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Abstract. Long-term organic matter decomposition exper- ing a procedure that estimates these two lognormal parame-
iments typically measure the mass lost from decaying or-ters from decay data. Matlab codes for all numerical methods
ganic matter as a function of time. These experiments carand procedures are provided.

provide information about the dynamics of carbon dioxide
input to the atmosphere and controls on natural respiration
processes. Decay slows down with time, suggesting that or-
ganic matter is composed of components (pools) with variedt

lability. Yet it is unclear how the appropriate rates, sizes, and . .
number of pools vary with organic matter type, climate, and Over 10 different types of organic substanced/eckety

ecosystem. To better understand these relations, it is neceg—ooe comprise the roughly 1800 Gt of carbon in sollef-

sary to properly extract the decay rates from decompositior{nan et al. 2007 and biomass, and 750 Gt of dissolved and

data. Here we present a regularized inverse method to ide darticulate orggnic car'bon in the oceaBsiiner and Herndl
tify an optimally-fitting distribution of decay rates associ- 01 and marine sediment®¢nman et aj.2007. Diverse

ated with a decay time series. We motivate our study by ﬁrstdecomposer communities (Up to 6000 bacterial species per

evaluating a standard, direct inversion of the data. The gigram soil and up to 11 000 bacterial species per gram marine

rect inversion identifies a discrete distribution of decay rates,sed|mentsHorner—DeV|ne et a.2004 respire these com-

where mass is concentrated in just a small number of dispounds, converting 75 Gt of terresitrial garbcﬁcl@lesinger
crete pools. It is consistent with identifying the best fitting and Andrews 2000 arld 5206(; ofDocganl(cj: Carl?jor;[l_ to GO
“multi-pool” model, without prior assumption of the number every year Denman et a].2007. uring degradation, or-
of pools. However we find these multi-pool solutions are not92Mc tissues are broken down to particulate or dissolved or-
robust to noise and are over-parametrized. We therefore inganic mat(;er@]s%?kﬁ rst and iehn(;j?ets?g(), which arte éh;en .
troduce a method of regularized inversion, which identifiesprogfaslSe mlcrodla y dotc):ar Orc]j '(:;' de. or co?verzeoo o mi-
the solution which best fits the data but not the noise. ThisC 02'& €OMPounds and by-produc ddigan et al, 9 .
method shows that the data are described by a continuou at are subsequently transformed and broken down again
Agren and Bosattal998, eventually resulting in a com-

distribution of rates, which we find is well approximated by lot . f ! bon bon dioxid
alognormal distribution, and consistent with the idea that deI€t€ conversion of organic carbon to carbon dioxide. ann—
titatively estimating the rates of these processes is difficult

composition results from a continuum of processes at diﬁ‘erf “th ety of s initially found
ent rates. The ubiquity of the lognormal distribution suggest.Or many reasons. the variety of components initially toun

that decay may be simply described by just two parametersln tissues vary in lability Tenney and Waksmad32 Bur-

a mean and a variance of log rates. We conclude by describqlge 2008 Lutzow et al, 2004 Mmde_rman 1968 Berg and .
McClaugherty 2007); as decomposition proceeds, organic
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molecules interact chemicallyBérg and Laskowski2006 in plant matter Minderman 1968. However, the number
Lee et al, 2004 Lutzow et al, 2006, forming humus and  of rates present, amount of material at each rate, and the
other hard-to-degrade compounde(g and McClaugherty  value of each rate may vary across different types of organic
2007 Paul 2007 Eijsackers and Zehndet990; microbial matter, ecosystems and climates, and the relations between
processes produce compounds which vary in labifydréen these parameters are not well understobdb(r et al, 2008
and Paustianl987 Agren and Bosattal998; and particu- Feng 2009h. The second class of models are continuous
late and dissolved carbon bond and sorb to clays and minparallel models, also called reactive continuuBodreau
erals OQades 1988 Hedges and Oade$997 Mayer, 1994 and Ruddick 1991) or disordered kinetic modeld-¢rney
Vetter et al, 1998 Nieder and BenbR008), forming organo-  and Rothman2012. In these models, organic matter is de-
mineral complexes that also affect decomposability. scribed as a continuum of qualities, and decomposition pro-
This wide range of decomposition processes and mecheeeds by a continuous distribution of exponential decay rates
anisms lead to heterogeneous kinetics, with rates of decafBoudreau and Ruddickl991, Feng 20090). These have
ranging from weeks to thousands of yealarn(ssen1984 only more recently been appliedllanzoni et al.2009 Roth-
Yang and Jansse200Q Trumbore 2000 or greater lid- man and Forney2007 Feng 20093 Forney and Rothman
delburg 1989. Knowledge of rate heterogeneity is important 2012. The third and most detailed type of models are trans-
because it tells us how long carbon resides in organic matteformational models, which incorporate transformations to
Rates of decay can be related to other dynamic propertiesther types of soil organic matter, decomposer biomass, hu-
such as the turnover times and ages of soil carBenkinson = mus, etc. These models can be discrete, consisting of a net-
et al, 1990 Forney and Rothmar2012 Bolin and Rodhe  work of pools exchanging carbon with one anothem(Veen
1973 Rodhe 1992 Manzoni et al. 2009 Feng 20098. and Paul 1981, Parton et al. 1987 1993 Eijsackers and
However, it is difficult to quantitatively model decomposition Zehndey199Q Beare et al.1992), or continuousCarpenter
because we lack fundamental constitutive relations betweed981; Bosatta 1985 Agren and Bosattdl998. Some trans-
rates, mechanisms, composition, and environment. Our primformational models also couple the rates of organic carbon
itive understanding of decomposition dynamics is evidentdecomposition with nutrient dynamic$1é&nzoni and Por-
in state-of-the art ecosystem modeRok, 2001, Moorcroft poratg 2007 Agren and Bosattal998 and may be non-
et al, 2001, Medvigy et al, 2009 Sitch et al, 2003 Krin- linear Manzoni and Porporajd®2007, 2009. Transforma-
ner, 2005. The treatment of primary production in those tions in organic matter can also be described by a first-order
models is more sophisticated and mechanistic than the treatiecay constant which decreases according to a function of
ment of organic matter decomposition. Empirically identi- time (Janssenl984 Yang and JansseR00Q Bosattal1995.
fying constitutive relations requires (1) mathematical rela- The three types of models are similar. The multi-pool
tions underlying the dynamics of decay and (2) estimatingmodel can be written in terms of the disordered kinetic model
dynamic parameters of the model from decomposition datawhen the continuous rate distribution is comprised of delta
This paper focuses on the latter problem. Because decompdunctions Forney and Rothmar2012. The disordered ki-
sition dynamics involves multiple time-scales and is highly netic model can be represented by a transformational model
complex, heuristic models are used. Because degradation camhen quality is preserved during transformatido$atta
take place over such a wide range of timescales, decay expet995. When linear, transformational network models can
iments sample only a portion of the decomposition history.sometimes be mathematically represented by a multi-pool
As a compromise, we investigate plant litter decay phasesnodel Bolker et al, 1998. This simplification also occurs
and early transformations to young soil organic matter by an-when the timescale of transformation is short with respect
alyzing a long-term litter decay study that spans up to 10 yr. to the decay timescale of slowly degrading produEtsr ey
Current degradation models differ in the way they ac- and Rothman2012).
count for kinetic heterogeneity. They vary in the number Using the disordered kinetic approach, we have recently
of rate pools, mass flow partitioning, and complexityafn- found that plant matter decay is well described by a lognor-
zoni and Porporat®009. Models of organic matter decom- mal distribution of decay rate§6rney and Rothmar2012).
position can be classified in terms of three types. The firstWe also determined how the rate distribution and the two pa-
and most commonly applied model is the multi-pool model rameters of the lognormal are qualitatively related to climatic
(Adair et al, 2008 Harmon et al.2009 Currie et al, 2010, and compositional variable§¢rney and Rothmar2012).
otherwise known as multi-compartmerntefikinson 1977, In this paper, we elaborate on the formation and imple-
Nieder and Benhi2008, multi-component fan Keulen mentation of the regularized inversion method that we em-
2001, Andrén and Paustian 987, or multi-G Berner 1980 ployed to identify the best fitting rate distributiofrdrney
models. In these models organic matter is partitioned intoand Rothman2012. To do so, we first consider a simpler
one Olson 1963 or more Minderman 1968 Berner 1980 directinversion of the data, which forms the basis for the reg-
Jenkinson 1977 Harmon et al. 2009 Currie et al, 2010 ularization method. The direct inversion tends to find discrete
pools, decaying exponentially at different rates. Pools arerate distributions with mass contained at only a few rates. In
suggested to be associated with different compounds presethis sense, the direct inversion is a new procedure for finding
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the best fitting multi-pool solution without needing to assume  Mathematically, Eq.Y) is the Laplace transform qf(k).

how many pools are present. We use the resulting multi-poolWe obtain the distributiop (k) by taking the inverse Laplace
solutions to motivate the use of a regularized inverse. Wetransform of the datg(¢) (Forney and Rothmar2012. To
then describe the regularization method in detail and providedo so, we transform the model to facilitate calculations. We
an example of its implementation. Because the regularizatioriirst make a change of variables frdnto Ink as we expect
method identifies a common lognormal patteffiorey and  to find a wide range of decay rates. Because probability is
Rothman 2012, we also present a simple procedure for es-conservedp(k)dk = p(Ink)dInk, and Eq. {) becomes

timating the lognormal parameters from the decay data. This o

procedure provides a more precise estimate of the best fittin _ ke

lognormal, resulting in slightly better fits to the data than the%(t) = | pnke"dink )
regularized solution. -

The remainder of the paper proceeds as follows: In Sect. wherep(Ink) is the probability distribution in Ik space.
we discretize the disordered kinetic model for numerical ma- To numerically calculateo(Ink) we discretize equation
nipulation. In Sect3 we calculate the model inverse. This (2). Using the discretization discussed in Appendig,
basic inversion easily and rapidly identifies the appropriateEq. (2) can then be written in matrix form as
multi-pool solution without prior assumption regarding the
number and type of pools. Later in that section we show thal = Ap. ©)
the best fitting multi-pool solution is sensitive to noise in the g is the vector of predicted time series data pojts: g(¢;)
data as both the number and type of best fitting pools fluctuhaving length. p is a vector of length:, representing the
ate with the noise levels found in the data. Thus, in Séct. average value ob(Ink) over a discrete intervah Ink. A is
we address the noise sensitivity by employing a method ofanm x n matrix representing the discrete Laplace transform
regularization to invert the data and provide details of its im- operator. See Appendil for more details.
plementation. Finally, in Sech, we analyze litter decay data ~ We proceed to identify the underlying rate distribution
by assuming rates are distributed lognormally and fit just thep (Ink) from an observed decay time serigs) by inverting
two lognormal parameters to the data. Matlab codes for althe model (Eq3) and solving forp.
numerical procedures and approaches are provided online in

the Supplement. . : . . .
3 Direct inversion with constraints

Our approach in this section directly calculates the inverse
Laplace transform of data with non-negative constraints. This
approach identifies a handful of separate and distinct pools
v&hich are present during decay, having valpgs> 0; the

a - .
remaining pools are not present and have vafiyes 0. This

. ; technique therefore provides a direct estimate of the best
Burdige 2006 Lutzow et al, 200 Minderma 1968 Berg fitting multi-pool model, expressed as a discrete distribu-

and McClaugherty2007). Substrate heterogeneity suggests tion p(Ink). We find however that the multi-pool solution is

that degradation proceeds at different rates in parallel. Thisver sensitive to noise in the data and is overoarametrized
heterogeneity can result in either a discrete or a continuou Y P ‘

distribution of decay rates ?Ne therefore proceed in Seet.to refine this approach us-
We identify the best fitting rate distribution by inverting Qgtﬁr;ﬁu'zaéfgtm?;e%h:'qZe(;tgr:?xeg tzergf" d'(.”s‘t?.’ba’:.do ]

a continuous parallel model of decay. In this model, the frac- Ink) w,hich i ’ch))th \;Iirr; ?er and IelslsJ s:nsitive tol nc;isltjel

tion g(¢) of original mass remaining is described by a con- Pl P '

tinuous superposition of exponential decagsdreau and 3 ¢ Calculating the constrained direct inverse
Ruddick 1991),

2 The parallel model of decay
As organic matter is composed of many different com-

pounds, some are more resistant to degradation and bre
down more slowly than other3énney and Waksmat929

The distributionp can be directly calculated by computing

¥ u the inverse of (Eq3) from the measured decay ddavhich
g(t) = / p(kye ' dk (1) includes the first data poigy = 1 atry = 0,
° p=A""g @)

where p(k) is the probability distribution of components Because solutions to Ecd)(fit the noisy data exactly, neg-
with ratek and [y~ p(k)dk = 1. We have previously found ative values ofp; are possible. In order to find solutions
that litter decay rate distributions are well characterized byWIth non-negativ@i, we instead solve the constrained least
a lognormalp (k), although other possible forms have been squares problem

hypothesized Boudreau and Ruddi¢ckKl991, Bolker et al, . <o
1998 Rothman and Forne2007 Feng 20098. minfiAp — gl ®)
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4 7) is shown in Fig.1b. Three pools are associated with the
B decay shown in Figlb: a very rapid pool, a moderately la-
bile pool, and an extremely slow pool. However, by varying
the search domain of decay rates, andkmax we find that
the slow pool always takes the smallest valkgin, which
in this case is 10°%yr. This suggests that the pool &hin
represents an inert or constant mass fraction. The fast pool
) on the other hand is located/at 385yr-1(1.4wk™1). The

0 24 6 810 —-15-10 -5 0 5  amount remaining of this fast pool at the first measurement

time [yr] In(k) t=1yrise385=1.9x 1017, which is just past the dou-

_ ble precision limit of 16 significant figures. Therefore this
Fig. 1. Inverse Laplace transform of a LIDET datasg) Decay pool is numerically zero for every measured data point, and is

datag indicating the mass fraction remaining of a single litter type at S - -
one location in the LIDET study. In this case, the litter is a leaf of the .therefore indistinguishable from an instantaneous decay. The

species Drypetes Glauca decaying at Alaska’s Arctic Lakes. Line ighversion therefore s'ug'gests that this dataset contains 'Fhree
the fit to the data corresponding to the distributigin) shownin  types of pools: a rapid, instantaneous pool; an exponentially
(B). (B) Distribution p(Ink) obtained by numerical inversion of the decaying, active pool; and a constant, inert pool. Because the
datag using the constrained non-negative least squares algorithm. inert and instantaneous pools do not have rates associated
with them, this dataset is described by three parameters.
Models with various combinations of active, inert and in-

[S—
0

— multi-pool
prediction

e 2
o

p(In(k))
[\

e
o~

mass frac. remaining, g(?)

such that stantaneous pools have been previously suggested to describe
litter decay Harmon et al.2009 Nieder and Benhi2008.
pj >0 (6) In 1945, Henin and DupuisNjeder and Benhi2008 sug-
n gested using an inert pool to represent the transformation of
ZAlej =1 (7) incoming carbon to stabilized soil carbon. However, because
j=t the turnover time is the mean inverse rétel) of each indi-

vidual pool Feng 2009h Forney and Rothmar2012), de-
where|x| = /> x? is the norm of vector. The elements  composition models containing an inert pool have an infinite
Ajy; corresponds tg = 0 and constraint Eq7f ensures that  turnover time and result in the unphysical situation where
p is a probability distribution, which sums to one. We use soil organic matter grows indefinitely. These models require
the Matlab functionlsgnonneg.m to calculate the non- additional parameters and heuristics to calculate an effective
negative solution to the least squares problBmConstraint  rate of turnoverCurrie et al, 2010 Harmon et al.2009.

(7) is met by weighing the first data point af0) = 1 more The direct inversion technique provides an approach for
heavily than the others. Details of the solver can be found inidentifying the simplest multi-pool solution which best fits
AppendixA2. the data. It generally provides solutions consistent with fit-

We apply this method to data from the Long-Term Inter- ting different multi-pool models which contain various types
site Decomposition Experiment Team (LIDET) stu3hplz of pools and choosing the model having the least error. This
et al, 2000 Harmon et al.2009 Adair et al, 2008 Cur- approach therefore gives a simple, direct estimate of the ap-
rie et al, 2010 Harmon 2007). The LIDET study moni-  propriate multi-pool solution and answers the question “how
tored the decomposition of 27 different types of litter, in- many pools?”. The multi-pool approach however exhibits
cluding needles, leaves, roots, wood, grass, and wheat disome serious shortcomings, which we discuss in the follow-
tributed amongst 28 different locations across North Amer-ing sections.
ica ranging from Alaskan tundra to Panamanian rainforests.

Litter was collected and then re-distributed in litter bags at

different sites in order to investigate the effect of composi-3.2  Analysis of the multi-pool solutions

tion, ecosystem, and climatic parameters on decomposition.

Litter bags were collected and analyzed each year for up to

ten years, with four replicates for each site, litter type, andWe use the same inversion technique to find the best multi-
removal time. We call a data point the average mass fractiorpool solution associated with 191 datasets chosemngy
remaining of all replicates of a given plant matter type, site,and Rothman2012 from the LIDET study. We then deter-
and duration. A data set is the time series of all data points asmine whether pools are active, inert, or rapid as described
sociated with a particular combination of litter type and site. above. If any pool contains a mass fraction of less than
Bags at tropical and sub-tropical sites were more frequentlyl %, we neglect that pool as it requires additional model
collected at three to six month intervals. parametrization but has a negligible effect on the residual

An example of a decay dataset is shown in Rig. The  error. We distribute the mass of the small pool proportion-
rate distributiono corresponding to the solution of Eq&~  ately amongst the remaining pools, as these pools may be

Biogeosciences, 9, 3603612 2012 www.biogeosciences.net/9/3601/2012/
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Table 1. This table shows the wide and seemingly unpredictable variation in the types of pool models that best fit 191 LIDET datasets. Each
model was obtained by solving the non-negative least squares pradilamd(analyzing the resultingto determine whether the pools were

active (decaying exponentially), inert, or rapid, as discussed in the text. The first column lists the model type, the second column indicates
kinds of pools present in that model, the third column provides the formula for the model, the fourth column gives the total number of pools in
the model, the fifth column indicates the total number of parameters in the model, and the sixth column indicates how many LIDET datasets
are best fit by that model. The sizes of the constant, rapid, and active pools in the models arela, respectively. The size of one of the

pools is determined by the others since mass fractions must sum to one.

Model Para- # Data-
type  Type of pools Formula Pools meters sets
1 active ekt 1 1 33
2 active, inert A—c)e ¥ 4¢ 2 2 30
3 active, rapid L—r)e ¥ 2 2 37
4 active, inert, rapid  (1—r —c)e k" 4 ¢ 3 3 25
5 2 active ae k4 (1—q)e k2t 2 3 39
6 2 active, inert ae M+ (1—a—cle k! +¢ 3 4 14
7 2 active, rapid ae k! 4 (1—q—rye ket 3 4 10
8 2 active, inert, rapid a e ¥ + (1—a—r—c)e ¥ +¢ 4 5 3

artifacts due to noisé.Table 1 shows the results of the in- another to a high degree of accura¥giamian and Claverje
version and indicates that eight different types of multi-pool 1987). We proceed to investigate the solution’s sensitivity to
models are needed to describe all 191 of these LIDET datanoise levels present in litter decay data.

sets. 17 % of the datasets are described by one pool, 56 % If we assume that the multi-pool model is correct, then the
are described by two pools, and 27 % are described by threbne in Fig. 1a is the true decay(z). We then estimate the

or more pools. The maximum number of pools found wasvariance of the data nois(eé2 by calculating its maximum
four and all datasets are characterized by 5 or less paraméikelihood o2 =Y . ¢2/m (Konishi and Kitagawa2010,

ters. The data from Figdla are of type 4 in Table 1; 24 other assuming the ndise is Gaussian with zero mean. We then gen-
LIDET datasets also exhibit the same behavior. This infor-erate numerical trials of decay data by adding Gaussian noise
mation can be used to determine some patterns underlyingf the same strength, in this cage= 0.024, to the predicted
litter decomposition. For example, we find that 29 % of all decayg(r). Then, for each trial we recalculate the associated
datasets involving either needles or wood appear to decaghverse solutiorp. The results of the inversion of 60 000 nu-
exponentially, while roots on the other hand decay exponenmerical trials is shown in Figga—g. There is wide variation
tially only for 2% of their datasets. Roots tend to have 3 orin the active pools just due to the noise in the data. Figbre

4 pools for 48 % of their datasets, while leaves, needles, andhows how the model type varies due to noise. The “true”
wood each have 3 or 4 pools less than 25 % of the time. Howmodel, type 4, is only identified 39 % of the time. The other
ever, extracting further information from the inversion results LIDET datasets show similar results. These results highlight
in order to determine which model and parameters are approwhy it is difficult to gain fundamental understanding of de-
priate for different combinations of tissue types, substratescomposition processes from fitting a multi-pool model to the
or environments is difficult if not impossible since there is data.

too much variation ino and model type. Indeed this is one
of the shortcomings of the multi-pool model. It is too over-

) . s ) Regularized inversion method
parametrized to be useful in identifying fundamental consti- d

tutive relations between composition and dynamics. Because the inverse Laplace transform E).i§ sensitive
o ) to noise in the data, it is ill-posediansen 1987 1994). In
3.3 Sensitivity to noise the previous section, we have demonstrated that the inverse

. . . . . Laplace transform with non-negative constraints Egs. (5-
In this section we test the direct inversion method and eval-, . : . .
uate the appropriateness of multi-pool models for describ /) is also ill-posed Yeramian and Claverjel987) at the
. € approp P . . level of noise present in our decay functiggg). There are
ing noisy decay data. The standard shortcoming of a multi- )

A o .S a number of approaches to solve the inverse Laplace trans-
pool solution is its inherent sensitivity to noise in the data

§ (Kroeker and Henkelmari986 Kleinberg 1998, as mod- form robustly without being sensitive to .sma_ll change; in the
e ; data. These include Laplace-RaapproximationYeramian
els with differing numbers of pools can well approximate one

and Claverie 1987, the phase function methodZifou
1This occurred for only 7/191 datasets, 5 of which were two pool and Zhuang 2006, regularization Klansen 1994 1987
models that became one pool models. Istratov and Vyvenkp 1999 Press et al. 1992, and

www.biogeosciences.net/9/3601/2012/ Biogeosciences, 9, 33M12-2012
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2 A B C { D
s type 4 1 type 5 L5 type 6 type 7
=
£ 1 1
= 0.5 0.5
Y05 A 0.5 A
0 0 0 A 0
12 8 4 0 4 12 8 4 0 4 12 -8 -4 0 4 12 8 4 0 4
In(k [yr'])
1.5 E oal T 0.6 G 0.4
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<1 04 £ 03
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0.5 g
/\'\ 0.2 5 o
9
0 0 0 0
12 8 4 0 4 12 8 -4 0 4 12 8 4 0 4 12345678910
In(k [yr']) In(k [yr']) In( k [yr']) type

Fig. 2. Distributionsp (Ink) for 60000 trials of adding random noise to the predicted decay in Fig. 1la. For eacl tindl) is estimated

using the method discussed in S&1 The pools in each solution are then analyzed to determine the model type as described in the text and
Table 1, except for model type 9 which is a three active-pool model and type 10 which is any combination of pools not described by models
1-9.(A—G) shows the mearp (k)) for each model type, calculated by summing all of the observed distributions for each type and dividing
by the total number of times each type was obser{idii Fraction of trials that each model type was identified.

others (stratov and Vyvenkpl999. We choose regulariza- the roughness:

tion because of its straightforward implementation. Regular-

ization is commonly applied elsewhere, for example in themin||g— Ap||? + w||Rp|12, 9)

analysis of NMR spin relaxatiorLémanna 2005 in bio- P

logical tissue Kroeker and Henkelmarl986 and in porous  \wherew is the regularization parameter which controls the

media Gallegos and SmitH.988 Kleinberg 1996. relative weight of the solution roughness to the residual er-
Like most other robust inverse Laplace transform meth-ror, Because it is unclear how much to weigh the roughness,

ods, regularization works by determining the solution that, in, js typically varied many orders of magnitude fram 1,

principle, fits the data without flttlng the noise. This solution which emphasizes the importance of residual errap, 1 1,

represents a tradeoff between simplicity and accuracy. Hergyhich emphasizes the smoothest solution. The regularized

we choose a specific type of regularization called Tikhonov ,(in) is determined by identifying the value afthat sets

regularizationlansen1994 1987 Press etal199tocal-  an optimal balance between the residual error and the rough-

culate a solution to the constrained inverse problem (Eqspess.

5-7) because this method handles the constraints (&mk)

well. The goal of Tikhonov regularization is to minimize both 4.1 The L-curve

the residual error and the complexity of the solutigink).

Solution complexity is assumed to be associated with theAn approach for finding the optimalis to use the “L-curve”

roughness, or the intensity of fluctuations,dtfink). Here,  technique lansen1987 1994. An L-curve is generated by

we measure roughness by the norm of the first derivative oparametrically varying» and solving Eq. ) for p, obtain-

the solution vector, ing values for the residual error norjpd — Ap| and rough-

ness norm|Rp| for each value ofv. The L-curve is made

12 by plotting ||[Rp|| vs. ||§ —Ap]l on a log-scale, resulting in

H do(Ink) H ( < Pit1— P )2> — IRp| ®) a characteristic “L" shape. Figu@a shows the L-curve for

dink INki11— Ink; the dataset shown in Figa.
While each point on the curve is associated with an op-
timal solution for a certain value @b, the corner of the L-

whereR is the bi-diagonal first derivative operator, with an curve is associated with the regularized solution. The corner
additional first row[1 0] and additional final rowQq —1] to represents the point where increasing the information con-
account forp being zero outside the domdipin < k& < kmax- tained in the solution no longer improves the residual error.

The regularization method proceeds by finding the solu-Solutions at the upper left of the L-curve contain high in-
tion p(Ink) that minimizes a sum of the residual error and formation as: elements; are free and independemiérce

Biogeosciences, 9, 3603612 2012 www.biogeosciences.net/9/3601/2012/
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10

w1 A

roughness norm, ||Rp||
_
(=)
In(mass fraction remaining)

10
10° 10" 10" '
residual error norm, ||Ap — g| time [yr]
4 0.2 0.08
B C D
3 0.15 0.06
= = =
s 2 = 0.1 = 0.04
g & g
1 0.05 0.02
w=0 w = 0.66 w=120.1
0 - 0
-15 -10 -5 0 5 -0 -5 0 5 -10-5 0 5 10
In(k [yr]) In(k [yr™]) In(k [yr)

Fig. 3. Determining the optimal value of regularization parameteia the “L-curve” methodllansen1994 1987). Counterclockwise from

the upper left(A) The “L-curve”, ||Rp| vs. ||g — Ap|l. (B) The unregularized solution, similar to the solution found at the top of the curve,
where the regularization parameterk 1. (C) The solution associated with the corner of the curve corresponding=®.66. (D) The
solution at the corner of the curve correspondingte 20.1. (E) The datag(¢) from the same LIDET dataset shown in Fig. 1a. The decay
predicted from the solutions iB,C,D is also plotted. The corner withh = 0.66 is chosen as the optimal solution since it predicts the data
with significantly less residual error and has no trend in the residual, unlike the corner hexi2§.1 The optimal solution is associated
with a corner of the curve.

1980, whereas fewer modes are active in the smooth solutionr = 1. Therefore, the distribution shown in Fi8¢ is consid-

at the corner. The corner is also the point where relatively lit-ered the optimal, regularized solution.

tle decrease in information results in large increases in the

residual error. Often, the corner is associated with a changa.2 Results of regularization

in the number of maxima ip (Ink); solutions above the cor-

ner may have more modes than solutions below. Figure 4 shows the overall variation in the inversions due
Generally, the L-curve method identifies a smooth solutionto noise by summing all 60000 multi-pool solutions from

which predicts a decay having a residual error approximatelyrig. 2a—g. We also plot the solutigen(Ink) from the regular-

equal to the noise in the dataset. Solutions for three differentzed inversion. The regularization provides a simpler solution

values ofw are shown in Fig3b—d with the unregularized that captures the variation of the rate heterogeneity associ-

solution shown in Fig3b. Decays predicted from these three ated with uncertainty of the multi-pool solutions.

solutions are shown in Fige. More specifically, we find that this heterogeneity takes
When there are multiple corners, as shown in Bay.the 3 certain form: the regularized solution presented in Big.

optimal corner needs to be chosen. We apply the approachppears lognormal, i.e. Gaussian ink Iispace. We have

discussed in AppendiR3 in order to choose the appropri- shown in a separate publicatidfofney and Rothma2012)

ate corner in Fig3a. The distribution corresponding to the that the entire LIDET dataset is lognormal on average. This

lower corner (Fig3d) predicts a decay that has a large error [ognormal description is considerably simpler than the multi-

compared to the noise in the data and has a significant trenfool approach as the rate heterogeneity and all dynamic in-

in the residual error as seen in FBe. However, the distri-  formation are now contained within just two parameters,

bution corresponding to the higher corner (R3g) predicts  a meanu and a variance 2 of the order of magnitude of

a decay which is hardly distinguishable from the decay pre-decay rates. This approach also emphasizes the view that the

dicted by the unregularized solution, shown in green, afterquality of litter and young soil organic matter quality is con-

tinuously distributed.
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<p(In k)>
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Fig. 4. The average (blue) of all 60 000 noise-generated multi-pool loanormal fit
solutions from Fig.2 plotted alongside the regularized solution 9
(red). (p(Ink)) is calculated by summing from all 60 000 noise- 0 * * * * *
generated trials and dividing the sum by 60 000. 0.03 006 009 012 0.15
RMSE
5 Fitting lognormal parameters to decay data Fig. 5. Comparison of root mean square error (RMSE) associated

with the three different parameter estimation procedures. For each
The ubiquity of the the lognormal distribution suggests thatone, the RMSE of the predicted decay is calculated for 191 LIDET
litter decay can be well described by the two lognormal pa-data sets. The-axis shows the number of datasets having an RMSE
rametersvu ando. In this Section, we assume a model of smaller than the value of RMSE on theaxis. Shown are the RMSE
lognormally distributed rates and present a procedure to es‘-?f the unregularized multi-pool solgtion (green), regularized solu-
timate the values of the mean of log ratgs,and standard o (blue), and two-parameter nonlinear fit (magenta).
deviation of log ratesy, associated with a decay dataset. We
then compare its results to the results of the regularized in-
version.

We proceed by substituting the Gaussian distribution, sion (Eqs5-7), regularized inversion Eq9), and the two-

parameter fit Eq.12). The root mean square error (RMSE)
of the fit to the data is calculated for each dataset and the
cumulative density function of the RMSE rescaled by the
for p(Ink) in Eq. (), providing a prediction of the mass frac- total number of datasets (191) is plotted; the vertical axis
tion g(t) remaining when decay rates are lognormally dis- shows the number of datasets having an RMSE smaller than
tributed.g(7) as a function of the parametarsando is the value on the horizontal-axis. The RMSE of the unreg-
~ ularized inversion technique (green) is clearly smaller than
) = 1 o—(Nk=12/202 )kt 4 1. (11) that of the other two techmqu_es, but these solutions suffer
8 N from the problems discussed in Segt3. Mean RMSE val-
—oo ues for all 191 datasets are 0.048, 0.053, and 0.052 for the

We then identify the values af ando which best fit the data direct inversion, regularized inversion, and lognormal model,
by solving the non-linear least squares minimization problem!©SPectively. Surprisingly, solutions from the two-parameter
fit (magenta) appear to have slightly smaller residual error

than solutions identified from the regularization technique
(blue). Thirty-two of the datasets are predicted by both the
two-parameter fit and regularization method to have a sin-
gle rate; the two-parameter lognormal model however pre-
whereg; are the measured data points ard) is the decay dicts the decay from 126 of the remaining 159 datasets bet-
predicted from Eqg.11). We solve Eq. 12) using Matlab’s  ter than the distribution obtained by regularization. There-
non-linear least squares solveinfit.m . Thisisrepeated fore, the lognormal model fits the data equally or better than
for all 191 LIDET datasets that are appropriately describedthe regularized solution for 13891 or 83 % of the datasets.
by a superposition of exponential decai®iney and Roth-  This is unexpected because the lognormal model has only
man 2012. two degrees of freedom. The marginally poorer fit of the reg-
Figure 5 shows a comparison of the residual error as-ularization method is due to the emphasis of the method on
sociated with the three different approaches: direct inver-smoother (wider) solutions. We proceed to investigate this

e—(lnk—u)z/Zaz’ (10)

p(nk; pn,o) =
TOo

min " (& — ()", (12)
=1
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pool vary widely due to the level of noise associated with

litter bag data. The regularization method described here is
robust to noise and commonly indicates that a lognormal dis-
tribution provides a concise representation of the rates as-
sociated with decay data. If the lognormal distribution may

be assumed, a marginally better fit to the data is found by
directly estimating the lognormal parameterando from

the decay (¢). However, we cannot recommend applying the

lognormal model without first using the regularization proce-

dure.

Fig. 6. Comparison ofx ando estimated from the nonlinear fitting Matlab codes for all numerical procedures (direct inver-

procedure to the mealink) and standard deviation of the regular- Sion, multi-pool estimation, regularized inversion, and the

ized distributionp. (A) the mean(Ink) of p(Ink) vs. u. (B) the two-parameter fitting procedure) are provided online in the

standard deviation gf(Ink) vs.o. Supplement.

u [In yrl]

©

-4 =2 0 2 3
<Ink[yrl]> var(In k)

effect by comparing the fitted parameterdo the standard APPeNdix A

deviation of the regularized inversiopsin k).

Figure6 compares the fitted valugsando to the mean,
(Ink), and standard deviatio{/ ((Ink — (Ink))2) associated
with the regularized solutions. Figure6a shows that values  v/arious methods can be used to discretize B, fuch as
of 1 and the mean of the inversigrilnk) are consistent with  qyadrature I(amanna 2005 Hansen 1994, linear or log-

one another. There is a departure at hiigit) because some spaced discretization. Here, we choose to discre@e
of these inversions are bi-modal: one mode is active whereag nodesx; spaced uniformly along the inaxis between

the other mode is distributed over extremely fast rates associne [imits Inkmin < Ink < INkmax. The nodes are therefore
ated with instantaneous decays. These bi-modal datasets a&gaced at intervals of width
effectively described by an instantaneous mass loss followed
by decay that proceeds with a distribution of rates. Figime A —
on the other hand, tells another story. Values dénd to be n
less than the standard deviationafn k), indicating thatthe  This discretization is chosen in order to provide resolution
regularized solution is wider than the best fitting lognormal over the appropriate wide range bf? Eq. (2) can then be
distribution. This is a consequence of weighing the solutionwritten in matrix form as
roughness during regularization. A narrower lognormal so-
lution with smaller residual error exists, but the weight of 9=Ap. (A2)
the rOUghneSS is Iarge enough that the regularization methog is a vector of |engthl' representing the average value of
chooses a slightly wider solution that fits the data almost as, (Ink) over an intervalA 1, centered ak;,
well. Collectively, Figs5 and6b indicate that when rates are
heterogeneous, the transition from unimodal to multimodal
solutions near the corner of the L-curve occurs before find—p/. S / p(nk)dInk. (A3)
ing the unimodal solution with the smallest residual error. AL

These results indicate that the regularization method is
useful for identifying general trends and shapes of solutionsThem xn matrixA is the discrete Laplace transform operator
If regularization suggests that rate distributions are lognor-with elements
mal, then fittingu ando to the data identifies more precisely Ay = Ny (Ad)

the specific lognormal distribution that best fits the data.
g is the vector of predicted time series data poits: g(1;)
having lengthm.

Al Discretizing the Laplace transform

INkmax — IN kmin (A1)

1
Aj+3AM

1
Aj—3an

6 Conclusions ; ; : o
2While the domain of the inverse Laplace transform is infi-

Direct calculation of the inverse Laplace transform with nite, we find that for litter decay data, the tails of the distribu-
P tions vanish numerically and that the distribution is typically con-

a non-negatlwty constralnt. _proyldes the best fitting multi- _i o4 between TPyr—T < k < 10%yr—L. We therefore set the val-
pool solution without specification of the number of pools yegs.. — 10%yr—1 and ki = 10-6yr—1. We choose the num-
a priori. However, this multi-pool solution is very sensitive per of discretization steps, to provide a reasonable resolution
to small changes in the decay functig(r) (Yeramian and  of p(Ink) without being computationally burdensome=z 100 or
Claverie 1987, as the number of pools and the rates of eachn = 16m was satisfactory.
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A2 Details of Matlab solver strength in trend in their residual error, choose the cor-
ner with lowest roughness. Usually the corner having

The Matlab functionlsqnonneg.m  employs Lagrange lower residual error and higher roughness tends to be

multipliers (Strang 1986 to calculate the non-negative so- not biased and to have no trend in the residual.

lution to the least squares probleB).(Constraint 7) is met
by weighing the first data point g{0) = 1 more heavily than
the others, although an additional Lagrange multiplier couldSupplementary material related to this article is

be used. Because < n, A is underdetermined and has rank available online at: http://www.biogeosciences.net/9/

m. In Matlab 2008a and older, the functitsgnonneg.m 3601/2012/bg-9-3601-2012-supplement.zip

uses the algorithmldivide.m  (Mathworks 2009 to cal-

culateA~1§. This algorithm utilizes a rank-revealing QR fac-

torization with column pivoting which calculatgsonly from

the m most linearly independent orthogonal components ofacknowledgementsive thank C. Follett, Y. Friedman, A. Petroff,
A. As aresult, it returns at most non-zero components in 0. Devauchelle, and D.M. Abrams for insightful discussions. This
the vectorp. In newer versions of Matlalsgnonneg.m work was supported by NSF Grant EAR-0420592 and NASA Grant
uses the pseudo-inverggnv.m (Mathworks 2011) to cal- NNAO8SCNB84A. DHR thanks the Radcliffe Institute for Advanced
culate A=1§. The pseudo-inverse identifies the solutipn ~ Study for providing a one-year fellowship during which a portion
with minimum norm. For our problem, we find that results ©f this work was performed.

from both the newer and older versionsisfnonneg.m

are the same. Edited by: U. Seibt
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