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Abstract. Boreal peatlands are significant natural sources of
methane and especially vulnerable to abrupt climate change.
However, the controlling factors of CH4 emission in boreal
peatlands are still unclear. In this study, we investigated CH4
fluxes and abiotic factors (temperature, water table depth, ac-
tive layer depth, and dissolved CH4 concentrations in pore
water) during the growing seasons in 2010 and 2011 in both
shrub-sphagnum- and sedge-dominated plant communities in
the continuous permafrost zone of Northeast China. The ob-
jective of our study was to examine the effects of vegeta-
tion types and abiotic factors on CH4 fluxes from a boreal
peatland. In anEriophorum-dominated community, mean
CH4 emissions were 1.02 and 0.80 mg m−2 h−1 in 2010 and
2011, respectively. CH4 fluxes (0.38 mg m−2 h−1) released
from the shrub-mosses-dominated community were lower
than that fromEriophorum-dominated community. More-
over, in theEriophorum-dominated community, CH4 fluxes
showed a significant temporal pattern with a peak value in
late August in both 2010 and 2011. However, no distinct sea-
sonal variation was observed in the CH4 flux in the shrub-
mosses-dominated community. Interestingly, in bothErio-
phorum- and shrub-sphagnum-dominated communities, CH4
fluxes did not show close correlation with air or soil tempera-
ture and water table depth, whereas CH4 emissions correlated
well to active layer depth and CH4 concentration in soil pore
water, especially in theEriophorum-dominated community.
Our results suggest that CH4 released from the thawed CH4-
rich permafrost layer may be a key factor controlling CH4
emissions in boreal peatlands, and highlight that CH4 fluxes
vary with vegetation type in boreal peatlands. With increas-

ing temperature in future climate patterns, increasing active
layer depth and shifting plant functional groups in this region
may have a significant effect on CH4 emission.

1 Introduction

Methane (CH4), as one of the most important greenhouse
gases, is 25 times more effective in absorbing heat in the
atmosphere than carbon dioxide (CO2) on a 100-yr time
horizon (IPCC, 2007). The atmospheric CH4 abundance in-
creased from 715 ppb in pre-industrial age to 1774 ppb in
2005. Increases in atmospheric CH4 concentrations (148 %)
are greater than the other two greenhouse gases (CO2 35 %
and N2O 18 %) over the same time period. In order to reduce
uncertainties in future projections of Earth’s climate change,
the current global CH4 budget should be better known. Den-
man et al. (2007) estimated that more than 580 Tg yr−1 of
CH4 are emitted to the atmosphere, with 33 % originating
from natural ecosystem sources. However, the contribution
of different CH4 sources and sinks is still highly uncertain
due to the sparseness of in situ observations.

Among all the natural ecosystem CH4 sources, natural
wetlands are regarded as the single largest methane source,
accounting for 20 % of the global CH4 budget (Fung et al.,
1987). While covering nearly 3 % of Earth’s land surface,
northern peatlands store a carbon pool of 455 Pg (Gorham,
1991), approximately accounting for one-third of the global
soil carbon (Rydin and Jeglum, 2006), and could potentially
release carbon in the form of CH4 to the atmosphere. The
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magnitude of CH4 emission from peatland ecosystems is
a comprehensive result of several processes including CH4
production and oxidation in the peat profile and abiogenic
mechanisms such as gas bubbles, diffusion, and gas transport
through vascular plant aerenchyma (Whalen, 2005).

Previous studies demonstrated that wetland methane emis-
sions depend on a large amount of abiotic and biotic fac-
tors, among the most important of which are temperature,
water table depth, vegetation type, substrate quality and sup-
ply (Bellisario et al., 1999; Whalen, 2005). Temperature
controls methanogenesis and CH4 oxidation by affecting
methanogenic and methanotrophic bacteria. The wide range
of Q10 (reaction rate increase for a 10◦C temperature in-
crease) for methanogenesis and methane oxidation suggested
a highly significant effect of temperature on CH4 produc-
tion and oxidation rates (Whalen, 2005). Substrate availabil-
ity and supply originating from wetland plant litter and/or
root exudates determine CH4 production and oxidation. Oth-
erwise, species composition of plants can affect CH4 emis-
sions and substrate availability for methanogens. Previous
evidence showed that the vascular plants such asEriophorum
species (Str̈om et al., 2011) andCarexspecies (Ding et al.,
2005) have a very strong effect on CH4 emission in the north-
ern wetlands, by supply of available substrate and/or gas
transportation of aerenchyma. In addition, peatland soil aer-
obic (anaerobic) conditions resulting from a drop (increase)
of the water table can influence CH4 oxidation (production)
and then affect CH4 fluxes (Whalen, 2005).

Boreal regions are of close concern since they are expected
to undergo large changes in temperature and precipitation
(Turetsky et al., 2007). Large amounts of labile soil organic
matter that is currently preserved by permafrost will be vul-
nerable to climate change and could result in changing CH4
emissions through changing peatland hydrology and ther-
mal conditions. For example, permafrost degradation caused
by warming will lower the water table following increased
drainage in the discontinuous permafrost zone (Riordan et
al., 2006) and increase thermokarst lake areas in the con-
tinuous permafrost zone (Smith et al., 2005). In addition,
boreal peatland soil moisture varied in different permafrost
zones owing to increasing difference between potential sum-
mer evapotranspiration and precipitation that has been re-
ported (Klein et al., 2005). Under ongoing climate changes,
the uncertainties of CH4 fluxes from boreal peatlands have
increased, which might confuse the knowledge of the effects
of climate change on the boreal peatland carbon cycle.

Many studies on peatland CH4 emissions have been con-
ducted in Siberia (Nilsson et al., 2001; Bohn et al., 2007)
and subarctic or arctic regions (Zona et al., 2009; Jackowicz-
Korczyński et al., 2010). However, to our knowledge, there
is no study reporting CH4 emissions from boreal peatland
in the continuous permafrost zone in China. Understanding
CH4 emission from peatland in the continuous permafrost
zone can make us better understand CH4 emission patterns
and increase the accuracy of estimating a peatland CH4 bud-

get. The goal of this study was to provide a first dataset of
CH4 fluxes from a permafrost peatland in Northeast China,
and to investigate the factors controlling the seasonal CH4
fluxes from a permafrost peatland.

2 Materials and methods

2.1 Study site and experiment installation

The measurement was conducted in a minerotrophic peat-
land located in the north of Great Hing’an Mountains, North-
east China (52.94◦ N, 122.86◦ E). The study site is situated
in the continuous permafrost zone. The climate of this area
is cool continental, with a 30-yr (1980–2009) mean annual
temperature of−3.9◦C and mean annual precipitation of
452 mm, 203 mm of which falls in rainy season (July and
August). The coldest monthly mean temperature is−28.7◦C
in January, and the warmest is 18.4◦C in July. The surface
of the peatland site is a mosaic of microforms, which are
divided into hummock, tussock and hollow. Plants usually
grow from early May to late September and the dominant
evergreen shrubs areChamaedaphne calyculataandLedum
palustre. Deciduous shrubs containVaccinium vitis-idaea
and Betula fruticosa. Hummocks were covered bySphag-
nummosses (S. capillifolium, S. magellanicum), Polytrichum
communeand previously mentioned shrubs. Tussocks sup-
port sedges (Eriophorum vaginatum) as the dominant vas-
cular plant species, as well as sparse shrubs (Vaccinium vitis-
idaea, Ledum palustre). A scatter of bryophytes (Polytrichum
juniperinum) were present in hollows. The soil type in our
study site is classified as peat soil.

A set of twelve plots for gas sampling were selected, and
eight of them were chosen so as to be representative of the
dominant vegetation in the three microforms and to cap-
ture the variability for each of these situations. The intervals
among these plots ranged from 5 to 20 m. Four plots were es-
tablished on the tussock and hollow places where the domi-
nant plant species wasEriophorum vaginatum(Eriophorum-
dominated plots: EPs), and four plots on hummocks where
dwarf shrubs and mosses were the dominant species (shrub–
mosses-dominated plots: SPs). In order to determine the in-
fluence of peatland vascular vegetation (Eriophorum vagi-
natum) on methane emission, four other plots were estab-
lished on the bare peat where the above-ground parts of dom-
inant vascular plants (Eriophorum vaginatum) were carefully
cut and removed before each measurement (bare-peat plots:
BPs). In order to make a comparison among these types, flux
observations were conducted on the same date.

2.2 Biomass determination and chemical analysis of
soils

Above-ground biomass (ABG) was measured by clip-
ping three 1× 1 m quadrats for a shrub-mosses-dominated
community and three 0.5× 0.5 m quadrats for aEriophorum-
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dominated community in mid-August and sorting materials
by species. We also collected mosses by clipping at the base
of the capitulum following Moore et al. (2002). Plant tissues
were oven-dried to a constant mass at 65◦C and then were
weighted.

To determine pH, total carbon and nitrogen contents of soil
from two varied-vegetation-dominated communities, three
soil cores were collected from a depth of 0–20 cm on each
community. Soil pH was determined by a glass electrode in
a 1: 5 soil: 10 mM CaCl2 solutions of fresh samples accord-
ing to ISO 10390 standard. The soil samples used for car-
bon and nitrogen analysis were dried at room temperature
and then milled and sieved using a 2 mm screen. Soil organic
carbon and total nitrogen concentrations were analyzed by
the Multi N/C 2100 Analyzer (containing an HT 1300 Solid
Module, Analytik Jena AG, Germany) and the Kjeldahl di-
gestion method using a Behr analyzer (Germany), respec-
tively.

2.3 Gas flux determination

Gas fluxes were measured by the closed chamber and gas
chromatography techniques (Wang and Wang, 2003; Song
et al., 2009). The closed chamber was made by stainless
steel and consisted of two parts: a square base collar (length:
50 cm, width: 50 cm and height: 20 cm) and a top chamber
(length: 50 cm, width: 50 cm and height: 50 or 70 cm) opened
at the bottom. The collar was inserted directly into the peat
layer to a depth of 15 cm, and kept in the soil during the
entire observation period. The top chamber was put on the
collar during gas sampling, and immediately removed after
gas samples were collected. Two fans were fixed on the in-
side symmetrical corners of each chamber to keep the air
mixed in the chamber closure during sampling. The cham-
bers were wrapped with Styrofoam to prevent an increase in
headspace air temperature due to heating when sampling. We
built boardwalks to minimize disturbance on the plant and
soil microenvironments around collars after the collars were
installed.

Gas sampling started in June 2010 and continued until
September 2011 at weekly interval during the two growing
seasons. Gas samples were only collected in the morning
(09:00–11:00 a.m.) because the flux during this period is al-
most equal to the daily mean flux (Tang et al., 2006). During
the flux measurements, headspace samples (50 ml each) were
drawn from the chamber every 10 min (including zero time)
over half an hour period after enclosure using 60 ml syringes
and stored in TedlarR air sample bags (100 ml, Delin Ltd,
Liaoning, China), which had been pre-evacuated to close to
0 Pa. A total of four samples were taken during a flux mea-
surement.

The collected gas samples were delivered to Sanjiang Ex-
perimental Station of Wetland Ecology, Chinese Academy
of Sciences, and analyzed within a week. Gas concentrations
were measured by a modified gas chromatograph (Agilent

4890D, Agilent Co., Santa Clara, CA, USA). The gas chro-
matograph was equipped with a flame ionization detector
(FID) for CH4 analysis. The air bags with known standard
concentration of CH4 were delivered with the collected sam-
ples to the laboratory to evaluate the leakage of trace gases
during transport and analysis. No significant changes in the
concentration of the standards were found during one week
of transfer. The fluxes were calculated as the change in cham-
ber concentration over time. The fluxes were rejected unless
they yielded a linear regression with coefficientR2 > 0.8 for
CH4. More details of the flux calculation can be found in
Song et al. (2009).

2.4 Dissolved methane concentration

Soil pore water was sampled at several depths to determine
dissolved CH4 concentration if there was enough pore water
for extracting. A set of stainless-steel tubes varied in length
were installed before measuring at 10 cm intervals from peat-
land surface to 40 cm below the surface. Immediately af-
ter gas flux measurements, pore water samples (20 ml) were
drawn from tubes using a syringe and then injected into evac-
uated vials (60 ml). Prior to determining CH4 concentration
in pore water, vials were shaken for a few minutes to extract
dissolved CH4. Subsequently, 40 ml of the headspace was
sampled by a syringe and stored in a TedlarR air sample bag.
CH4 concentration was analyzed as described above. The
methods for calculating dissolved pore water CH4 (µmol l−1)
have been described by Ding et al. (2003).

2.5 Abiotic variables

Air temperature, soil temperature, depth of active layer and
groundwater level were measured at the same time as gas
sampling. Air temperature inside the chambers was mea-
sured with a thermometer inserted into the chambers, and
soil temperature was measured 0, 5, 10, 15 and 20 cm be-
low the peat surface next to the chambers using a portable
digital thermometer (JM 624, Jinming Instrument CO., Ltd,
Tianjin, China). Active layer depth was simultaneously mea-
sured by a steel rod. Groundwater level was monitored by
digging a small well adjacent to the collar over the frost-free
season. Daily precipitation data were manually recorded near
the sampling site.

2.6 Data analysis

Correlation analysis (Spearman’s rank correlation test) was
used for identifying the relationships between CH4 fluxes
and environmental factors (i.e. temperature, water table
depth, active layer depth and soil pore water CH4 concen-
tration). In all analyses wherep < 0.05, the factor tested
and the relationships were considered statistically significant.
The one-way analysis of variance (ANOVA) was conducted
to test the differences in soil chemical characters for both
communities. All the statistical analyses were conducted
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Table 1. Above-ground biomass and the main chemical characteristics of the soils (0–20 cm depth) from the shrub–moss-dominated com-
munity andEriophorum-dominated community. Values represent the mean and the standard deviation (n = 3).

Community
Above-ground biomass∗ (g DW m−2)

SOC (g kg−1) TN (g kg−1) pH
Shrubs Sedges Mosses Total

Shrub–mosses-dominated 424.1± 35.1 15.7± 8.2 342.7± 55.4 782.5± 97.7 424.7± 40.5 17.2± 2.1 5.0± 0.4
Eriophorum-dominated 104.1± 0.8 79.2± 25.3 119.5± 28.7 302.8± 30.1 403.7± 20.6 19.1± 1.5 4.7± 0.1

∗ Above-ground biomass was measured in mid-August when plants reached their maximum biomass.

by Software packages SPSS 13.0 (SPSS Inc., Chicago, IL,
USA) and figures were prepared by Origin 8.0 (Origin Lab
Corporation, USA) for Windows XP.

3 Results and discussion

3.1 Environment variables, biomass, soil chemical
characteristics, CH4 concentration in pore water
and CH4 fluxes

During the sampling period, monthly mean air temperature
(MMAT) varied from 5.3◦C (September 2011) to 20.3◦C
(July 2011; Fig. 1a). There was no marked discrepancy be-
tween the MMAT and the 30-yr mean value in the two mea-
surement years. However, we observed extreme daily tem-
peratures in the last few days of June, and the maximum
daily temperature reached 39.4◦C on 27 June 2010. Accu-
mulative precipitations from May to September were 325.9
and 493.7 mm in 2010 and 2011, which were 11 % lower and
34.8 % greater than the 30-yr mean value during the same pe-
riod, respectively (Fig. 1b). A heavy rain occurred on 23 Au-
gust 2011 and the accumulative rainfall was 129.1 mm (data
not shown). The seasonality of ground temperature and soil
temperature were consistent with the seasonal patterns of
air temperature during the sampling period in 2011. The in-
chamber soil temperatures observed in different vegetation
plots showed that soil temperatures at the SP site were a lit-
tle higher than that at the EP site (Fig. 2). The presence of
Sphagnumat the SP site preserved soil heat diffusion. The
water table depth throughout the measurement period ranged
from −10.7 to−24 cm (minus value means below the sur-
face) at the SP site and from−10.5 to−36 cm at the EP site
(Fig. 3). The water table depth was consistently higher at the
SP site than at the EP site during the two growing seasons
(Fig. 3), and the average difference in water table between
the two sites was 4 cm. A similar seasonal variation of wa-
ter table depth at the SP and EP sites was observed, and the
lowest value occurred in late June or early July due to higher
temperature and less precipitation.

At the beginning of the measurement, peatland surface soil
was frozen. The active layer depth continuously increased
with air and soil temperatures at the initial stage. In the late
sampling period, the active layer depth still increased with
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Fig. 1. Climatic characteristics of the study site during the growing
season in 2010 and 2011 on the background of the long-term normal
period (1980–2009) recorded by China Meteorological Administra-
tion. (A) Monthly average temperature;(B) monthly accumulative
precipitation.

decreasing air and soil temperatures. This might be on ac-
count of heat in deep soil transferring slower than that in
upper soil layers and the atmosphere. The maximum active
layer depth reached 72.4 cm and 80.7 cm by the end of the
observation period in 2010 and 2011, respectively.

The above-ground biomass of shrubs, sedges and mosses
from both communities in the peatland is given in Ta-
ble 1. The total ABG from the SP site was two times
higher than that from the EP site, whereas the ABG of
sedges was much lower at the SP site. There was no sig-
nificant difference in soil chemical characteristics between
the SP and EP sites (p = 0.260 for SOC and 0.236 for TN;
Table 1). Soil organic carbon content was a little higher
at the SP site (424.7± 40.5 g kg−1) than at the EP site
(403.7± 20.6 g kg−1). The inverse pattern was observed in
the total nitrogen content. pH was slightly lower at the EP
site compared to the SP site.

The details and seasonal fluctuations in pore water concen-
tration of CH4 measured in the peatland soil profile can be
seen in Fig. 4. Pore water CH4 concentration at 20 cm below
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Fig. 2. Temperatures recorded by digital thermometer at SP (shrub–mosses plot) and EP (Eriophorumplot) sites during sampling in 2011.
(A) Air temperature inside the chamber;(B) peat surface temperature;(C) soil temperature at 5 cm depth;(D) soil temperature at 10 cm
depth.
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Fig. 3. The seasonal variation of net CH4 fluxes and environmental variables (water table and active layer depth) observed at the study site
during the growing seasons of 2010 and 2011.

www.biogeosciences.net/9/4455/2012/ Biogeosciences, 9, 4455–4464, 2012



4460 Y. Miao et al.: Growing season methane emission from a boreal peatland

May Jun Jul Aug Sep Oct

0

50

100

150

200

250

300

C
H

4
 c

o
n
ce

n
tr

at
io

n
 (


m
o
l 

l-1
)

Date (month)

 20 cm

 30 cm

 40 cm

 Fig. 4. Seasonal variation of dissolved pore water CH4 concentra-
tions at different soil depths was determined for the study site during
sampling in 2011.

the peatland surface showed no seasonal variation and the
mean CH4 concentration in pore water was 14.37 µmol l−1.
However, a significant seasonal variation of CH4 concentra-
tion in 30 and 40 cm below peat surface was observed. CH4
concentrations at 30 and 40 cm depths increased following
the development of the growing season. Correlation analy-
sis showed that average CH4 concentration between 20 cm
and 40 cm was related to soil temperature at 40 cm depth
(r = 0.573,p = 0.05). Figure 4 also shows that pore water
CH4 concentrations increased with depth. At the depth from
20 cm to 40 cm, the concentration of CH4 increased sharply
by 2 to 10 times magnitude.

Generally, the peatland emitted CH4 to the atmosphere
during the two growing seasons, although CH4 absorption
might occur occasionally. At the SP site, CH4 fluxes were in
the range of−0.02 to 0.51 mg m−2 h−1, with a mean value
of 0.21 mg m−2 h−1 in the measuring period from June to
September in 2010. In 2011, CH4 fluxes ranged from 0.02
to 1.35 mg m−2 h−1 during the entire growing season at the
SP site, and the mean seasonal flux was 0.56 mg m−2 h−1.
CH4 fluxes measured from the EP site were significantly
higher than that from the SP site, which ranged from−0.01
to 2.28 mg m−2 h−1 with a mean flux of 1.02 mg m−2 h−1 in
2010 and−0.08 to 3.51 mg m−2 h−1 with a mean flux of
0.80 mg m−2 h−1 in 2011. In the present study, CH4 fluxes
obtained through static chambers during the growing sea-
sons (∼ −0.08–3.51 mg m−2 h−1) are greatly higher than
that from Alaskan upland tundra (Bartlett et al., 1992), and
they are similar in range to those from boreal raised bog
(Pelletier et al., 2007) and subarctic/arctic fen (Christensen,
1993). The CH4 emissions are much lower than those from
the BOREAS peatlands (Bubier et al., 1995) and Xiaox-
ing’an Mountain peatlands (Sun et al., 2011).

Figure 3 shows that the seasonal variations of CH4 flux
exist for both sites. A similar seasonal trend of CH4 fluxes
in disparate observation years was found at the SP and EP
sites. However, the variation in CH4 emissions at the SP
site is lower than that at the EP site. Except for the vascu-
lar plants regulating methane emissions, methane oxidation
in in situ conditions may play a more important role in hum-
mocks than in tussocks. CH4 emissions gradually increased
with the development of growing season and peaked in late
August in both years. Unlike other previous studies that re-
ported no seasonal variation of CH4 fluxes from peatlands,
we found a distinct temporal variation in methane emissions
where CH4 fluxes peaked in late summer when the active
layer reached the gas-contained layer, and which was con-
sistent with peak pore water CH4 concentration. Our results
were consistent with Moore and Knowles (1990), who found
CH4 fluxes peaked in the later growing season from a sub-
arctic fen in Quebec.

3.2 Controls on CH4 flux

Previous studies have shown that temperature (Bellisario et
al., 1999; Pelletier et al., 2007; Sun et al., 2011) and wa-
ter table depth (Moore et al., 2011) were primary factors
that controlled peatland CH4 emissions. The relationships
between CH4 fluxes and environmental factors such as tem-
perature, water table depth and active layer depth in an inde-
pendent observation year were examined. The site-specific
CH4 fluxes did not show any relationship with soil or air
temperature and water table depth, indicating a complicated
conjunct effect of variables on CH4 flux. It was consistent
with Christensen et al. (1995), who found no correlations be-
tween environmental factors and CH4 emission in Siberian
mesic tundra. Str̈om et al. (2011) also found no correlations
between seasonal mean CH4 fluxes and water table depth and
soil temperature in an arctic wetland. In the present study, the
controls on seasonal variation of CH4 flux were distinct at
different stages of plant growth. In the early growing season
(Period I), when moisture was adequate to support methano-
genesis, temperature played a critical role in peatland CH4
emission (Table 2). However, there was a lag time between
rising temperatures and CH4 flux in the early season be-
cause microbial communities and vegetation required time
to become established. The following mechanisms might in-
terpret temperature-dependence CH4 fluxes during the early
growing season. Firstly, temperature was an important con-
trol on methanogenesis. The widely reportedQ10 values for
methanogenesis ranging from 1 to 35 in boreal peatland soils
(Whalen, 2005) suggested that temperature sensitivity of the
underlying microbial processes involved in the production of
CH4 was high under appropriate substrate and moisture con-
ditions. The lack of CH4 production capacity under low tem-
perature magnified the effect of temperature on CH4 emis-
sion. Secondly, temperature controlled plant growth, which
could provide not only substrate for methanogenesis but also
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Table 2.Correlation coefficients between mean CH4 fluxes and abiotic factors during the sampling period of 2011.

Temperaturea (◦C) Water table depth (cm) Active layer depth (cm) Pore water CH4
concentration

(µmol l−1)

Period I Period II Entire Period I Period II Entire Entire Entire

Mean CH4 flux 0.721∗ −40.491 0.033 −0.539 0.842∗∗
−0.192 0.865∗∗ 0.759∗∗

(mg m−2 h−1)
Pore water CH4 0.139 0.607∗ 0.512∗ 1
concentration (µmol l−1)

∗ Correlation is significant at 0.05 levels;∗∗ correlation is significant at 0.01 levels. Period I and II were arbitrarily defined at before and after 8 July 2011.
a Average temperature between 5 and 10 cm below peatland surface.

an efficient pathway for methane to liberate from peat to the
atmosphere (Joabsson et al., 1999). In addition, as tempera-
ture increased, thaw depth of permafrost gradually increased,
which can create appropriate soil circumstances such as satu-
ration status and re-release of substrate previously preserved
in the frozen layer for methanogens and methanogenesis
(Yavitt et al., 2006). Therefore, the magnitude of CH4 depen-
dent on soil temperature was the important limiting factor for
the CH4 emission rate in the early growing season. The weak
statistical relationship between methane emission and tem-
perature at the peatland site during the growing season prob-
ably reflected the high spatial variability in emission rates at
the plots, fluctuations in water table position, and seasonal
changes in vegetation cover.

In general, water table position acted as a creation of aer-
obic and anaerobic conditions in the peat soil profile, which
determined peatland CH4 emissions. Studies have revealed
that CH4 fluxes increased from soils under elevated water
tables, or high soil moisture contents (Moore and Knowles,
1989). In this study, soil moisture was large due to low evap-
otranspiration in the early growing season, but CH4 fluxes
were very low. A possible reason was that CH4 production
in anaerobic conditions was constrained by low soil temper-
ature and limited substrate supply, and part of CH4 might be
consumed in the aerobic layer during the process of trans-
mission to the atmosphere. As the growing season developed
(Period II), the positive correlation between CH4 emission
and water table depth was shown (Table 2). This suggests that
the effects of water table depth on methane emission will be
enhanced under appropriate temperature conditions. It was
consistent with other studies that found similar relationships,
conducted in boreal peatlands (Roulet et al., 1993). A higher
water table depth caused by summer precipitation and per-
mafrost thaw might result in a larger anoxic CH4 production
zone and stimulate emissions.

This study was performed in the mountain peatland lo-
cated in the southern margin of the Eurasian permafrost zone
where the active layer depth has been increasing in recent
decades (Jin et al., 2000). Some previous studies have shown
that CH4 flux correlated well with active layer depth in peat-
lands underlain by permafrost (van Huissteden et al., 2005).

In our study, we found a positive correlation between thaw
depth and the gas fluxes of CH4 (Table 2), which was con-
sistent with the above mentioned studies. However, Wille et
al. (2008) reported that CH4 flux did not correlate with the
thaw depth in arctic tundra. The reasons they drew were that
the majority of CH4 originated from the upper soil layers,
and the contribution of deep soil layers to methane emissions
was small due to the temperature gradient in the thawed ac-
tive layers and temperature dependence of microbial activity.
However, recent studies reported that layers nearest the top of
the permafrost (50–100 cm) in Alaska and Siberia contained
higher CH4 concentrations, which suggest that the majority
of CH4 will release from the eroding permafrost (Michaelson
et al., 2011). Song et al. (2012) observed high CH4 concen-
tration in the refrozen active layer and upper permafrost layer
in our study region, which could partly explain high CH4
flux in the late growing season when the active layer reached
tens of centimeters. The high CH4 content in the permafrost
might be originated from modern methanogenesis by cold-
adapted methanogenic archaea in permafrost soil (Wagner et
al., 2007) and release of trapped CH4 formed in the unfrozen
active layer during previous winter. It is also possible that
CH4 production took place in the freshly thawed permafrost
due to the recovery of the bacteria from the upper permafrost
(Coolen et al., 2011). In our study, we observed decreasing
CH4 flux with increasing thaw depth during the late growing
season. This can be explained by decreasing air and surface
soil temperatures constraining CH4 production and little root
survival in deeper soil layers, which limits CH4 transport and
emission.

The magnitude of CH4 concentration in soil pore water in-
creasing with depth indicated that CH4 production was high
in the deep saturated soil layer. The seasonal variation in CH4
emission was significantly correlated with mean soil pore
water CH4 (Table 2). It implied that the magnitude of soil
pore water CH4 controlled CH4 emission rates in the peat-
land. Our results are in agreement with Nouchi and Mariko
(1993), who reported that CH4 emission rate was propor-
tional to pore water CH4 concentration. Soil pore water con-
taining high CH4 concentrations was in correspondence with
the EP site CH4 flux rates recorded in late growing season.
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Fig. 5. Seasonal mean CH4 flux from the EP and BP sites for both
years.

This suggests that plants at the EP site are more effective at
transporting CH4.

We found that CH4 emission from the EP site was sig-
nificantly higher than that from the SP site (Fig. 3). This
can be partly explained by the presence of sedges (Erio-
phorum vaginatum) between the two sites. At the EP site,
the dominant plant wasEriophorum vaginatum, classified as
a vascular plant, while the SP site was dominantly covered
by Sphagnumspecies, dwarf shrubs, and sparseEriophorum
vaginatum. We observed that the above-ground biomass of
Eriophorum vaginatumfrom the SP site was much lower
than that from the EP site (Table 1). The vascular plants of
peatland could play an important role in gas exchange be-
tween the land and the atmosphere (Joabsson et al., 1999).
In addition, CH4 transport throughEriophorumwas the ma-
jor pathway for CH4 fluxes (Frenzel and Rudolph, 1998).
We also found that methane fluxes would decrease 77 %
and 73 % from the EP site in 2010 and 2011 after cutting
the above-ground part ofEriophorum vaginatum(Fig. 5).
However, vascular plants might act as conduit for transfer-
ring oxygen to the rhizosphere, which both inhibits archaeal
CH4 production and enhances methanotrophy. Yet, Frenzel
and Rudolph (1998) found that oxidation of CH4 was neg-
ligible during its passage throughE. angustifolium. In addi-
tion, root exudates and fine root litter ofEriophorumcould
stimulate CH4 production. Str̈om et al. (2011) reported that
Eriophorumsecreted more organic acids than other highly
bio-available organic matters that could be easily utilized by
methanogens in arctic wetland. Mosses contributed less sig-
nificantly to active gas transport since they did not develop
real root systems in peat (Sheppard et al., 2007). Otherwise,
CH4 oxidation was reported from mosses originating from
high-latitude wetlands, which decreased CH4 emissions from
anoxic conditions (Larmola et al., 2010). So, different com-

positions of vegetation in peatland can explain the spatial
variation of CH4 fluxes.

4 Conclusions

Seasonal methane fluxes were measured from a boreal peat-
land ecosystem in a continuous permafrost zone for two con-
secutive years. Seasonal average CH4 fluxes ranged from
0.21 to 1.02 mg m−2 h−1, with an apparent seasonal vari-
ation. Our results showed that environmental factors such
as temperature and water table level were not responsible
for regulating temporal variations of methane emission. CH4
emission rates during the growing season were strongly con-
trolled by plant, active layer depth and CH4 concentrations
in soil pore water. It implies that permafrost peatland under
warming conditions can create a positive feedback to climate
change due to increased CH4 emission through altering plant
composition and increasing active layer depth.

As CH4 emission from ecosystems depended on the bal-
ance of CH4 production and oxidation, the determination of
the seasonal potential CH4 productions and oxidations in soil
layers might provide some evidence for explanation of the
seasonal and spatial variations of CH4 fluxes from boreal
peatland ecosystems. In addition, future studies should fo-
cus on exploring the origination of plenty of CH4 in lower
permafrost layers and soil pore water at tens of centimeters
depth in peatland, which might promote our understanding
of methane emission from peatlands in permafrost zones.
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Jackowicz-Korczýnski, M., Christensen, T. R., B̈ackstrand, K.,

Crill, P., Friborg, T., Mastepanov, M., and Ström, L.: Annual cy-
cle of methane emission from a subarctic peatland, J. Geophys.
Res., 115, G02009,doi:10.1029/2008JG000913, 2010.

Jin, H. J., Li, S. X., Cheng, G. D., Wang, S. L., and Li,
X.: Permafrost and climatic change in China, Global Planet.
Change, 26, 387–404, 2000.

Joabsson, A., Christensen, T. R., and Wallen, B.: Vascular plant con-
trols on methane emissions from northern peatforming wetlands,
Trends Ecol. Evol., 14, 385–388, 1999.

Klein, E., Berg, E. E., and Dial, R.: Wetland drying and succession
across the Kenai Peninsula Lowlands, south-central Alaska, Can.
J. Forest. Res., 35, 1931–1941, 2005.

Larmola, T., Tuittila, E. S., Tiirola, M., Nykanen, H., Martikainen,
P. J., Yrjala, K., Tuomivirta, T., and Fritze, H.: The role ofSphag-
nummosses in the methane cycling of a boreal mire, Ecology, 91,
2356–2365, 2010.

Michaelson, G. J., Ping, C. L., and Jorgenson, M. T.: Methane
and carbon dioxide content in eroding permafrost soils along
the Beaufort Sea coast, Alaska, J. Geophys. Res., 116, G01022,
doi:10.1029/2010JG001387, 2011.

Moore, T. R. and Knowles, R.: The Influence of Water-Table Levels
on Methane and Carbon-Dioxide Emissions from Peatland Soils,
Can. J. Soil. Sci., 69, 33–38, 1989.

Moore, T. R. and Knowles, R.: Methane Emissions from Fen, Bog
and Swamp Peatlands in Quebec, Biogeochemistry, 11, 45–61,
1990.

Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M., and
Roulet, N. T.: Plant biomass and production and CO2 exchange
in an ombrotrophic bog, J. Ecol., 90, 25–36, 2002.

Moore, T. R., Young, A., Bubier, J. L., Humphreys, E. R., Lafleur, P.
M., and Roulet, N. T.: A Multi-Year Record of Methane Flux at
the Mer Bleue Bog, Southern Canada, Ecosystems, 14, 646–657,
2011.

Nilsson, M., Mikkela, C., Sundh, I., Granberg, G., Svensson, B. H.,
and Ranneby, B.: Methane emission from Swedish mires: Na-
tional and regional budgets and dependence on mire vegetation,
J. Geophys. Res.-Atmos., 106, 20847–20860, 2001.

Nouchi, I. and Mariko, S.: Mechanism of methane transport by rice
plants, edited by: Oremland, R.S., in: Biogeochemistry of Global
Changes, Chapman & Hall, New York, 336–352, 1993.

Pelletier, L., Moore, T. R., Roulet, N. T., Garneau, M., and
Beaulieu-Audy, V.: Methane fluxes from three peatlands in the
La Grande River watershed, James Bay lowland, Canada, J. Geo-
phys. Res.-Biogeo., 112, G01018,doi:10.1029/2006JG000216,
2007.

Riordan, B., Verbyla, D., and McGuire, A. D.: Shrinking
ponds in subarctic Alaska based on 1950-2002 remotely
sensed images, J. Geophys. Res.-Biogeo., 111, G04002,
doi:10.1029/2005JG000150, 2006.

Roulet, N. T., Ash, R., Quinton, W., and Moore, T.: Methane Flux
from Drained Northern Peatlands – Effect of a Persistent Water-
Table Lowering on Flux, Global Biogeochem. Cy., 7, 749–769,
1993.

Rydin, H. and Jeglum, J.: The Biology of Peatlands, Oxford Uni-
versity Press, New York, 2006.

Sheppard, S. K., Beckmann, M., and Lloyd, D.: The effect of tem-
perature on methane dynamics in soil and peat cores: Calcula-

www.biogeosciences.net/9/4455/2012/ Biogeosciences, 9, 4455–4464, 2012

http://dx.doi.org/10.1088/1748-9326/2/4/045015
http://dx.doi.org/10.1088/1748-9326/2/4/045015
http://dx.doi.org/10.1029/2008JG000913
http://dx.doi.org/10.1029/2010JG001387
http://dx.doi.org/10.1029/2006JG000216
http://dx.doi.org/10.1029/2005JG000150


4464 Y. Miao et al.: Growing season methane emission from a boreal peatland

tions from membrane inlet mass spectrometry, Can. J. Soil Sci.,
87, 11–22, 2007.

Smith, L. C., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.:
Disappearing Arctic lakes, Science, 308, 1429–1429, 2005.

Song, C. C., Xu, X. F., Tian, H. Q., and Wang, Y. Y.: Ecosystem-
atmosphere exchange of CH4 and N2O and ecosystem respi-
ration in wetlands in the Sanjiang Plain, Northeastern China,
Global Change Biol., 15, 692–705, 2009.

Song, C., Wang, X., and Miao, Y.: Effects of permafrost thawing on
CH4 and CO2 emissions of peatland soils in the Great Hing’an
Mountaions, China, in review, 2012.

Ström, L., Tagesson, T., Mastepanov, M., and Christensen, T. R.:
Presence ofEriophorumscheuchzeri enhances substrate avail-
ability and methane emission in an Arctic wetland, Soil Biol.
Biochem., 45, 61–70, 2011.

Sun, X., Mu, C., and Song, C.: Seasonal and spatial variations of
methane emissions from montane wetlands in Northeast China,
Atmos. Environ., 45, 1809–1816, 2011.

Tang, X., Liu, S., Zhou, G., Zhang, D., and Zhou, C.: Soil-
atmospheric exchange of CO2, CH4, and N2O in three subtrop-
ical forest ecosystems in southern China, Global Change Biol.,
12, 546–560, 2006.

Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J., and Scott,
K. D.: The disappearance of relict permafrost in boreal north
America: Effects on peatland carbon storage and fluxes, Global
Change Biol., 13, 1922–1934, 2007.

van Huissteden, J., Maximov, T. C., and Dolman, A. J.: High
methane flux from an arctic floodplain (Indigirka lowlands,
eastern Siberia), J. Geophys. Res.-Biogeo., 110, G02002,
doi:10.1029/2005JG000010, 2005.

Wagner, D., Gattinger, A., Embacher, A., Pfeiffer, E. M., Schloter,
M., and Lipski, A.: Methanogenic activity and biomass in
Holocene permafrost deposits of the Lena Delta, Siberian Arctic
and its implication for the global methane budge, Global Change
Biol., 13, 1089–1099, 2007.

Wang, Y. S. and Wang, Y. H.: Quick measurement of CH4, CO2 and
N2O emissions from a short-plant ecosystem, Adv. Atmos. Sci.,
20, 842–844, 2003.

Whalen, S. C.: Biogeochemistry of methane exchange between nat-
ural wetlands and the atmosphere, Environ. Eng. Sci., 22, 73–94,
2005.

Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E. M.:
Methane emission from Siberian arctic polygonal tundra: eddy
covariance measurements and modeling, Global Change Biol.,
14, 1395–1408, 2008.

Yavitt, J. B., Basiliko, N., Turetsky, M. R., and Hay, A. G.:
Methanogenesis and methanogen diversity in three peatland
types of the discontinuous permafrost zone, boreal western con-
tinental Canada, Geomicrobiol. J., 23, 641–651, 2006.

Zona, D., Oechel, W. C., Kochendorfer, J., U, Paw U, K. T., Salyuk,
A. N., Olivas, P. C., Oberbauer, S. F., and Lipson, D. A.: Methane
fluxes during the initiation of a large-scale water table manip-
ulation experiment in the Alaskan Arctic tundra, Global Bio-
geochem Cy., 23, GB2013,doi:10.1029/2009GB003487, 2009.

Biogeosciences, 9, 4455–4464, 2012 www.biogeosciences.net/9/4455/2012/

http://dx.doi.org/10.1029/2005JG000010
http://dx.doi.org/10.1029/2009GB003487

