performance of the agglomerative (AG), divisive
(DI) and thek-means partitioning around medoids (PAM)
clustering methods are presented in Table 1. Medoids are ob-
jects in a cluster with minimal mean dissimilarity to all other
objects. The table shows the summed within-cluster variance
for the various factors affecting N fluxes. Within-cluster vari-
ances of temperature and within-cluster entropies for soil tex-
ture are much smaller for nature than for grassland and arable
land, which means that the 50 nature clusters are much more
homogeneous with respect to mean annual temperature and
soil texture. This can be explained by the fact that clustering
for nature is not influenced by the factors manure and fertil-
izer, since these are zero for nature (hence zero within-cluster

www.biogeosciences.net/9/4527/2012/ Biogeosciences, 9, 4527–4536, 2012
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Fig. 2. Box plots of the median continuous-numerical environmental factors for each of the 50 arable clusters obtained using thek-means
(PAM) algorithm.

Table 1.Summed within-cluster variance for mean annual temper-
ature (◦C), annual precipitation (mm), N manure (kg N ha−1 yr−1),
fertilizer (kg N ha−1 yr−1) and summed within-cluster entropy for
soil texture using agglomerative (AG), divisive (DI) andk-means
(PAM) clustering.

Land Use Method Temp Prec Manure Fertilizer Texture

Nature AG 31.03 1 405 440 0 0 0.00
DI 34.82 1 195 942 0 0 0.00
PAM 25.71 1 191 540 0 0 0.07

Grass AG 174.23 2 018 085 1244 4277 24.99
DI 199.61 2 353 377 1332 5314 26.73
PAM 177.93 2 709 979 1859 6694 22.47

Arable AG 122.61 1 125 550 995 2040 16.74
DI 128.98 1 485 726 960 2151 23.80
PAM 128.50 1 292 348 1388 2610 12.46

variances). Note also that the differences between precipita-
tion variances for the three land uses are much less because
precipitation has a much smaller weight. For nature, PAM
has smaller variances than DI and AG, whereas for grass-
land and arable land AG has the smallest variances for the
continuous-numerical factors (except for manure in arable
land). PAM also has the smallest within-cluster entropy for
soil texture. Overall, differences between the heterogeneity
measures of the algorithms are not very large.

Figure 1 gives the number of NCUs within each of the
50 clusters for arable land using agglomerative (AG), di-
visive (DI) and k-means (PAM) clustering. PAM proved
to be most successful in creating clusters of uniform size,
while maintaining acceptable summed within-cluster vari-
ances (Table 1). The same results were obtained for grassland
and nature (not shown). It was therefore decided to derive 50
clusters for each of the three land use types usingk-means
clustering with the PAM algorithm. Below, resulting maps
and cluster properties are only presented for arable land.

Box plots of the values of the continuous-numerical fac-
tors for the 50 arable clusters are shown in Fig. 2. The largest

Fig. 3. Proportion of soil texture for each of the 50 arable clusters
obtained using thek-means (PAM) algorithm.

differentiation in factor values between clusters is in annual
application of N-manure and N-fertilizer. This is in agree-
ment with the large weights assigned to these factors. Some
clusters such as clusters 6, 10, 19 and 25 (all located in North-
West Europe) have large values for N-manure, whereas many
have small values. Cluster 45 has the largest value for N-
fertilizer, whereas cluster 26 has no N-fertilizer. Annual pre-
cipitation and temperature have much more overlap between
clusters, indicating that clustering was not very successful to
differentiate these factors (partly caused by the low weight
assigned to these factors). The proportion of the three soil
texture classes, peat, sand and clay over the clusters (Fig. 3)
shows that the majority of clusters are not homogeneous with
respect to soil texture; in almost all cases one of the soil tex-
ture classes is clearly dominant.

The majority of clusters are also geographically concen-
trated (Fig. 4). For instance, note that the Czech Republic is
almost entirely grouped into a single cluster. The differentia-
tion of the various clusters is mainly associated with distinct
differences in the N input by fertilizer and manure (Fig. 4).
Simple random sampling of three sites within each of the 150
clusters yielded the 450 sites given in Fig. 5.

Biogeosciences, 9, 4527–4536, 2012 www.biogeosciences.net/9/4527/2012/
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Fig. 4. Spatial distribution of the arable clusters 1–9 (left) and 10–
17 (right) obtained with the PAM algorithm.

3.2 Comparison of modelled nitrogen budgets obtained
by upscaling from selected areas and with full aerial
support

3.2.1 Results at European level

For arable land, the mean total N inputs, crop N uptake, emis-
sion of N2O and NH3 and NOx to the atmosphere and losses
of N to ground water and surface water based on the 450
selected points compare well with the mean computed with
full aerial support (Table 2). The overall difference is always
less than 10 %, and the 95 % confidence interval includes the
value obtained by running INTEGRATOR for the whole of

arable
grassland
forest

Fig. 5. Stratified simple random sample of 450 sites across Europe
(EU-27) used to estimate the total emission for EU-27.

Table 2.Estimated annual N budget of arable land in EU-27 in 2000
based on INTEGRATOR using full aerial support and based on up-
scaling from selected areas.

N budget (kg N yr−1)

Full aerial Upscaled Upscaled
Source support means confidence interval

Inputs
Manure input 34.5 33.2 28.6–37.9
N fertilizer 58.9 59.0 54.0–63.9
Deposition 11.2 12.4 11.8–13.0
Biological N fixation 5.8 6.0 5.6–6.3

Total 110.4 110.6 103.0 - 118.2

Outputs
Net crop uptake 70.2 72.4 70.0–74.7
N accumulation −31.2 −34.7 −54.4–−17.4
NH3 12.2 12.4 11.3–13.5
N2O 1.6 1.7 1.1–2.4
N2O, indirect 0.23 0.23 0.21–0.25
NOx 0.82 0.96 0.52–1.4
N2 36.6 37.9 25.9–49.9
N leaching+ runoff 19.8 19.7 17.9–21.6

Total 110.4 110.6 102.3–116.7

Europe. Noteworthy is also the difference in the computed
confidence intervals: for most balance terms, the 450 points
yield a narrow interval, but for the emissions of N2O and
NOx the uncertainty is larger. This is most likely due to the
many factors that influence these emissions, such as rainfall,
temperature and soil characteristics that have a large spatial
variability.
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Table 3. Estimated annual N budget of nature in EU-27 in 2000
based on INTEGRATOR using full aerial support and based on up-
scaling from selected areas.

N budget (kg N yr−1)

Full aerial Upscaled Upscaled
Source support means standard deviation

Inputs
Biological fixation 2.0 1.9 1.9–1.9
Atmospheric deposition 10.9 9.3 8.4–10.1

Total 12.9 11.2 10.3–12.0

Output from land
N uptake 2.3 2.1 1.9–2.3
N accumulation 5.4 4.8 4.2–5.5
NH3 0.18 0.13 0.11–0.15
N2O 0.37 0.37 0.33–0.41
NOx 0.12 0.12 0.08–0.15
N2 2.1 1.9 1.8–2.1
N leaching+ runoff 2.3 1.9 1.6–2.2

Total 12.9 11.2 10.6–12.2

For nature, the mean N inputs and N losses from both
methods are also mostly within 10 %. The emission of N2O is
even identical for both methods (Table 3). The NH3 flux from
full areal support, however, is approximately 30 % larger than
that from the 450 points and lies outside the 450-point confi-
dence interval. This is most likely due to the influence of N
deposition: with full area support the mean N deposition is
higher than the mean of the 450 points. This could be due to
the way the points are sampled or to the non-normal distribu-
tion of the N deposition. In INTEGRATOR NH3 emissions
increase with higher N deposition; including NCUs with
higher N deposition thus causes higher mean emission. The
same holds for other balance terms influenced by N deposi-
tion such as N uptake and N leaching. The results for agricul-
tural land based on full aerial support are also presented and
discussed in detail in De Vries et al. (2011b) and those for
non-agricultural land in De Vries et al. (2011c). Results for
grassland are not discussed because emission from grassland
in INTEGRATOR is computed with MITERRA for managed
grass and with the DNDC meta-model for unmanaged grass.
Since both methods are used already for arable and nature for
which the results are extensively described, adding grassland
would not provide new insights in how well the method per-
forms. Secondly, since grassland consists of both managed
and unmanaged grass, results are not easily interpretable as a
mix of two models is used to obtain the results.

3.2.2 Results at country level

Results for countries are presented only for those countries
where, for a given land use type (nature and arable land), at
least two points fall within the country area, so that a mean
and standard deviation can be computed. As an example,
results are presented for the N2O emission. The calculated
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Fig. 6. N2O emission for arable land (upper left) and for nature
(upper right), N leaching for arable land (lower left) and for na-
ture (lower right), for the full areal support (x-axis) and the selected
sites (y-axis) for 13 countries that contain at least two points. Error
bars indicate the range between minimum and maximum values for
individual countries.

mean N2O emission from arable land for the countries based
on the sample plots within the country yields different results
compared to results based on the full areal support (Fig. 6,
upper left). For most countries the absolute difference is
< 0.5 kg ha−1 yr−1, but for Austria, UK and Hungary the dif-
ference is> 1 kg ha−1 yr−1. With the exception of Hungary,
the variance in the computed emissions at the selected plots
within a country is small, indicated by the small range indi-
cated by the error bars in the graphs. For Hungary the plots
in the sample yield very different N2O emissions, leading to
a large within-country variation. For arable land the calcu-
lated up-scaled N2O emissions in selected plots are mostly
lower than the N2O emissions computed with full aerial sup-
port, in line with the results for EU-27. For nature (Fig. 6
upper right), the uncertainty in modelled N2O emissions is
much lower because in the absence of N inputs by manure
and fertilizers, the N input consists of N deposition, which
has a much lower spatial variability. There is a reasonable
agreement between the results from the two methods, and
no systematic bias. Uncertainties in computed N leaching for
arable soils are high (Fig. 6, lower left), and the results based
on the sample plots mostly fall within the confidence interval
based on full areal support. Again for nature, the uncertainty
is lower (for the same reason as for the N2O emission), and
for a few countries the estimates based on the sample plots
fall outside the confidence interval using full support (Fig. 6
lower right).
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4 Conclusions

Results of this study show that an accurate estimate (within
10 %) of the total N inputs, crop N uptake, emission of N2O
and NH3 and NOx to the atmosphere and losses of N to
ground water and surface water from arable land at EU-27
level can be obtained by running the model for a stratified
random sample of 150 points. This shows that the method
and data used to stratify spatial units into clusters contained
the most important environmental factors that are known
to influence emission. For nature, estimated N2O and NOx
emissions were very accurate, but the procedure was less
successful to predict NH3 emissions. This may be caused by
the fact that N deposition was not included in the clustering
procedure, while this parameter strongly influences the NH3
emissions from these ecosystems, or because the distribution
of N deposition over Europe is skewed and we missed the
high deposition areas in our set of selected sites. This study
thus shows that, with only a few exceptions, a reliable esti-
mate of the total N fluxes for EU-27 can be made by upscal-
ing results of the 450 selected sites. If we assume that this
also holds for other, more detailed, process-based N emis-
sion models, an enormous reduction in computation time can
be achieved with this clustering method without substantial
deterioration of results. This is specifically useful when an
uncertainty analysis is carried out at EU-27 scale, because
for a Monte-Carlo type uncertainty analysis a large number
of model runs per site is required. It is, however, advisable
to test the methods used in this study also for these type of
models. INTEGRATOR computes N emissions from N in-
puts using mostly linear functions, and it is yet unclear if cal-
culations on the selected sites with more complex non-linear
models such as DNDC or DayCent would also be in line with
Europe-wide assessments of these models.

This study also shows that the sample of 150 points per
land use class for the whole of EU-27 is too small to make
reliable N2O emission estimates for arable land for most in-
dividual countries. In 14 out of the 27 countries, there were
less than two points for a given land use type (nature and
arable land) within the country area. For the remaining 13
countries, reasonable estimates on a country basis were only
made for model outputs that depend on spatially homogenous
input, such as NH3 emissions from arable land and nature. In
general, the number of points per country is too small to ac-
curately represent the spatial variability of the factors influ-
encing for example N2O emissions. It is therefore advised to
restrict the upscaling procedure either to EU-27 or to large re-
gions within Europe, such as Scandinavia, the Mediterranean
or Central Europe.
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