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Abstract. Long-term organic matter decomposition exper-
iments typically measure the mass lost from decaying or-
ganic matter as a function of time. These experiments can
provide information about the dynamics of carbon dioxide
input to the atmosphere and controls on natural respiration
processes. Decay slows down with time, suggesting that or-
ganic matter is composed of components (pools) with varied
lability. Yet it is unclear how the appropriate rates, sizes, and
number of pools vary with organic matter type, climate, and
ecosystem. To better understand these relations, it is neces-
sary to properly extract the decay rates from decomposition
data. Here we present a regularized inverse method to iden-
tify an optimally-fitting distribution of decay rates associ-
ated with a decay time series. We motivate our study by first
evaluating a standard, direct inversion of the data. The di-
rect inversion identifies a discrete distribution of decay rates,
where mass is concentrated in just a small number of dis-
crete pools. It is consistent with identifying the best fitting
“multi-pool” model, without prior assumption of the number
of pools. However we find these multi-pool solutions are not
robust to noise and are over-parametrized. We therefore in-
troduce a method of regularized inversion, which identifies
the solution which best fits the data but not the noise. This
method shows that the data are described by a continuous
distribution of rates, which we find is well approximated by
a lognormal distribution, and consistent with the idea that de-
composition results from a continuum of processes at differ-
ent rates. The ubiquity of the lognormal distribution suggest
that decay may be simply described by just two parameters:
a mean and a variance of log rates. We conclude by describ-

ing a procedure that estimates these two lognormal parame-
ters from decay data. Matlab codes for all numerical methods
and procedures are provided.

1 Introduction

Over 107 different types of organic substances (Wackett,
2006) comprise the roughly 1800 Gt of carbon in soils (Den-
man et al., 2007) and biomass, and 750 Gt of dissolved and
particulate organic carbon in the oceans (Benner and Herndl,
2011) and marine sediments (Denman et al., 2007). Diverse
decomposer communities (up to 6000 bacterial species per
gram soil and up to 11 000 bacterial species per gram marine
sediments,Horner-Devine et al., 2004) respire these com-
pounds, converting 75 Gt of terrestrial carbon (Schlesinger
and Andrews, 2000) and 50 Gt of oceanic carbon to CO2
every year (Denman et al., 2007). During degradation, or-
ganic tissues are broken down to particulate or dissolved or-
ganic matter (Eijsackers and Zehnder, 1990), which are then
processed microbially to carbon dioxide or converted to mi-
crobial compounds and by-products (Madigan et al., 2005)
that are subsequently transformed and broken down again
(Agren and Bosatta, 1998), eventually resulting in a com-
plete conversion of organic carbon to carbon dioxide. Quan-
titatively estimating the rates of these processes is difficult
for many reasons: the variety of components initially found
in tissues vary in lability (Tenney and Waksman, 1929; Bur-
dige, 2006; Lutzow et al., 2006; Minderman, 1968; Berg and
McClaugherty, 2007); as decomposition proceeds, organic
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molecules interact chemically (Berg and Laskowski, 2006;
Lee et al., 2004; Lutzow et al., 2006), forming humus and
other hard-to-degrade compounds (Berg and McClaugherty,
2007; Paul, 2007; Eijsackers and Zehnder, 1990); microbial
processes produce compounds which vary in lability (Andrén
and Paustian, 1987; Agren and Bosatta, 1998); and particu-
late and dissolved carbon bond and sorb to clays and min-
erals (Oades, 1988; Hedges and Oades, 1997; Mayer, 1994;
Vetter et al., 1998; Nieder and Benbi, 2008), forming organo-
mineral complexes that also affect decomposability.

This wide range of decomposition processes and mech-
anisms lead to heterogeneous kinetics, with rates of decay
ranging from weeks to thousands of years (Janssen, 1984;
Yang and Janssen, 2000; Trumbore, 2000) or greater (Mid-
delburg, 1989). Knowledge of rate heterogeneity is important
because it tells us how long carbon resides in organic matter.
Rates of decay can be related to other dynamic properties
such as the turnover times and ages of soil carbon (Jenkinson
et al., 1990; Forney and Rothman, 2012; Bolin and Rodhe,
1973; Rodhe, 1992; Manzoni et al., 2009; Feng, 2009b).
However, it is difficult to quantitatively model decomposition
because we lack fundamental constitutive relations between
rates, mechanisms, composition, and environment. Our prim-
itive understanding of decomposition dynamics is evident
in state-of-the art ecosystem models (Cox, 2001; Moorcroft
et al., 2001; Medvigy et al., 2009; Sitch et al., 2003; Krin-
ner, 2005). The treatment of primary production in those
models is more sophisticated and mechanistic than the treat-
ment of organic matter decomposition. Empirically identi-
fying constitutive relations requires (1) mathematical rela-
tions underlying the dynamics of decay and (2) estimating
dynamic parameters of the model from decomposition data.
This paper focuses on the latter problem. Because decompo-
sition dynamics involves multiple time-scales and is highly
complex, heuristic models are used. Because degradation can
take place over such a wide range of timescales, decay exper-
iments sample only a portion of the decomposition history.
As a compromise, we investigate plant litter decay phases
and early transformations to young soil organic matter by an-
alyzing a long-term litter decay study that spans up to 10 yr.

Current degradation models differ in the way they ac-
count for kinetic heterogeneity. They vary in the number
of rate pools, mass flow partitioning, and complexity (Man-
zoni and Porporato, 2009). Models of organic matter decom-
position can be classified in terms of three types. The first
and most commonly applied model is the multi-pool model
(Adair et al., 2008; Harmon et al., 2009; Currie et al., 2010),
otherwise known as multi-compartment (Jenkinson, 1977;
Nieder and Benbi, 2008), multi-component (van Keulen,
2001; Andrén and Paustian, 1987), or multi-G (Berner, 1980)
models. In these models organic matter is partitioned into
one (Olson, 1963) or more (Minderman, 1968; Berner, 1980;
Jenkinson, 1977; Harmon et al., 2009; Currie et al., 2010)
pools, decaying exponentially at different rates. Pools are
suggested to be associated with different compounds present

in plant matter (Minderman, 1968). However, the number
of rates present, amount of material at each rate, and the
value of each rate may vary across different types of organic
matter, ecosystems and climates, and the relations between
these parameters are not well understood (Adair et al., 2008;
Feng, 2009b). The second class of models are continuous
parallel models, also called reactive continuum (Boudreau
and Ruddick, 1991) or disordered kinetic models (Forney
and Rothman, 2012). In these models, organic matter is de-
scribed as a continuum of qualities, and decomposition pro-
ceeds by a continuous distribution of exponential decay rates
(Boudreau and Ruddick, 1991; Feng, 2009b). These have
only more recently been applied (Manzoni et al., 2009; Roth-
man and Forney, 2007; Feng, 2009a; Forney and Rothman,
2012). The third and most detailed type of models are trans-
formational models, which incorporate transformations to
other types of soil organic matter, decomposer biomass, hu-
mus, etc. These models can be discrete, consisting of a net-
work of pools exchanging carbon with one another (van Veen
and Paul, 1981; Parton et al., 1987, 1993; Eijsackers and
Zehnder, 1990; Beare et al., 1992), or continuous (Carpenter,
1981; Bosatta, 1985; Agren and Bosatta, 1998). Some trans-
formational models also couple the rates of organic carbon
decomposition with nutrient dynamics (Manzoni and Por-
porato, 2007; Agren and Bosatta, 1998) and may be non-
linear (Manzoni and Porporato, 2007, 2009). Transforma-
tions in organic matter can also be described by a first-order
decay constant which decreases according to a function of
time (Janssen, 1984; Yang and Janssen, 2000; Bosatta, 1995).

The three types of models are similar. The multi-pool
model can be written in terms of the disordered kinetic model
when the continuous rate distribution is comprised of delta
functions (Forney and Rothman, 2012). The disordered ki-
netic model can be represented by a transformational model
when quality is preserved during transformation (Bosatta,
1995). When linear, transformational network models can
sometimes be mathematically represented by a multi-pool
model (Bolker et al., 1998). This simplification also occurs
when the timescale of transformation is short with respect
to the decay timescale of slowly degrading products (Forney
and Rothman, 2012).

Using the disordered kinetic approach, we have recently
found that plant matter decay is well described by a lognor-
mal distribution of decay rates (Forney and Rothman, 2012).
We also determined how the rate distribution and the two pa-
rameters of the lognormal are qualitatively related to climatic
and compositional variables (Forney and Rothman, 2012).

In this paper, we elaborate on the formation and imple-
mentation of the regularized inversion method that we em-
ployed to identify the best fitting rate distribution (Forney
and Rothman, 2012). To do so, we first consider a simpler
direct inversion of the data, which forms the basis for the reg-
ularization method. The direct inversion tends to find discrete
rate distributions with mass contained at only a few rates. In
this sense, the direct inversion is a new procedure for finding
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the best fitting multi-pool solution without needing to assume
how many pools are present. We use the resulting multi-pool
solutions to motivate the use of a regularized inverse. We
then describe the regularization method in detail and provide
an example of its implementation. Because the regularization
method identifies a common lognormal pattern (Forney and
Rothman, 2012), we also present a simple procedure for es-
timating the lognormal parameters from the decay data. This
procedure provides a more precise estimate of the best fitting
lognormal, resulting in slightly better fits to the data than the
regularized solution.

The remainder of the paper proceeds as follows: In Sect.2
we discretize the disordered kinetic model for numerical ma-
nipulation. In Sect.3 we calculate the model inverse. This
basic inversion easily and rapidly identifies the appropriate
multi-pool solution without prior assumption regarding the
number and type of pools. Later in that section we show that
the best fitting multi-pool solution is sensitive to noise in the
data as both the number and type of best fitting pools fluctu-
ate with the noise levels found in the data. Thus, in Sect.4
we address the noise sensitivity by employing a method of
regularization to invert the data and provide details of its im-
plementation. Finally, in Sect.5, we analyze litter decay data
by assuming rates are distributed lognormally and fit just the
two lognormal parameters to the data. Matlab codes for all
numerical procedures and approaches are provided online in
the Supplement.

2 The parallel model of decay

As organic matter is composed of many different com-
pounds, some are more resistant to degradation and break
down more slowly than others (Tenney and Waksman, 1929;
Burdige, 2006; Lutzow et al., 2006; Minderman, 1968; Berg
and McClaugherty, 2007). Substrate heterogeneity suggests
that degradation proceeds at different rates in parallel. This
heterogeneity can result in either a discrete or a continuous
distribution of decay rates.

We identify the best fitting rate distribution by inverting
a continuous parallel model of decay. In this model, the frac-
tion g(t) of original mass remaining is described by a con-
tinuous superposition of exponential decays (Boudreau and
Ruddick, 1991),

g(t) =

∞∫
0

p(k)e−ktdk (1)

where p(k) is the probability distribution of components
with ratek and

∫
∞

0 p(k)dk = 1. We have previously found
that litter decay rate distributions are well characterized by
a lognormalp(k), although other possible forms have been
hypothesized (Boudreau and Ruddick, 1991; Bolker et al.,
1998; Rothman and Forney, 2007; Feng, 2009b).

Mathematically, Eq. (1) is the Laplace transform ofp(k).
We obtain the distributionp(k) by taking the inverse Laplace
transform of the datag(t) (Forney and Rothman, 2012). To
do so, we transform the model to facilitate calculations. We
first make a change of variables fromk to lnk as we expect
to find a wide range of decay rates. Because probability is
conserved,p(k)dk = ρ(lnk)dlnk, and Eq. (1) becomes

g(t) =

∞∫
−∞

ρ(lnk)e−ktdlnk (2)

whereρ(lnk) is the probability distribution in lnk space.
To numerically calculateρ(lnk) we discretize equation

(2). Using the discretization discussed in AppendixA1,
Eq. (2) can then be written in matrix form as

g = Aρ. (3)

g is the vector of predicted time series data pointsgi = g(ti)

having lengthm. ρ is a vector of lengthn, representing the
average value ofρ(lnk) over a discrete interval1 lnk. A is
anm × n matrix representing the discrete Laplace transform
operator. See AppendixA1 for more details.

We proceed to identify the underlying rate distribution
ρ(lnk) from an observed decay time seriesĝ(t) by inverting
the model (Eq.3) and solving forρ.

3 Direct inversion with constraints

Our approach in this section directly calculates the inverse
Laplace transform of data with non-negative constraints. This
approach identifies a handful of separate and distinct pools
which are present during decay, having valuesρj > 0; the
remaining pools are not present and have valuesρj = 0. This
technique therefore provides a direct estimate of the best
fitting multi-pool model, expressed as a discrete distribu-
tion ρ(lnk). We find however that the multi-pool solution is
very sensitive to noise in the data and is overparametrized.
We therefore proceed in Sect.4 to refine this approach us-
ing a regularization technique to invert the data (Forney and
Rothman, 2012), providing a continuous rate distribution
ρ(lnk) which is both simpler and less sensitive to noise.

3.1 Calculating the constrained direct inverse

The distributionρ can be directly calculated by computing
the inverse of (Eq.3) from the measured decay dataĝ which
includes the first data point̂g1 = 1 att1 = 0,

ρ = A−1ĝ. (4)

Because solutions to Eq. (4) fit the noisy data exactly, neg-
ative values ofρj are possible. In order to find solutions
with non-negativeρi , we instead solve the constrained least
squares problem

min
ρ

‖Aρ − ĝ‖
2 (5)
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Fig. 1. Inverse Laplace transform of a LIDET dataset.(A) Decay
datag indicating the mass fraction remaining of a single litter type at
one location in the LIDET study. In this case, the litter is a leaf of the
species Drypetes Glauca decaying at Alaska’s Arctic Lakes. Line is
the fit to the data corresponding to the distributionρ(lnk) shown in
(B). (B) Distributionρ(lnk) obtained by numerical inversion of the
dataĝ using the constrained non-negative least squares algorithm.

such that

ρj > 0 (6)
n∑

j=1

A1jρj = 1, (7)

where‖x‖ ≡

√∑
x2
i is the norm of vectorx. The elements

A1j corresponds tot1 = 0 and constraint Eq. (7) ensures that
ρ is a probability distribution, which sums to one. We use
the Matlab functionlsqnonneg.m to calculate the non-
negative solution to the least squares problem (5). Constraint
(7) is met by weighing the first data point atg(0) = 1 more
heavily than the others. Details of the solver can be found in
AppendixA2.

We apply this method to data from the Long-Term Inter-
site Decomposition Experiment Team (LIDET) study (Gholz
et al., 2000; Harmon et al., 2009; Adair et al., 2008; Cur-
rie et al., 2010; Harmon, 2007). The LIDET study moni-
tored the decomposition of 27 different types of litter, in-
cluding needles, leaves, roots, wood, grass, and wheat dis-
tributed amongst 28 different locations across North Amer-
ica ranging from Alaskan tundra to Panamanian rainforests.
Litter was collected and then re-distributed in litter bags at
different sites in order to investigate the effect of composi-
tion, ecosystem, and climatic parameters on decomposition.
Litter bags were collected and analyzed each year for up to
ten years, with four replicates for each site, litter type, and
removal time. We call a data point the average mass fraction
remaining of all replicates of a given plant matter type, site,
and duration. A data set is the time series of all data points as-
sociated with a particular combination of litter type and site.
Bags at tropical and sub-tropical sites were more frequently
collected at three to six month intervals.

An example of a decay dataset is shown in Fig.1a. The
rate distributionρ corresponding to the solution of Eqs. (5–

7) is shown in Fig.1b. Three pools are associated with the
decay shown in Fig.1b: a very rapid pool, a moderately la-
bile pool, and an extremely slow pool. However, by varying
the search domain of decay rateskmin andkmax we find that
the slow pool always takes the smallest value,kmin, which
in this case is 10−6yr. This suggests that the pool atkmin
represents an inert or constant mass fraction. The fast pool
on the other hand is located atk = 38.5yr−1(1.4wk−1). The
amount remaining of this fast pool at the first measurement
t = 1 yr is e−38.5

= 1.9× 10−17, which is just past the dou-
ble precision limit of 16 significant figures. Therefore this
pool is numerically zero for every measured data point, and is
therefore indistinguishable from an instantaneous decay. The
inversion therefore suggests that this dataset contains three
types of pools: a rapid, instantaneous pool; an exponentially
decaying, active pool; and a constant, inert pool. Because the
inert and instantaneous pools do not have rates associated
with them, this dataset is described by three parameters.

Models with various combinations of active, inert and in-
stantaneous pools have been previously suggested to describe
litter decay (Harmon et al., 2009; Nieder and Benbi, 2008).
In 1945, Henin and Dupuis (Nieder and Benbi, 2008) sug-
gested using an inert pool to represent the transformation of
incoming carbon to stabilized soil carbon. However, because
the turnover time is the mean inverse rate〈k−1

〉 of each indi-
vidual pool (Feng, 2009b; Forney and Rothman, 2012), de-
composition models containing an inert pool have an infinite
turnover time and result in the unphysical situation where
soil organic matter grows indefinitely. These models require
additional parameters and heuristics to calculate an effective
rate of turnover (Currie et al., 2010; Harmon et al., 2009).

The direct inversion technique provides an approach for
identifying the simplest multi-pool solution which best fits
the data. It generally provides solutions consistent with fit-
ting different multi-pool models which contain various types
of pools and choosing the model having the least error. This
approach therefore gives a simple, direct estimate of the ap-
propriate multi-pool solution and answers the question “how
many pools?”. The multi-pool approach however exhibits
some serious shortcomings, which we discuss in the follow-
ing sections.

3.2 Analysis of the multi-pool solutions

We use the same inversion technique to find the best multi-
pool solution associated with 191 datasets chosen (Forney
and Rothman, 2012) from the LIDET study. We then deter-
mine whether pools are active, inert, or rapid as described
above. If any pool contains a mass fraction of less than
1 %, we neglect that pool as it requires additional model
parametrization but has a negligible effect on the residual
error. We distribute the mass of the small pool proportion-
ately amongst the remaining pools, as these pools may be
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Table 1.This table shows the wide and seemingly unpredictable variation in the types of pool models that best fit 191 LIDET datasets. Each
model was obtained by solving the non-negative least squares problem (5) and analyzing the resultingρ to determine whether the pools were
active (decaying exponentially), inert, or rapid, as discussed in the text. The first column lists the model type, the second column indicates
kinds of pools present in that model, the third column provides the formula for the model, the fourth column gives the total number of pools in
the model, the fifth column indicates the total number of parameters in the model, and the sixth column indicates how many LIDET datasets
are best fit by that model. The sizes of the constant, rapid, and active pools in the models arec, r, anda, respectively. The size of one of the
pools is determined by the others since mass fractions must sum to one.

Model Para- # Data-
type Type of pools Formula Pools meters sets

1 active e−kt 1 1 33
2 active, inert (1− c)e−kt

+ c 2 2 30
3 active, rapid (1− r)e−kt 2 2 37
4 active, inert, rapid (1− r − c)e−kt

+ c 3 3 25
5 2 active a e−k1t + (1− a)e−k2t 2 3 39
6 2 active, inert a e−k1t + (1− a − c)e−k2t + c 3 4 14
7 2 active, rapid a e−k1t + (1− a − r)e−k2t 3 4 10
8 2 active, inert, rapid a e−k1t + (1− a − r − c)e−k2t + c 4 5 3

artifacts due to noise.1 Table 1 shows the results of the in-
version and indicates that eight different types of multi-pool
models are needed to describe all 191 of these LIDET data
sets. 17 % of the datasets are described by one pool, 56 %
are described by two pools, and 27 % are described by three
or more pools. The maximum number of pools found was
four and all datasets are characterized by 5 or less parame-
ters. The data from Fig.1a are of type 4 in Table 1; 24 other
LIDET datasets also exhibit the same behavior. This infor-
mation can be used to determine some patterns underlying
litter decomposition. For example, we find that 29 % of all
datasets involving either needles or wood appear to decay
exponentially, while roots on the other hand decay exponen-
tially only for 2 % of their datasets. Roots tend to have 3 or
4 pools for 48 % of their datasets, while leaves, needles, and
wood each have 3 or 4 pools less than 25 % of the time. How-
ever, extracting further information from the inversion results
in order to determine which model and parameters are appro-
priate for different combinations of tissue types, substrates,
or environments is difficult if not impossible since there is
too much variation inρ and model type. Indeed this is one
of the shortcomings of the multi-pool model. It is too over-
parametrized to be useful in identifying fundamental consti-
tutive relations between composition and dynamics.

3.3 Sensitivity to noise

In this section we test the direct inversion method and eval-
uate the appropriateness of multi-pool models for describ-
ing noisy decay data. The standard shortcoming of a multi-
pool solution is its inherent sensitivity to noise in the data
ĝ (Kroeker and Henkelman, 1986; Kleinberg, 1996), as mod-
els with differing numbers of pools can well approximate one

1This occurred for only 7/191 datasets, 5 of which were two pool
models that became one pool models.

another to a high degree of accuracy (Yeramian and Claverie,
1987). We proceed to investigate the solution’s sensitivity to
noise levels present in litter decay data.

If we assume that the multi-pool model is correct, then the
line in Fig. 1a is the true decayg(t). We then estimate the
variance of the data noiseσ 2

ε by calculating its maximum
likelihood σ 2

ε =

∑
i
ĝ2

i /m (Konishi and Kitagawa, 2010),
assuming the noise is Gaussian with zero mean. We then gen-
erate numerical trials of decay data by adding Gaussian noise
of the same strength, in this caseσε = 0.024, to the predicted
decayg(t). Then, for each trial we recalculate the associated
inverse solutionρ. The results of the inversion of 60 000 nu-
merical trials is shown in Fig.2a–g. There is wide variation
in the active pools just due to the noise in the data. Figure2b
shows how the model type varies due to noise. The “true”
model, type 4, is only identified 39 % of the time. The other
LIDET datasets show similar results. These results highlight
why it is difficult to gain fundamental understanding of de-
composition processes from fitting a multi-pool model to the
data.

4 Regularized inversion method

Because the inverse Laplace transform Eq. (4) is sensitive
to noise in the data, it is ill-posed (Hansen, 1987, 1994). In
the previous section, we have demonstrated that the inverse
Laplace transform with non-negative constraints Eqs. (5–
7) is also ill-posed (Yeramian and Claverie, 1987) at the
level of noise present in our decay functionsg(t). There are
a number of approaches to solve the inverse Laplace trans-
form robustly without being sensitive to small changes in the
data. These include Laplace-Padé approximation (Yeramian
and Claverie, 1987), the phase function method (Zhou
and Zhuang, 2006), regularization (Hansen, 1994, 1987;
Istratov and Vyvenko, 1999; Press et al., 1992), and
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others (Istratov and Vyvenko, 1999). We choose regulariza-
tion because of its straightforward implementation. Regular-
ization is commonly applied elsewhere, for example in the
analysis of NMR spin relaxation (Lamanna, 2005) in bio-
logical tissue (Kroeker and Henkelman, 1986) and in porous
media (Gallegos and Smith, 1988; Kleinberg, 1996).

Like most other robust inverse Laplace transform meth-
ods, regularization works by determining the solution that, in
principle, fits the data without fitting the noise. This solution
represents a tradeoff between simplicity and accuracy. Here
we choose a specific type of regularization called Tikhonov
regularization (Hansen, 1994, 1987; Press et al., 1992) to cal-
culate a solution to the constrained inverse problem (Eqs.
5–7) because this method handles the constraints onρ(lnk)

well. The goal of Tikhonov regularization is to minimize both
the residual error and the complexity of the solutionρ(lnk).
Solution complexity is assumed to be associated with the
roughness, or the intensity of fluctuations, inρ(lnk). Here,
we measure roughness by the norm of the first derivative of
the solution vector,

∥∥∥∥dρ(lnk)

dlnk

∥∥∥∥=

(∑
i

(
ρi+1 − ρi

lnki+1 − lnki

)2
)1/2

= ‖Rρ‖, (8)

whereR is the bi-diagonal first derivative operator, with an
additional first row[1 0] and additional final row [0 −1] to
account forρ being zero outside the domainkmin < k < kmax.

The regularization method proceeds by finding the solu-
tion ρ(lnk) that minimizes a sum of the residual error and

the roughness:

min
ρ

‖ĝ− Aρ‖
2
+ ω‖Rρ‖

2, (9)

whereω is the regularization parameter which controls the
relative weight of the solution roughness to the residual er-
ror. Because it is unclear how much to weigh the roughness,
ω is typically varied many orders of magnitude fromω � 1,
which emphasizes the importance of residual error, toω � 1,
which emphasizes the smoothest solution. The regularized
ρ(lnk) is determined by identifying the value ofω that sets
an optimal balance between the residual error and the rough-
ness.

4.1 The L-curve

An approach for finding the optimalω is to use the “L-curve”
technique (Hansen, 1987, 1994). An L-curve is generated by
parametrically varyingω and solving Eq. (9) for ρ, obtain-
ing values for the residual error norm‖ĝ− Aρ‖ and rough-
ness norm‖Rρ‖ for each value ofω. The L-curve is made
by plotting ‖Rρ‖ vs. ‖ĝ− Aρ‖ on a log-scale, resulting in
a characteristic “L” shape. Figure3a shows the L-curve for
the dataset shown in Fig.1a.

While each point on the curve is associated with an op-
timal solution for a certain value ofω, the corner of the L-
curve is associated with the regularized solution. The corner
represents the point where increasing the information con-
tained in the solution no longer improves the residual error.
Solutions at the upper left of the L-curve contain high in-
formation asn elementsρj are free and independent (Pierce,
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Fig. 3.Determining the optimal value of regularization parameterω via the “L-curve” method (Hansen, 1994, 1987). Counterclockwise from
the upper left:(A) The “L-curve”,‖Rρ̂‖ vs.‖ĝ − Aρ̂‖. (B) The unregularized solution, similar to the solution found at the top of the curve,
where the regularization parameterω � 1. (C) The solution associated with the corner of the curve corresponding toω = 0.66. (D) The
solution at the corner of the curve corresponding toω = 20.1. (E) The datag(t) from the same LIDET dataset shown in Fig. 1a. The decay
predicted from the solutions inB,C,D is also plotted. The corner withω = 0.66 is chosen as the optimal solution since it predicts the data
with significantly less residual error and has no trend in the residual, unlike the corner havingω = 20.1 The optimal solution is associated
with a corner of the curve.

1980), whereas fewer modes are active in the smooth solution
at the corner. The corner is also the point where relatively lit-
tle decrease in information results in large increases in the
residual error. Often, the corner is associated with a change
in the number of maxima inρ(lnk); solutions above the cor-
ner may have more modes than solutions below.

Generally, the L-curve method identifies a smooth solution
which predicts a decay having a residual error approximately
equal to the noise in the dataset. Solutions for three different
values ofω are shown in Fig.3b–d with the unregularized
solution shown in Fig.3b. Decays predicted from these three
solutions are shown in Fig.3e.

When there are multiple corners, as shown in Fig.3a, the
optimal corner needs to be chosen. We apply the approach
discussed in AppendixA3 in order to choose the appropri-
ate corner in Fig.3a. The distribution corresponding to the
lower corner (Fig.3d) predicts a decay that has a large error
compared to the noise in the data and has a significant trend
in the residual error as seen in Fig.3e. However, the distri-
bution corresponding to the higher corner (Fig.3c) predicts
a decay which is hardly distinguishable from the decay pre-
dicted by the unregularized solution, shown in green, after

t = 1. Therefore, the distribution shown in Fig.3c is consid-
ered the optimal, regularized solution.

4.2 Results of regularization

Figure 4 shows the overall variation in the inversions due
to noise by summing all 60 000 multi-pool solutions from
Fig. 2a–g. We also plot the solutionρ(lnk) from the regular-
ized inversion. The regularization provides a simpler solution
that captures the variation of the rate heterogeneity associ-
ated with uncertainty of the multi-pool solutions.

More specifically, we find that this heterogeneity takes
a certain form: the regularized solution presented in Fig.3c
appears lognormal, i.e. Gaussian in lnk space. We have
shown in a separate publication (Forney and Rothman, 2012)
that the entire LIDET dataset is lognormal on average. This
lognormal description is considerably simpler than the multi-
pool approach as the rate heterogeneity and all dynamic in-
formation are now contained within just two parameters,
a meanµ and a varianceσ 2 of the order of magnitude of
decay rates. This approach also emphasizes the view that the
quality of litter and young soil organic matter quality is con-
tinuously distributed.
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5 Fitting lognormal parameters to decay data

The ubiquity of the the lognormal distribution suggests that
litter decay can be well described by the two lognormal pa-
rameters,µ and σ . In this section, we assume a model of
lognormally distributed rates and present a procedure to es-
timate the values of the mean of log rates,µ, and standard
deviation of log rates,σ , associated with a decay dataset. We
then compare its results to the results of the regularized in-
version.

We proceed by substituting the Gaussian distribution,

ρ(lnk;µ,σ) =
1

√
2πσ

e−(lnk−µ)2/2σ2
, (10)

for ρ(lnk) in Eq. (2), providing a prediction of the mass frac-
tion g(t) remaining when decay rates are lognormally dis-
tributed.g(t) as a function of the parametersµ andσ is

g(t) =

∞∫
−∞

1
√

2πσ
e−(lnk−µ)2/2σ2

e−ktdlnk. (11)

We then identify the values ofµ andσ which best fit the data
by solving the non-linear least squares minimization problem

min
µ,σ

n∑
i=1

(
ĝi − g(t)

)2
, (12)

whereĝi are the measured data points andg(t) is the decay
predicted from Eq. (11). We solve Eq. (12) using Matlab’s
non-linear least squares solvernlinfit.m . This is repeated
for all 191 LIDET datasets that are appropriately described
by a superposition of exponential decays (Forney and Roth-
man, 2012).

Figure 5 shows a comparison of the residual error as-
sociated with the three different approaches: direct inver-
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Fig. 5. Comparison of root mean square error (RMSE) associated
with the three different parameter estimation procedures. For each
one, the RMSE of the predicted decay is calculated for 191 LIDET
data sets. They-axis shows the number of datasets having an RMSE
smaller than the value of RMSE on thex-axis. Shown are the RMSE
of the unregularized multi-pool solution (green), regularized solu-
tion (blue), and two-parameter nonlinear fit (magenta).

sion (Eqs.5–7), regularized inversion Eq. (9), and the two-
parameter fit Eq. (12). The root mean square error (RMSE)
of the fit to the data is calculated for each dataset and the
cumulative density function of the RMSE rescaled by the
total number of datasets (191) is plotted; the vertical axis
shows the number of datasets having an RMSE smaller than
the value on the horizontal-axis. The RMSE of the unreg-
ularized inversion technique (green) is clearly smaller than
that of the other two techniques, but these solutions suffer
from the problems discussed in Sect.3.3. Mean RMSE val-
ues for all 191 datasets are 0.048, 0.053, and 0.052 for the
direct inversion, regularized inversion, and lognormal model,
respectively. Surprisingly, solutions from the two-parameter
fit (magenta) appear to have slightly smaller residual error
than solutions identified from the regularization technique
(blue). Thirty-two of the datasets are predicted by both the
two-parameter fit and regularization method to have a sin-
gle rate; the two-parameter lognormal model however pre-
dicts the decay from 126 of the remaining 159 datasets bet-
ter than the distribution obtained by regularization. There-
fore, the lognormal model fits the data equally or better than
the regularized solution for 158/191 or 83 % of the datasets.
This is unexpected because the lognormal model has only
two degrees of freedom. The marginally poorer fit of the reg-
ularization method is due to the emphasis of the method on
smoother (wider) solutions. We proceed to investigate this
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ized distributionρ. (A) the mean〈lnk〉 of ρ(lnk) vs. µ. (B) the
standard deviation ofρ(lnk) vs.σ .

effect by comparing the fitted parametersσ to the standard
deviation of the regularized inversionsρ(lnk).

Figure6 compares the fitted valuesµ andσ to the mean,
〈lnk〉, and standard deviation

√
〈(lnk − 〈lnk〉)2〉 associated

with the regularized solutionsρ. Figure6a shows that values
of µ and the mean of the inversionρ(lnk) are consistent with
one another. There is a departure at high〈lnk〉 because some
of these inversions are bi-modal: one mode is active whereas
the other mode is distributed over extremely fast rates associ-
ated with instantaneous decays. These bi-modal datasets are
effectively described by an instantaneous mass loss followed
by decay that proceeds with a distribution of rates. Figure6b,
on the other hand, tells another story. Values ofσ tend to be
less than the standard deviation ofρ(lnk), indicating that the
regularized solution is wider than the best fitting lognormal
distribution. This is a consequence of weighing the solution
roughness during regularization. A narrower lognormal so-
lution with smaller residual error exists, but the weight of
the roughness is large enough that the regularization method
chooses a slightly wider solution that fits the data almost as
well. Collectively, Figs.5 and6b indicate that when rates are
heterogeneous, the transition from unimodal to multimodal
solutions near the corner of the L-curve occurs before find-
ing the unimodal solution with the smallest residual error.

These results indicate that the regularization method is
useful for identifying general trends and shapes of solutions.
If regularization suggests that rate distributions are lognor-
mal, then fittingµ andσ to the data identifies more precisely
the specific lognormal distribution that best fits the data.

6 Conclusions

Direct calculation of the inverse Laplace transform with
a non-negativity constraint provides the best fitting multi-
pool solution without specification of the number of pools
a priori. However, this multi-pool solution is very sensitive
to small changes in the decay functiong(t) (Yeramian and
Claverie, 1987), as the number of pools and the rates of each

pool vary widely due to the level of noise associated with
litter bag data. The regularization method described here is
robust to noise and commonly indicates that a lognormal dis-
tribution provides a concise representation of the rates as-
sociated with decay data. If the lognormal distribution may
be assumed, a marginally better fit to the data is found by
directly estimating the lognormal parametersµ andσ from
the decayg(t). However, we cannot recommend applying the
lognormal model without first using the regularization proce-
dure.

Matlab codes for all numerical procedures (direct inver-
sion, multi-pool estimation, regularized inversion, and the
two-parameter fitting procedure) are provided online in the
Supplement.

Appendix A

A1 Discretizing the Laplace transform

Various methods can be used to discretize Eq. (2), such as
quadrature (Lamanna, 2005; Hansen, 1994), linear or log-
spaced discretization. Here, we choose to discretize (2) at
n nodesλj spaced uniformly along the lnk axis between
the limits lnkmin < lnk < lnkmax. The nodes are therefore
spaced at intervals of width

1λ =
lnkmax− lnkmin

n
. (A1)

This discretization is chosen in order to provide resolution
over the appropriate wide range ofk. 2 Eq. (2) can then be
written in matrix form as

g = Aρ. (A2)

ρ is a vector of lengthn, representing the average value of
ρ(lnk) over an interval1λ, centered atλj ,

ρj =
1

1λ

λj +
1
21λ∫

λj −
1
21λ

ρ(lnk)dlnk. (A3)

Them×n matrixA is the discrete Laplace transform operator
with elements

Aij = ee
λj ti 1λ. (A4)

g is the vector of predicted time series data pointsgi = g(ti)

having lengthm.

2While the domain of the inverse Laplace transform is infi-
nite, we find that for litter decay data, the tails of the distribu-
tions vanish numerically and that the distribution is typically con-
tained between 10−6yr−1 < k < 104yr−1. We therefore set the val-
ueskmax= 104yr−1 and kmin = 10−6yr−1. We choose the num-
ber of discretization steps,n, to provide a reasonable resolution
of ρ(lnk) without being computationally burdensome.n ≈ 100 or
n = 16m was satisfactory.

www.biogeosciences.net/9/3601/2012/ Biogeosciences, 9, 3601–3612, 2012



3610 D. C. Forney and D. H. Rothman: Inverse method for estimating respiration rates

A2 Details of Matlab solver

The Matlab functionlsqnonneg.m employs Lagrange
multipliers (Strang, 1986) to calculate the non-negative so-
lution to the least squares problem (5). Constraint (7) is met
by weighing the first data point atg(0) = 1 more heavily than
the others, although an additional Lagrange multiplier could
be used. Becausem < n, A is underdetermined and has rank
m. In Matlab 2008a and older, the functionlsqnonneg.m
uses the algorithmmldivide.m (Mathworks, 2009) to cal-
culateA−1ĝ. This algorithm utilizes a rank-revealing QR fac-
torization with column pivoting which calculatesρ only from
the m most linearly independent orthogonal components of
A. As a result, it returns at mostm non-zero components in
the vectorρ. In newer versions of Matlab,lsqnonneg.m
uses the pseudo-inverse,pinv.m (Mathworks, 2011) to cal-
culate A−1ĝ. The pseudo-inverse identifies the solutionρ

with minimum norm. For our problem, we find that results
from both the newer and older versions oflsqnonneg.m
are the same.

A3 Procedure for choosing the corner of the L-curve

When there are multiple corners, as shown in Fig.3a, one
corner is typically more appropriate than the others. We use
the following method to identify the corner associated with
the simplest solution:

1. For each value ofω, calculate the rank correla-
tion (Kendall and Gibbons, 1990) of the residual error
and the correspondingP value.

2. Identify the region of the L-curve where the rank corre-
lation of solutions haveP > 0.1, suggesting no signifi-
cant trend in the residual.

3. Choose the corner within the region of the L-curve hav-
ing P > 0.1.

4. If a corner seems too rounded or undefined, the L-curve
can also be plotted on linear‖Aρ − ĝ‖ and‖Rρ‖ axes.
The corner collapses onto a much tighter volume in lin-
ear space and can sometimes be more readily chosen if
the corner in log space has large curvature.

5. If there are multiple corners withP > 0.1, compare
more closely the residual trend in all corners, as val-
uesP > 0.1 do not necessarily indicate a lack of trend
in the residual. If there is a noticeable difference in the
quality of the fit associated with each corner, choose the
corner that does not appear to have a trend in the resid-
ual. An additional test is to look at the error bias. Here,
the error bias is simply the sum of residual error divided

by the error norm,|
∑

(Aρ−ĝ)|

‖Aρ−ĝ‖
. Experience with this data

suggests choosing solutions with error bias< .25. If
multiple corners still have a bias< .25 and a similar

strength in trend in their residual error, choose the cor-
ner with lowest roughness. Usually the corner having
lower residual error and higher roughness tends to be
not biased and to have no trend in the residual.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
3601/2012/bg-9-3601-2012-supplement.zip.
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