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Abstract. Pyrogenic carbon (PyC), the residue of an incom-
plete combustion of biomass, is considered as a carbon (C)
sink due to its assumed stability in soil. PyC turnover time es-
timated using two modelling approaches, based on data from
16 published studies (n = 54) on PyC degradation, ranged
from a decadal to centennial time scale, varying with initial
biomass type, pyrolysis temperature, and incubation or field
study. The average turnover time using a one-pool approach
was 88 y, and the best estimate using a two-pool approach
was 3 y for a fast-cycling pool and 870 y for a slow-cycling
pool. Based on this meta-analysis, PyC cannot be assumed to
persist in soils for thousands of years, and its use as a strategy
for offsetting carbon emissions requires prudence and further
research.

1 Introduction

Wildfires transfer approximately 0.05 to 0.2 Pg C yr−1 to soil
(Seiler and Crutzen, 1980; Kuhlbusch, 1998) as incomplete
combustion residue of biomass, known as pyrogenic carbon
(PyC) (Goldberg, 1985). Climate change is projected to in-
crease wildfire frequency in many parts of the world (Flan-
nigan et al., 2006), which could modify the input of PyC and
consequently the terrestrial carbon cycle (Westerling et al.,
2006). PyC is ubiquitous in the environment and ranges from
2 % to 45 % of the total soil organic carbon (SOC) in terres-
trial systems (Bird et al., 1999; Schmidt et al., 1999; Skjem-
stad et al., 2002; Lehmann et al., 2008). Some researchers
suggest that PyC forms a slow-cycling C pool in the soil (Pre-
ston and Schmidt, 2006; Marschner, 2008). If so, conversion
of plant biomass to PyC would represent a transfer of faster-
cycling biomass-C to slower-cycling C in soils (Ohlson et al.,
2009) and is therefore expected to act as a C sink (Seifritz,

1993; Marris, 2006). In the last decade, PyC has gained inter-
est as a strategy for sequestering atmospheric CO2 to partly
offset carbon emissions (Lehmann et al., 2006).

The ability of PyC to act as a carbon sink depends on its
persistence in the soil. PyC is widely considered to be rela-
tively “inert” (Forbes et al., 2006) because PyC has been pre-
served in geological samples or strata (Forbes et al., 2006),
archaeological sites (Schmid et al., 2002; Glaser, 2007), and
old anthropogenic soils (Glaser et al., 2000; Knicker, 2011;
Glaser and Birk, 2012). Moreover, in some experiments, PyC
was resistant to chemical oxidants (Skjemstad et al., 1996)
and contributed to the oldest soil organic carbon (SOC) pool
in some Australian soils (Krull et al., 2006). Based on the
14C age of PyC macro-pieces/charcoal (Pessenda et al., 2001;
Schmidt et al., 2002) and budget calculations (Forbes et al.,
2006), PyC age in soil has been estimated to be on the scale
of hundreds to ten thousand years (Liang et al., 2008). The
limitation of using radiocarbon age to estimate turnover time
is that we rarely have knowledge of the input rate (or, for
isolated systems, initial stock when the radiocarbon “clock”
started), which would be needed to estimate turnover times.

Recent studies, however, observe transformation and min-
eralization of PyC over weeks to yearly timescales (Hamer et
al., 2004; Bruun et al., 2008; Hilscher et al., 2009; Hilscher
and Knicker, 2011) and significant losses of PyC from the
soil profile in long-term field studies (Bird et al., 1999;
Hammes et al., 2008b; Nguyen et al., 2008). PyC is presumed
to degrade physically (Carcaillet and Talon, 1996; Carcaillet,
2001; Lehmann et al., 2003; Hammes and Schmidt, 2009)
and chemically by abiotic (Lehmann et al., 2005; Cheng et
al., 2006; Hockaday et al., 2006) and/or microbial agents
(Potter, 1908; Shneour, 1966; Goldberg, 1985). Incubations
have identified abiotic (Cheng et al., 2006) and biotic oxida-
tion processes (Potter, 1908; Hamer et al., 2004; Kuzyakov
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et al., 2009; Zimmerman, 2010) as important mechanisms of
PyC degradation. Turnover times of PyC reported in most of
these experimental studies ranged between a hundred and a
thousand years.

These recent observations contradict the perception that
PyC persists in soil for millenia. The uncertainty in PyC
persistence is accompanied by a basic lack of understand-
ing about PyC dynamics in soil. Spokas (2010) observed an
increase in stability of PyC with a decrease in the O: C mo-
lar ratio of PyC. However, the correlation between half life of
PyC and the O: C molar ratio was based on different method-
ological approaches to estimate the mean residence time of
PyC. Therefore, to reconcile the apparent discrepancies be-
tween assumed persistence of PyC based on radiocarbon age
and fairly rapid degradation of PyC as observed in exper-
iments, we assembled data from published studies on PyC
losses from soil and, for the first time, calculated turnover
times within and across all studies with one consistent ap-
proach.

2 Materials and methods

2.1 Data set collection from the literature

We compiled data from published studies (n = 54 data sets
from 16 studies, Supplement Table 2) on PyC degradation.
We investigated turnover times of PyC using two previously
published models to describe PyC decomposition and/or soil
organic matter dynamics (Supplement Table 1). These mod-
els should be seen as a way of approximating characteris-
tic time constants rather than quantifying the exact dynamics
(Burnham and Anderson, 2002).

2.2 One-pool approach

In the first approach, we used a one-pool exponential decay
model in which PyC is modelled as a single homogeneous C
pool and assumed to follow first-order kinetics (Brodowski,
2005; Cheng et al., 2008b; Hammes et al., 2008b; Nguyen
et al., 2008). We assumed that there were no new PyC in-
puts between time = 0 and time =t (in years). We calculated
the decay rate from the total loss of PyC (sum of all loss
processes including leaching, erosion, mineralization, and/or
decomposition) relative to the initial stock, to estimate the
turnover time of PyC in the soil with respect to all loss path-
ways of PyC from the soil to other terrestrial pools or from
the terrestrial ecosystem.

Based on these assumptions, the decay ratek is calculated
from the loss of PyC over time as follows:

Ct = C0e
−kt (1)

whereCt is the remaining stock after timet , C0 is the initial
stock of PyC (att = 0), andk is the decay rate (y−1). The
turnover timeτ is calculated asτ = 1/k.

For the one-pool approach, we calculated turnover times
based on two data points for each study, the initial stock
of PyC and final PyC remaining at the end of the experi-
ment, using Eq. (1). Most studies had only two data points,
and the intermediate points that were reported in a few stud-
ies (Hamer et al., 2004; Brodowski, 2005; Kuzyakov et al.,
2009) were not included for consistency. Further, the com-
piled data set (n = 54) was used to generate a time series
stock of PyC (with initial stock at timet = 0 being 100 %
and the last point of each study corresponding to remaining
stock at timet in the time series). The one-pool model was
fit by constrained non-linear regression, using the chi-square
minimization in the IBM SPSS statistics software package
for the Mac.

2.3 Two-pool approach

In the second approach, PyC decomposition dynamics were
calculated using a two-pool exponential model (Hamer et al.,
2004; Hilscher et al., 2009; Kuzyakov et al., 2009; Major
et al., 2009; Hilscher and Knicker, 2011).The first pool con-
sisted of PyC with a rapid decay rate,kfast, while the second
pool was comprised of slowly cycling PyC and was char-
acterized by a slow decay rate,kslow. We assumed that the
pools decayed in parallel – in other words that there was no
exchange of PyC between pools. Thus,

Ct = xe(−kfastt) + (1− x)e(−kslowt) (2)

whereCt is the remaining stock after timet ; x is the propor-
tion of initial stock in the fast-cycling PyC pool (att = 0),
Cfast; (1−x) is the proportion of the slow-cycling pool (att =

0), Cslow; kfast andkslow are decay rate constants (year−1).
Accordingly, the turnover time for the fast-cycling pool

τfast (y) is 1/kfast and for the slow-cycling poolτslow (y) is
1/kslow.

The two-pool model was fitted to the compiled data set
(n = 54) (with the initial stock at timet = 0 and stock at
the last point for each study corresponding to the time se-
ries decrease in initial stock with time) using the constrained
non-linear parameter estimation procedures in the IBM SPSS
statistics software package for the Mac. The curve-fitting
values were iterative and required initial starting values. To
avoid errors due to convergence to local minima of the resid-
ual sum of squares (RSS), we adopted convergence criteria as
used by Updegraff (Updegraff et al., 1995), where final pa-
rameter estimates were accepted only if equations converged
to the same values given starting values up to 50 % above and
below them. The explained variance for the two-pool model
is given in Supplement Table 3.

2.4 Assumptions

First, for the one-pool decay model, we accepted the sim-
plification to one homogeneous pool, because the small
amount of PyC lost within the first days suggested that the
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Fig. 1.Parameter estimates for the one-pool exponential and the two-pool exponential model.

fast-cycling pool of PyC in most studies represented only
a minor part of the whole and hence the single-pool model
may be adequate to capture the bulk dynamics (Derrien and
Amelung, 2011). Moreover, the assumption of one pool al-
lowed us to compute and compare turnover times of PyC de-
spite the differences in types of PyC, experimental setup, or
analytical method employed in various studies. Further, this
assumption was based on “analytical homogeneity” rather
than on a “compositional homogeneity”, as most studies
measure a fraction of the biomass combustion continuum
comprised in the mid to high temperature range. Second,
first-order kinetics, meaning that the rate of mass loss is a
constant proportion of mass, is a simple and robust formula-
tion that is commonly used to describe the turnover of SOM
(soil organic matter)(Parton et al., 1988). Third, the assump-

tion of no new PyC inputs is justified because the incubation
studies were set up in that way, and the field experiments
were chosen where inputs had been low (although quantified
poorly or not at all) after the initial sample collection. Finally,
although the model yields turnover based on all loss mecha-
nisms, we use this as a proxy for PyC decay rates, because
the compiled data mostly consist of incubation studies where
other loss mechanisms like erosion and leaching were lim-
ited. PyC losses by leaching do exist but are small (Abiven
et al., 2011). However, erosion could be an important fac-
tor in field studies with steep slopes, as shown in Rumpel et
al. (2006). However, in the field studies included in this work,
erosion is probably very small – for example, in the Cher-
nozem plains (Vasilyeva et al., 2011; Hammes et al., 2008b)
and the western Kenyan plateau region (Nguyen et al., 2008).
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Fig. 2. PyC has an average turnover time of 88 years and ranges from<1 y to 750 y based on first-order decay model. Turnover time
calculated using first-order decay vs. duration of experiment (left). The empty symbol represents incubation studies, filled symbol represents
field-based studies, circles correspond to grass PyC, squares correspond to wood PyC, colour represents sand (blue) and soil (red) medium,
the numbers represent temperature of pyrolysis: (1) for<400◦C and (2) for≥400◦C. There is a weak relation between experiment duration
and individual turnover time (r2

= 0.49), showing experiment duration is not the only factor influencing turnover time. Box plot of individual
turnover time for each study (right), where filled black circles are outliers beyond 5th or 95th percentiles.

Therefore, the data set is restricted to those studies where
(1) the initial inputs and stock were known or could be es-
timated; (2) the initial stock decreased or remained constant
with time; and (3) the experimental setup included terrestrial
systems.

3 Results and discussion

3.1 Turnover time of PyC for combined dataset

The turnover time computed for each study using Eq. (1)
ranged from<1 to 750 y and yielded an average value of
88 y (with standard deviation as 131 y and standard error of
mean as 18). The large standard error represents a large varia-
tion in the experimental studies. The overall turnover time of
PyC computed with the one-pool decay model using model
fit by non-linear regression and chi square minimization was
291 y (r2

= 0.32, n = 54, root mean square error = 10.13).
The turnover time computed with the two-pool model was
3 y for the fast-cycling pool (Cfast = 17 %) and 870 y for
the slow-cycling pool (Cslow = 83 %) of PyC (r2

= 0.44,
root mean square error = 8.35). The two-pool model gave a
slightly better fit to the data than did the one-pool model
(Fig. 1).

The calculated turnover times are much shorter than pre-
viously assumed or estimated to date. The higher number
of short-term studies in the compiled data set, which mainly
capture the fast-cycling dynamics, could influence the over-
all calculated turnover time to a faster value. Although hav-
ing faster decay than previously thought, the overall turnover
times suggest that PyC is more stable than all known plant-
derived organic compound classes in soil, based on low-level

13C labelling experiments (Amelung et al., 2008; Glaser,
2005).

3.2 Turnover time of PyC as a function of different
factors

We observed a high scatter in the turnover times between
different studies (ranged from<1 to 750 years) (Fig. 2). For
instance, Brodowski (2005) observed 16–22 % PyC degrada-
tion in 104 weeks of incubation study (yielding a turnover
time of 8 years), while Shindo (1991) observed no decom-
position of grassland plant PyC in volcanic ash soil for 40
weeks of incubation. This scatter can be partly explained by
the different experimental approaches among studies; for in-
stance, a major difference is the experiment duration. Most
PyC incubation studies lasted for a few months to a year and
were potentially biased towards shorter turnover times (Der-
rien and Amelung, 2011).

Other factors can also be identified. Edaphic factors in-
fluence the decomposition rate of SOM (Trumbore, 2000)
and could influence PyC turnover. Additionally, the types of
biomass used to make PyC (Franklin, 1951), pyrolysis tem-
perature (Schneider et al., 2010), pyrolysis conditions (e.g.
inclusion or exclusion of air), and non-edaphic environmen-
tal conditions (Cheng et al., 2008a) may affect PyC turnover
in soil.

We grouped the data to see whether these factors in-
fluenced turnover times when all other factors were al-
lowed to vary, namely (1) incubation vs. field studies;
(2) type of biomass (grass vs. wood); (3) pyrolysis temper-
ature (<400◦C and≥400◦C); and (4) quartz sand vs. soil
medium (Fig. 3). Data were not grouped by other factors
that control SOM decomposition – like climate, degree of
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Fig. 3. Pyrogenic stock expressed as percentage of the initial from the data reported in literatures. Circles represent all data points and solid
circles represent the grouped data set, namely(a) incubation study,(b) field study,(c) grass PyC,(d) wood PyC,(e) pyrolysis temperature
<400◦C, (f) pyrolysis temperature≥400◦C, (g) sand medium and(h) soil medium. The time is expressed in years (log scale). The box
plot (right) of turnover time of each variable(i)–(l), where squares are outliers beyond 5th or 95th percentiles and numbers denote average
turnover time. The calculated turnover time varies from decades to century.

soil development, soil types, topography, and biota – because
they were either not reported or were kept constant in most
studies. We computed individual turnover times for each data
set (n = 54) using Eq. (1) and computed the range, aver-
age, and variation of turnover times associated with each of
the above-mentioned factors. To avoid the effect of the dif-
ferences due to time scale, we only considered incubation
studies and therefore used Eq. (1) for the grouped data. For
comparison between incubation studies and long-term field
studies, we also computed turnover time using Eq. (2) for
the long-term field study to take into account the slowing
down of the mineralization rate with time. The turnover times
of grouped factors were compared using a non-parametric
Wilcoxon rank sum test. Interactions between factors on the
compiled data were evaluated by multi-way ANOVA using
R software (supplementary Table 3). Our analysis shows that
we do not have any significant interactions between the fac-

tors. Therefore, the unbalanced design of the grouped data
does not introduce any significant error in the interpretation,
and we can evaluate the differences in turnover times associ-
ated with these different factors.

3.2.1 Incubation vs. field study

Incubation studies have significantly (p < 0.001) shorter
turnover times (average 55 y; range 1–180 y) than field-based
studies (average 353 years; ranges from 90 to 750 years),
computed using the one-pool decay model, Eq. (1) (Fig. 3).
Short-term decay studies may primarily capture the rapid
initial loss of more labile or/and non-charred components,
and therefore may not be a good indication of the long-
term degradation rates. The two-pool model partly solves this
problem, but we had insufficient information to parameterize
this model for individual studies; the two-pool model results
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reported above were generated with the combined dataset.
The turnover time computed on a combined data set for in-
cubation studies (n = 47) using the two-pool model approach
showed a low value for regression (r2

= 0.16); hence it is not
reported here (Supplement Fig. 1). These possible explana-
tions for the short turnover time in incubations also pertain to
short-term field experiments (Major et al., 2009). Incubation
studies were conducted with fine-sized PyC (Hamer et al.,
2004; Major et al., 2009; Nocentini et al., 2010b) at higher or
constant room temperature and field capacity moisture con-
tent (Baldock and Smernik, 2002; Hilscher et al., 2009; Zim-
merman, 2010), which partly explains the accelerated degra-
dation rates and the faster turnover time (Nocentini et al.,
2010a).

Long-term field studies provide a more realistic estimation
of in situ turnover time of PyC, which not only includes the
rapid initial phase but also the phase when the mineralization
rate decreases with time. We took advantage of published
data from long-term field studies to estimate the turnover
time for PyC in situ. It was, however, not possible to conduct
a straightforward mass balance for the multi-year field stud-
ies, because few of these had data on initial PyC stock and the
rate of atmospheric deposition of PyC throughout each study
was unknown. The turnover time derived by analysing all
the data from long-term field studies (n = 6) using the two-
pool model was 91 y for the fast-cycling pool and 1034 y for
the slow-cycling pool, with 49 % in the fast pool (r2

= 0.51)
(Supplement Fig. 1). Thus, long-term field data indicate that
a significant fraction of PyC turns over on roughly centennial
scale, which is shorter than previously assumed or estimated
(Lehmann et al., 2008; Liang et al., 2008; Kuzyakov et al.,
2009). At present, little is known about the underlying mech-
anisms of PyC degradation on longer time scales. Decom-
position under field conditions may be enhanced by freeze–
thaw cycles (Carcaillet, 2001), root growth (Carcaillet and
Talon, 1996; Lehmann et al., 2003), fungal hyphae (Hammes
and Schmidt, 2009), soil fauna (Ponge et al., 2006), and ero-
sion that exposes PyC to biological and chemical degrada-
tion.

3.2.2 Initial biomass type

There were two types of initial biomass in the studies we
used that were representative for grassland and forest ecosys-
tems, namely grass and wood (Fig. 3). Grass PyC turned over
(average 37 y, range 2–170 y) significantly faster (p < 0.05)
than wood PyC (average turnover time = 79 y, range 2–181 y)
in the incubation studies. This is consistent with a previous
observation of faster oxidation of grass PyC as compared to
wood, possibly reflecting differences in their chemical struc-
ture (Nguyen and Lehmann, 2009). Fourier Transformed In-
fra Red (FTIR) spectra of grass and wood PyC produced at
the same temperature (Keiluweit et al., 2010) show differ-
ences in the physical architecture and molecular composi-
tion of PyC produced. Knicker et al. (2008) proposed that

a significant amount of grass-derived PyC consists of N-
heteroaromatic carbon, with the average cluster size of the
aromatic units smaller than six rings. In general, this would
be consistent with the view that a lignocelluloses-rich sub-
strate like wood is transformed by charring into a more aro-
matic structure than is the thermally labile hemicellulosic
structure of grass (Czimczik et al., 2002). If true, grass PyC
would probably be easier to degrade as compared to wood
PyC. The influence of initial biomass on chemical struc-
ture diminishes with increasing pyrolysis temperature of PyC
(Schneider et al., 2011). Therefore, the chemical and physical
structure of PyC is not directly correlated with or predicable
by the structure of the plant substrate for charring.

3.2.3 Pyrolysis temperature

The pyrolysis condition under which PyC is formed also
determines its chemical and physical properties and possi-
bly its turnover times. In natural environments, it is unlikely
that any one set of formation conditions can be viewed as
typical (Brown et al., 2006) and PyC formed during wild-
fire varies significantly depending on formation conditions
(Schmidt and Noack, 2000). In recent years, considerable ef-
fort has been expended to characterize PyC produced nat-
urally (Kuhlbusch, 1995; Otto et al., 2006; Smernik et al.,
2006; Kaal et al., 2008; Lehmann et al., 2005) and under
controlled conditions (Shindo, 1991; Pastorova et al., 1993,
1994; Nishimiya et al., 1998; Hammes et al., 2008a; Cheng
and Lehmann, 2009; Keiluweit et al., 2010; Schneider et al.,
2010; Zimmerman, 2010). These studies often describe PyC
as a continuum from partially charred plant materials to char-
coal to soot (Preston and Schmidt, 2006); however, the basic
structure of PyC remains similar and consists of condensed
aromatic clusters. It has been observed that high tempera-
tures of pyrolysis and thermal ramping rates have major ef-
fects on char properties (Mackay and Roberts, 1982; Byrne,
1996; Lewis, 1999; Kercher and Nagle, 2003) and degree
of condensation (McBeath and Smernik, 2009; Schneider et
al., 2010). Therefore, in this review we analyse the effect of
PyC produced at lower temperature and higher temperature
on turnover times, rather than the effect of wildfire PyC and
laboratory-produced PyC on turnover times.

We chose 400◦C as temperature threshold based on PyC
thermosequence studies (Keiluweit et al., 2010; Schneider
et al., 2010), which showed maximum modification in PyC
structure around 400◦C. Pyrolysis temperature data were
only available for incubation-based studies. Turnover time
was significantly shorter (p < 0.05) for low temperature,
<400◦C (average turnover time = 25 y, range 2–82 y), than
PyC formed at high temperature,≥400◦C (average turnover
time = 81 y, range 2–181 y). Lower-temperature PyC may
contain more uncharred material in the initial biomass (Zim-
merman, 2010), which may be comparatively more labile
than charred biomass and thus results in a faster turnover
time. Moreover, PyC formed at lower temperature can have
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greater internal microporosity (Hammes et al., 2008a), allow-
ing easier access to oxidizing agents like water or microbes
that facilitate degradation. The degree of condensation in-
creases with higher pyrolysis temperature (Nishimiya et al.,
1998; Baldock and Smernik, 2002; McBeath and Smernik,
2009; Schneider et al., 2010) and this could explain the
slower turnover of high-temperature PyC.

3.2.4 Quartz sand and soil medium

Most incubation studies used either quartz sand with micro-
bial inoculum or fresh soil, and all field studies took place
in soil. As a consequence, we only used incubation studies
to compare turnover times by medium. PyC has a shorter
turnover time in soil (average = 23 y, range 2–109 y) than
in quartz sand (average = 73 y, range 2–181 y). Quartz sand
probably has a higher permeability and oxygen level than
soil (Zimmerman, 2010), whereas soil as a medium should
yield more realistic values because (among other reasons) it
holds a larger range of microbial populations than that af-
forded by a microbial inoculum (Riis et al., 1998). The faster
turnover time in soil may reflect the role of microbial com-
munity in PyC degradation. However, the influence of micro-
bial community composition on PyC degradation is poorly
understood (Pietikainen et al., 2000; Czimczik and Masiello,
2007). In addition, soils contain non-pyrogenic organic mat-
ter that may act as primer for the faster degradation of PyC
(Hamer et al., 2004).

PyC is also known to interact with soil minerals (Piccolo et
al., 1997; Glaser et al., 2000; Brodowski et al., 2005; Liang et
al., 2008), in some cases resulting in aggregation (Brodowski
et al., 2006; Vasilyeva et al., 2011) and stabilization in the
soil system. However, short-term incubation studies might
not capture the stabilizing effects of organo-mineral interac-
tions.

3.2.5 Climate

Climate, including temperature and moisture, influences
SOM and PyC decomposition, but there were insufficient
data with which we could analyse its effect on turnover
time. A few studies observed a positive correlation between
mean annual temperature of the field site and PyC degrada-
tion (Glaser and Amelung, 2003; Cheng et al., 2008a) but
not with mean annual precipitation (Cheng et al., 2008a).
Further, Nguyen et al. (2010) also showed that degradation
rates of PyC are accelerated with increasing temperature.
Faster turnover of<100 years observed in tropical (Nguyen
et al., 2008) and subtropical climate (Bird et al., 1999) was
attributed to the more favourable climate. Slower degrada-
tion rates could be expected in boreal forests (Preston and
Schmidt, 2006). However, in a boreal forest (Ohlson et al.,
2009) PyC content decreased to the concentration of the sur-
rounding organic soil matrix in about 100 years. Thus, we

need to directly examine a range of climatic conditions to un-
derstand the influence of environment on PyC turnover time.

3.3 Discussion

Some observations of PyC content or radiocarbon age in soil
have interpreted PyC as recalcitrant with turnover times in
soil of millennia. Applying a simple modelling approach to
a broad set of published data, we find that turnover of PyC
in soil occurs faster, on a centennial time scale. This is in
accordance with Hammes et al. (2008b), Major et al. (2009)
and Kuzyakov et al. (2009), but significantly shorter than the
turnover time estimated in an incubation study (Zimmerman,
2010) or inferred from the radiocarbon age of PyC in some
studies (Pessenda et al., 2001; Schmidt et al., 2002; Liang et
al., 2008). There are two considerations that help reconcile
the apparent inconsistency.

First, the apparent inconsistency of PyC radiocarbon ages
with the estimated turnover time of PyC could be explained
by the “inbuilt age” of a piece of charcoal produced during
fire because the wood may have been old at the time of the
fire (Gavin et al., 2003). Few trees live to be a thousand years
old, so it is likely that a piece of charcoal that is thousands
of years old has been in the soil for>1000 years. Moreover,
it is difficult to translate the radiocarbon age of an isolated
piece of charcoal to a turnover time without knowledge of
the initial stock or input of PyC, leading to uncertainty in the
estimate.

Second, it is likely that some PyC stays in some soils for
many thousands of years. The two-pool model shows that
the PyC experiments analysed contained fairly slow-cycling
material, even if the bulk behaviour was well described with
a shorter turnover time. Studies of bulk soil organic matter
find a spectrum of turnover times, with persistence depending
on the compound chemistry and its physico-chemical state
in soil, such as interaction with minerals or protection in-
side aggregate structures (Schmidt et al., 2011) that result in
turnover times up to thousands of years. We would expect
PyC to have similar behaviour in soil (Torn et al., 2002).

A caveat on our turnover time results is that at present,
most controlled studies of PyC are relatively short-term and
may be biased towards rapid turnover times, given the initial
decomposition dynamics that diminish over time (Kuzyakov
et al., 2009) as the labile component is metabolized (Smith et
al., 2010). Our knowledge of the later stages of degradation
is much poorer. Therefore, our estimates using a one-pool
model could overestimate the rate of PyC degradation (and
underestimate turnover time). The two-pool decay model
provides a better fit to the data than the one-pool model,
and does show a more persistent fraction of PyC. It has been
suggested that physical protection and interactions with soil
minerals play a significant part in long-term PyC stability
(Brodowski et al., 2006; Glaser et al., 2000) and forming
what we called the slow PyC pool. However, the duration
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of available data is too short to quantify longer decay time
scales.

The differences in turnover times among studies could also
be due to the interplay of different decomposition or stabi-
lization mechanisms at a local scale, resulting in differences
in the rate of degradation. A combination of physical, chem-
ical, and microbial processes can play a role in PyC degrada-
tion. However, these degradation processes have not yet been
studied in combination, and questions remain as to the inter-
action of these processes and the importance of PyC chem-
istry, soil conditions, and microbial activity in controlling the
likelihood of PyC degradation or persistence.

4 Conclusion and future research

PyC comprises an array of compounds and is present in dif-
ferent environmental matrices; thus, there is not a single rate
of decomposition to describe PyC dynamics in all soils and
conditions. Nevertheless, based on this analysis of published
data, the nominal turnover time of PyC is shorter than previ-
ously assumed, on order of hundreds of years. Over a range
of PyC properties and edaphic conditions, PyC was found to
degrade in soil, and there was consistent evidence that PyC
does not act as an inert or universally recalcitrant compound
in soil. To better understand PyC as a potential dynamic link
between fire, soil, and the carbon cycle, and to investigate
its potential for carbon sequestration strategies, we recom-
mend the initiation of long-term PyC degradation field ex-
periments, in different climate and soil types, to address the
decomposition dynamics of aging PyC, as well as research to
identify underlying mechanisms of PyC degradation and the
factors controlling its stability in soil.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
2847/2012/bg-9-2847-2012-supplement.pdf.
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