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Abstract. In the last decades, the mining exploitation of
large areas in Lusatia (Eastern Germany) but also in other
mining areas worldwide has led to the formation of hun-
dreds of pit lakes. Pyrite oxidation in the surrounding dumps
makes many such lakes extremely acidic (pH< 3). The bio-
geochemical functioning of these lakes is mainly governed
by cycling of iron. This represents a relevant ecological prob-
lem and intensive research has been conducted to understand
the involved biogeochemical processes and develop bioreme-
diation strategies. Despite some studies reporting the pres-
ence of living organisms (mostly bacteria, algae, and macro-
invertebrates) under such acidic conditions, and their trophic
interactions, their potential impact on the ecosystem func-
tioning was poorly investigated. The present study aimed
to assess the influence of chironomid larvae on oxygen dy-
namics and iron cycle in the sediment of acidic pit lakes.
In the Mining Lake 111, used as a study case since 1996,
Chironomus crassimanus(Insecta, Diptera) is the dominant
benthic macro-invertebrate species and occurs at relatively
high abundances in shallow water. A 16-day laboratory ex-
periment using microcosms combined with high resolution
measurements (DET gel probes and O2 microsensors) was
carried out. The burrowing activity ofC. crassimanuslar-
vae induced a 3-fold increase of the diffusive oxygen uptake
by sediment, indicating a stimulation of the mineralization
of organic matter in the upper layers of the sediment. The
iron cycle was also impacted (e.g. lower rates of reduction
and oxidation, increase of iron-oxidizing bacteria abundance,
stimulation of mineral formation) but with no significant ef-
fect on the iron flux at the sediment-water interface, and thus
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on the water acidity budget. This work provides the first as-
sessment of bioturbation in an acidic mining lake and shows
that its influence on biogeochemistry cannot be neglected.

1 Introduction

As a consequence of mining activities in lignite areas, the fill-
ing of abandoned sites by groundwater and weathering wa-
ter frequently leads to the formation of acidic lakes. Com-
pared to most natural lakes, these ecosystems are character-
ized by low primary production and nutrient concentrations,
a high solubility of metals and simple food webs (Geller
et al., 1998). In Germany about 500 lignite pit lakes exist
of which about 50% have been initially acidic (Schultze et
al., 2009). The water can reach extremely low pH values
(2–3), which represents a highly preoccupant environmen-
tal problem. During the last few decades, numerous studies
have permitted to describe the biogeochemical functioning of
these acid mining pit lakes and to currently consider biore-
mediation strategies (e.g. Peine et al., 2000; Knöller et al.,
2004; Meier et al., 2004; Kamjunke et al., 2005; Blodau,
2006; Koschorreck et al., 2007; Geller et al., 2009). The
acidity of lake water is a result of the weathering of pyrite-
and marcasite-enriched surrounding dumps through the pro-
duction of SO2−

4 , Fe2+ and protons. Subsequent oxidation
of Fe2+ leads to the formation of Fe(III) minerals that pre-
cipitate and settle on the sediment surface. Depending on
oxygen and organic matter availability, diagenetic processes
occurring in the top sediments also play an important role
in iron and sulfur cycles. Indeed, under anoxic conditions,
microbial reduction of Fe(III) and to a lesser extent SO2−

4 re-
moves protons from the water which creates alkalinity. The
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different factors controlling microbial oxidizing and reduc-
tive processes within top sediments are thus crucial for the
dynamics of acidity generation and consumption, and as a
consequence, for the long-term development of acidic min-
ing lakes and their watersheds (Blodau, 2006).

Among other parameters, micro-organisms living in the
sediments of most aquatic ecosystems can be influenced by
the bioturbation of sediment-dwelling infauna. Through their
burrowing, feeding, irrigating, breathing or defecating activ-
ities, these organisms induce physical, chemical and biolog-
ical modifications which can directly (e.g. grazing, garden-
ing) or indirectly (e.g. modifications of oxygen distribution
and nutrient availability) affect microbial communities (Kris-
tensen, 2000; Mermillod-Blondin and Rosenberg, 2006). In
the case of extremely acidic mining lakes, the conditions are
not favourable for a high biodiversity. These lakes are fish-
free and only few benthic invertebrate species are known to
colonize the sediments (Wollmann et al., 2000; Rodriguez
and Scharf, 2001). Most of them are aquatic insects, predom-
inantly chironomid larvae, which can reach relative high den-
sities in some lakes. These organisms appear therefore to be
important as primary consumers and/or top-predators (Less-
mann et al., 1999; Wollmann et al., 2000; Rodriguez, 2001).
Although some studies have dealt with their distribution pat-
terns or their ecology in acidic mining environments (e.g.
Hünken and Mutz, 2007), their influence on the sediment
biogeochemistry has never been investigated. Nevertheless,
in other environments, it has been clearly demonstrated that
chironomid larvae increase nutrient fluxes and oxygen avail-
ability in the top sediments providing microniches with var-
ious oxygen and redox gradients, and then influence mi-
crobial diagenetic reactions (e.g. Svensson and Leonardson,
1996; Svensson, 1997; Kajan and Frenzel, 1999; Brune et
al., 2000; Stief and De Beer, 2002; De Haas et al., 2005;
Stief et al., 2005; Polerecky et al., 2006; Lewandowski et al.,
2007; Stief, 2007). The main effect of chironomid larva bio-
turbation on the iron cycle is probably indirect. Indeed, local
conditions in the sediment are determinant for the physico-
chemical speciation of metals and then for their mobility
and distribution. Through changes of the redox conditions,
macrofauna bioturbation modifies the chemical balance of
metals and then their partitioning between aqueous and solid
phases (Krantzberg, 1985). Precipitation in bottom sediment
can also be favoured by stimulation of certain microbial com-
munities as metal-reducers or sulphate-reducers (Warren and
Haack, 2001). As regard to these considerations, it appears
crucial to assess the influence of bioturbation in acidic min-
ing lakes.

The aim of the present study was to investigate the role of
Chironomus crassimanuslarvae on the biogeochemistry of
the Mining Lake 111 (Lusatia, Germany), a lake which has
been used as a study case since 1996. This species has largely
colonized the sediment and appears to be the most dominant
or even the unique benthic macro-invertebrate present in this
lake (Rodriguez and Scharf, 2001). Our hypothesis was that

Table 1. Chemical characteristics of the water of the Mining Lake
111, July 2008 (N = 4). Means± SD of samples corresponding
to different water depth (0, 1.5, 4, 6 m). DOC= dissolved organic
carbon; TOC= total organic carbon; TIC= total inorganic carbon;
DIN = dissolved inorganic nitrogen; SRP= soluble reactive phos-
phorus; TP= total phosphorus.

Chemical Concentrations Chemical Concentrations
species species

Cations (mg L−1) Nutrients (mg L−1)

Ca2+ 216±1.7 NH+

4 −N 2.22±0.1
Fe2+ 2.29±1.5 NO−

3 −N 0.25±0.0
K+ 3.17±0.2 Si 11.0±0.3
Mg2+ 25.0±0.4 SRP 0.003±0.0
Na+ 6.42±0.1 TP <0.006

Anions (mg L−1) Metals (mg L−1)

SO2−

4 1290±30 Al – total 36.4±0.7
Al – dissolved 34.7±0.8

Carbon (mg L−1) Fe – total 155±2.1

DOC 1.17±0.4 Fe – dissolved 149±3.3
TOC 1.75±0.9 Mn 2.78±0.0
TIC <0.5 Ni 0.20±0.0

Zn 0.89±0.0

bioturbation enhances iron cycling at the sediment-water in-
terface and thus, has an influence on the lakes acidity budget.
To study the influence of chironomid bioturbation on iron
and oxygen turnover we conducted a laboratory experiment
using microcosms combined with high resolution measure-
ments applying Diffusive Equilibration in Thin-films (DET)
gel probes and O2 microsensors (Koschorreck et al., 2003).

2 Material and methods

2.1 Sediment and organism sampling

A laboratory experiment was carried out using intact sedi-
ment cores and organisms directly collected in the Mining
Lake 111 (ML-111), in the Lusatian lignite mining area in
eastern Germany. This small lake (surface area: 10.7 ha,
mean/maximal depth: 4.5/10.5 m) is characterized by very
low pH (2.6) and high ionic strength of the water (Table 1).
The sampling location was chosen as regard of the highest
abundances of chironomid larvae measured in the lake in
June 2008 (Fig. 1). It corresponds to the littoral zone (water
depth of 1.5–2 m) of the southern part of the lake. The sedi-
ment cores (Ø= 9 cm) were sampled from a floating platform
by means of a gravity corer (UWITEC, Mondsee, Austria)
extended by a telescopic bar. They were adjusted to obtain
final cores of 20 cm height of sediment and 10 cm height of
water, and sealed with a plastic stopper to be transported to
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FIGURE 1 
 

 
 

Fig. 1. Density of chironomid larvae as function of water depth
in the littoral area of the ML-111 (June–July 2008). The sediment
samples were collected following transects at 5 different character-
istic areas of the lake.

the laboratory within 4 h. During coring and transport, the
overlying water remained clear suggesting that minimal dis-
ruptions occurred in the sediment cores.

The chironomid larvae were collected by sieving of sev-
eral additional sediment samples through a 250-µm mesh.
The taxonomic identification ofChironomus crassimanus
was confirmed by Xavier-François Garcia (IGB, Berlin, Ger-
many) from a significant sample of larval and adult individu-
als. The larvae were afterwards maintained at the laboratory
in a large aquarium under the future experimental conditions
for 6 weeks. They were fed daily with around 4 mg ind−1

of TetraMin® flakes (Tetra Werke, Melle, Germany) from a
suspension of 10 g L−1. In these conditions, emergences of
adults occurred and a new generation of chironomids was ob-
tained. Two days before the beginning of the experiment, a
sufficient number of 3rd and 4th instar larvae were collected
in a new aquarium and were starved before their addition
to experimental microcosms. To put in evidence the effect
of bioturbation, 40 chironomid larvae were added to each
core devoted for their observation, that represents a density
of 6250 ind m−2 which was slightly higher than the maximal
natural densities measured in the lake (Fig. 1).

2.2 Microcosm set-up

A total of 16 sediment cores were brought back from ML-
111 to the laboratory. They were separated in 4 batches of
4 replicates placed in independent beakers with circulating
and aerated water (>90% oxygen saturation) from the sam-
pling area. The 4 beakers were themselves placed in a large
tank containing temperature-controlled water to maintain a
constant temperature in the microcosms. After 5 days of ac-
climation under laboratory conditions, 8 cores (i.e. 2 batches)
were defaunated by bubbling the overlying water with N2 for

1 h and subsequent storage with a sealing stopper for 24 h.
The anoxia induced by this procedure forced the chirono-
mid larvae inhabiting the sediment to reach the water col-
umn where they were removed with a pipette (Andersen and
Kristensen, 1992). The cores were afterwards immediately
put back into the incubation system under oxic conditions.
The first defaunated batch received no other treatment and
referred to “defaunated” condition (D-cores). The second
one was devoted to chironomid larva addition and referred
to “chironomid” condition (Chir-cores). The 8 remaining
cores (i.e. 2 other batches) were kept intact from their sam-
pling into the lake to their placement in the incubation sys-
tem and referred to “control” conditions: 4 cores for initial
conditions and 4 cores for final conditions (C-cores). DET
gel probes (see below) were deoxygenated by N2-bubbling
for 2 h and then gently inserted into the sediment. After 10
days of equilibration, the experiment started with: (i) the ad-
dition of chironomid larvae in Chir-cores, (ii) the first water
sampling in all cores, and (iii) the first series of measure-
ments (e.g. oxygen profiles, DET and sediment sampling)
in C-cores. After 16 days of incubation, the same measure-
ments were performed in all the remaining cores. The ex-
periment was limited to a short period of 16 days in order
to avoid repeated handling in the aquaria due to the replace-
ment of emergent larvae (the life cycle ofC. crassimanusis
around 25 days at 21◦C, personal observation at the labo-
ratory). Losses of water due to evaporation were daily com-
pensated by adding distilled water whereas volumes removed
for sampling were systematically compensated by adding fil-
tered water from the sampling site.

2.3 Bioturbation observations

Independently of the experiment, a pre-test was performed to
estimate bioturbation intensity ofChironomus crassimanus
larvae in the sediment of ML-111. The experimental set-
up was exactly the same as the one previously described for
Chir-treatment (e.g. number of replicates, water circulation,
density of larvae). Before introducing larvae in the water
column, 2 g of green luminophores (Ø= 63 mm,λexcitation=

450 nm, λemission= 520 nm, Geologish-Paleontologisches
Institut und Museum der Universität Kiel, Germany) were
deposited at the sediment surface. To check the redistribution
of tracers under the effects of chironomid displacements, the
first 7 cm of sediment cores were gently sliced into 14 layers
of 0.5 cm after 16 days. The sediment was dried at 105◦C
for 48 h. From each layer, three subsamples were retrieved
for counting luminophores under an epifluorescence micro-
scope.
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2.4 Analyses of the water column

Temperature, conductivity, oxygen concentration, oxygen
saturation and pH were directly measured in the water col-
umn of each microcosm on days 1, 4, 8, 11 and 16 us-
ing multiparameter probes. Five different water samples
were also collected when the aforementioned measurements
were taken for analyses of (i) total iron (Fe) and aluminium
(Al) concentrations by ICP-OES, (ii) ammonium (NH+

4 ), sil-
ica and soluble reactive phosphorus (SRP) by continuous
flow analysis (CFA), (iii) sulfate (SO2−

4 ) by single column
ion chromatography (Herzsprung et al., 2006) and (iv) total
phosphorus (TP) by photometry (ISO 6878:2004, 2004).

2.5 Oxygen profiles

On day 1 for C-cores and on day 16 for D- and Chir-
cores, microprofiles of dissolved oxygen were measured us-
ing software controlled microelectrodes mounted on a motor
driven micromanipulator (UNISENSE, Aarhus, Denmark).
For each core, the mean diffusive oxygen uptake (DOU) of
sediment was calculated from 3 repeated profiles using the
PROFILE software (Berg et al., 1998) which is based on the
Fick’s first law of diffusion with temperature-corrected dif-
fusion coefficient (Li and Gregory, 1974). This model fits
an overall profile between the sediment-water interface and
within the sediment down to the oxygen 0% level. The DOU
of sediment is largely used to estimate the organic matter
mineralization occurring in early diagenesis processes, and
it is therefore considered as a relevant indicator of the global
functioning of the sediment.

In C- and Chir-cores, the oxygen microsensor occasion-
ally intersected burrow sections providing irregular profiles.
These profiles were intentionally rejected for further analy-
sis and measurements were repeated until at least 3 regular
profiles were obtained in each core (i.e. 12 profiles for each
treatment). Therefore, advective uptake of oxygen through
burrow walls driven by bioirrigation was not estimated.

2.6 Sampling and analysis of DET gel probes

Directly after the oxygen microprofile measurements, the
DET gel probe was gently removed from the sediment (i.e.
after 10 days of deployment for C-cores and 26 days for
D- and Chir-cores). The constrained DET probes (DGT-
research, Lancaster, UK) consisted of small separated gel
strips with a millimetric resolution enabling to measure high
resolution profiles of dissolved iron in the sediment. Each
gel strip was eluted in 500 µL of acid distilled water (pH 2.5)
for 24 h at 4◦C in the dark. Two 100 µL subsamples were
afterwards transferred to (1) 100 µL of 1 M HCl for mea-
surement of Fe2+ concentration, and (2) 100 µL of 0.5 M of
hydroxylamine-hydrochloride in 1 M HCl for measurement
of total reactive Fe. After 30 min, 50 µL of each extract was
transferred to 2.5 mL of ferrozine solution before its mea-

surement by photometry at 400 and 650 nm for Fe2+ and
total Fe, respectively (Koschorreck et al., 2003). Fe3+ con-
centrations were obtained by subtracting Fe2+ concentration
values from total Fe ones.

As previously described for oxygen measurements, aver-
aged iron profiles were simulated using the PROFILE soft-
ware (Berg et al., 1998) to estimate turnover rates and fluxes
of ferrous and ferric ion within the sediment of each treat-
ment (4 replicates). In this case, boundary conditions were
the concentration in the overlying water at the top and an ab-
sence of flux in deeper sediment.

Geochemical equilibrium calculations were carried out us-
ing PHREEQC (Parkhust and Appelo, 1999). Speciation cal-
culations were used to establish the saturation indexes of dif-
ferent iron minerals in order to explain the Fe2+/Fe3+ distri-
bution observed at 5 cm depth in the sediment. The redox po-
tential was calculated from the measured iron profiles. Then,
the speciation was performed and the saturation indices were
analyzed to determine which minerals could precipitate.

2.7 Analysis of the sediment

Finally, after gently removing the water column, the top of
the sediment cores was carefully sliced in 4 layers of 0–
1, 1–2, 2–4 and 4–7 cm. From each layer, sub-samples
of sediment were separated for (i) weighting and drying
(105◦C/24 h) to estimate water content, (ii) counting of Fe-
oxidizing and Fe-reducing bacteria using the MPN (“most
probable number”) method, and (iii) analyzing the main solid
chemical species: Fe, Al, and Mn by ICP-OES; C, N, and S
by high temperature combustion using an element analyzer
(Vario EL, Elementar), silicates by wavelength dispersive X-
ray fluorescence analysis (Siemens SRS 3000) (Koschorreck
et al., 2007).

Viable numbers of iron reducing bacteria (FeRB) and iron
oxidizing bacteria (FeOB) were determined by a most prob-
able number technique in microplates (Wendt-Potthoff and
Koschorreck, 2002). MPN cultures were incubated at 28◦C
for 6 weeks. Growth was judged either from the formation of
brown precipitates (FeOB) or the formation of FeII (FeRB).
MPN and their confidence limits were calculated using the
software of Klee (1993).

2.8 Statistical analyses

All statistical analyses were performed using the
STATISTICA® software package (StatSoft, Inc., Tulsa, OK,
USA). Before each analysis, the normality (Shapiro-Wilk
test) and homogeneity of data variance (Levene test) were
tested. It was repeated after log-transformation of data
when these assumptions were not first found. A significance
level of 5% was applied to all analyses. The data from
water measurements were analyzed by repeated-measures
ANOVAs (RM-ANOVA) followed by LSD Fisher’s post hoc
comparison tests. The jarosite dissolution rate estimated
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from sulfate concentrations in the water, the diffusive
oxygen uptake rate estimated from oxygen profiles, and
the analytical data for sediment phase were analyzed by
one-way ANOVAs followed by LSD Fisher’s post hoc
comparison tests. The MPN data were analyzed by two-way
ANOVAs (treatment× depth) followed by LSD Fisher’s post
hoc comparison tests.

3 Results

3.1 Observations of chironomid larva behavior

As soon as the chironomid larvae were deposited at the sedi-
ment surface of Chir-cores, they directly burrowed tubes and
buried into the sediment to finally only let tube openings vis-
ible after some minutes. As in control cores, we could ob-
serve from the aquarium sides that larvae reached maximal
depth of around 4–5 cm but seemed to stay mainly in their
burrows directly under the sediment surface (2 cm). These
observations were confirmed by the luminophore counting
technique used in the pre-test. After 16 days, almost all the
luminophores were regained in the first 2 cm of sediment:
53% (±1.2) in the 0–0.5 cm layer, 38% (±2.3) in the 0.5–
1 cm layer, 6% (±0.9) in the 1–1.5 cm layer, and 1.6% (±0.1)
in the 1.5–2 cm layer. Beneath 2 cm, few luminophores were
also punctually observed. From all the measurements, the
maximal depth with occurrence of luminophores was 6 cm,
reflecting a deeper exploration of the sediment by the larvae.

3.2 Analyses of the water column

The temperature was maintained at 21.5± 1.2◦C, the dis-
solved oxygen concentration at 7.7± 0.3 mg L−1, the pH
at 2.6± 0.1, and the conductivity at 3.72± 0.05 mS cm−1

throughout the experiment. No significant treatment-related
differences were observed for any of these water quality pa-
rameters between the sampling days (RM-ANOVAs:p >

0.05).
The evolution of total Fe, total Al, SRP, total P, silicates,

sulfate and ammonium concentrations in the water column
during the experiment is presented in Fig. 2. For all measured
parameters, the statistical analyses show effects of treatment,
time, and treatment× time (RM-ANOVAs: p < 0.05). For
clarity and interest, only significant differences observed be-
tween undisturbed (D-) and bioturbated (Chir-) cores for
each time of sampling were indicated on the graphs (Fisher’s
LSD test:p < 0.05; Fig. 2). Although chironomids moder-
ately increased Fe, Al, silicate or sulfate concentrations, their
influence on total P and ammonium concentrations was more
marked, particularly at the end of the experiment. The rates
of sulfate efflux from the sediment were 335±17, 230±36
and 381±36 nmol cm−3 d−1 for C-, D-, and Chir- treatments,
respectively.

3.3 Dissolved oxygen uptake

Mean oxygen profiles and the vertical distribution of oxy-
gen consumption are reported in Fig. 3. In the absence of
chironomids (D-cores), there was a near linear oxygen gra-
dient down to 0.31 cm where most of the oxygen consuming
activity was located. In untreated cores (C-cores), where chi-
ronomid density was around 2700 ind m−2, the oxygen pen-
etration was reduced to 0.26 cm and the maximal DOU was
slightly higher than in D-cores. This effect was more pro-
nounced in the Chir- treatment (density of 6250 ind m−2),
where also the shape of the profile was clearly different.
The oxic layer was only 0.21 cm thick and the DOU was
more evenly distributed throughout the profile. By compar-
ing total DOU (flux at the sediment-water interface), sta-
tistical analyses showed significant differences between all
treatments (ANOVA:F3,25 = 18.1, p < 0.05; Fisher’s LSD
test: p < 0.05). The mean value was 1.3 and 3.3 times
higher in presence of chironomids (17.5×10−3 and 43.8×

10−3 nmol O2 cm−2 s−1, respectively for C- and Chir-cores)
than in defaunated sediment (13.1×10−3 nmol O2 cm−2 s−1

for D-cores).
Assuming that the oxygen uptake in the upper part of the

sediment was due to organic matter (OM) oxidation while
the oxygen uptake at the oxic-anoxic boundary in the sedi-
ment was mainly due to the oxidation of upward diffusing
Fe2+ (Revsbech and Jørgensen, 1986), the PROFILE mod-
elling permits the following estimations: 21% and 79% of
DOU were related to OM and Fe oxidation, respectively, in
defaunated sediment (D-cores), whereas inversely 74% and
26% of DOU were related to OM and Fe oxidation, respec-
tively, in bioturbated sediment (Chir-cores).

3.4 Iron profiles

The dissolved iron profiles (Fig. 4) showed low concentra-
tions of ferric iron, high concentrations of ferrous iron in
deeper sediment layers and an upward diffusive gradient to-
wards about 5 cm sediment depth. Above this depth and in
the water column dissolved iron concentrations were low and
uniform. The data imply (i) a production of ferrous iron in
suboxic sediment layers (probably mobilisation from Fe(III)-
oxyhydroxides by microbial reduction), (ii) followed by its
consumption in deeper sediment through a nearly complete
removal of upward diffusing Fe2+, and (iii) no diffusive flux
of dissolved iron over the sediment-water interface.

From ferrous iron profiles in defaunated sediment (D-
cores), the PROFILE modelling separated 4 distinct zones
from the top to the bottom of the sediment: (i) on the first
4 cm, a zone of no significant consumption, (ii) between 4
and 8 cm, a zone of high consumption, probably due to iron
oxidation and precipitation, (iii) from 8 to 11 cm, a zone
of high production, probably due to iron reduction, (iv) and
deeper, a zone of lower production. In bioturbated sediment
(Chir-cores), only two zones were defined by the model:

www.biogeosciences.net/8/339/2011/ Biogeosciences, 8, 339–352, 2011
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FIGURE 2 
 
 

 
Fig. 2. Temporal variation of the concentrations of the main dissolved chemical species in the water column in the different treatments
(Control: C, - - - -; Defaunated: D, –• – ; with chironomids: Chir, –◦ –). Means± SD (N = 4). Stars indicate significant differences
between D- and Chir- treatments at each time of sampling. The bar chart represents the potential jarosite dissolution expressed as a net rate
of sulfate and hypothetical ferric iron release. Means± SD (N = 4). Different letters indicate significant differences between treatments.
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FIGURE 3 
 

 
 Fig. 3. Dissolved oxygen profiles and modelled oxygen consumption of sediment estimated in the different treatments using the software
PROFILE (Control: C, Defaunated: D, with Chironomids: Chir). Grey dots are measured concentrations (Means± SD, N = 4) and the
dotted lines the fitted concentration profiles. The black lines show the oxygen consumption as a function of depth modelled from the
concentration profiles. The horizontal dotted lines indicate the sediment-water interface.

(i) from the top to a depth of 13 cm, a zone of slight con-
sumption, (ii) and deeper, a zone of slight production. The
profiles in control cores (C-cores) showed an intermediate
state between the two previously described conditions.

The depth-integrated rates of Fe(II) produc-
tion/consumption were almost half reduced in presence
of chironomids: (i) from 7.9 × 10−3 nmol Fe cm−2 s−1

(D-cores) to 4.3–4.8× 10−3 nmol Fe cm−2 s−1 (C- and
Chir-cores) for production (i.e. iron reduction), and
(ii) from 7.7 × 10−3 nmol Fe cm−2 s−1 (D-cores) to 4.4–
4.8× 10−3 nmol Fe cm−2 s−1 (C- and Chir-cores) for
consumption (i.e. upward-diffusion). However, in all cases,
production and consumption of Fe(II) were in balance,
resulting in no significant diffusive flux of dissolved iron
over the sediment water interface. In defaunated sediment
(D-cores), where these rates were higher, we observed a
small peak of dissolved ferric iron around the oxicline,
which is consistent with iron oxidation at that depth.

3.5 Composition of the sediment

The presence of chironomids had no significant effect on the
distribution of the main solid chemical species in the up-
per 7 cm of the sediment (Fig. 5) (ANOVAs:F2,9 = 0.1 to
3.1, p > 0.05). There was only one remarkable difference
for the Mn concentration in the 4–7 cm layer, with a signif-
icant higher value in presence of chironomids in the sedi-
ment (ANOVAs: F2,9 = 10.4, p = 0.004). Concerning the

differences observed for silicates, as it separated C-treatment
from the other treatments, it seems that only experimental
conditions (e.g. defaunation by N2-bubbling) have reduced
the sediment concentrations of this element (ANOVAs from
0–1 to 4–7 cm layers:F2,9 = 5.5, p = 0.027; F2,9 = 5.5,
p = 0.027; F2,9 = 19.9, p = 0.000, F2,9 = 9.1, p = 0.007;
Fisher’s LSD test:p < 0.05). The Si flux measured during
the incubation (about 9 nmol cm−3 d−1, from Fig. 2) was too
low to explain the difference.

3.6 Bacterial counts

The counting of Fe-oxidizing bacteria (FeOB) in the dif-
ferent layers of the top sediment (Fig. 6) revealed a high
abundance in the upper 4 cm with a decrease as a func-
tion of depth. A significant effect of both treatment, depth
and treatment× depth was observed (ANOVA:F2,36= 22.5,
F3,36 = 112, F6,36 = 7.3, respectively;p < 0.05). By com-
paring D- and Chir- treatments, the abundance of FeOB in the
presence of chironomids was increased by a factor of around
×2000 in the 0–1 cm layer (Fisher’s LSD test:p < 0.05),
×30 000 in the 1–2 cm layer (Fisher’s LSD test:p < 0.05)
and×45 in the 2–4 cm layer (Fisher’s LSD test:p < 0.05),
while no significant difference occurred below (Fisher’s LSD
test:p = 0.06).

The most probable number of Fe-reducing bacteria
(FeRB) in the top layers of sediment was largely lower than
the number of FeOB (Fig. 6). However, two-way ANOVA
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FIGURE 4 
 
 
 

Fig. 4. Ferrous and ferric iron concentration profiles and production rates in the sediment estimated in the different treatments using the
software PROFILE (Control: C, Defaunated: D, with chironomids: Chir). Grey dots are measured concentrations (Means± SD,N = 4) and
the dotted lines the fitted concentration profiles. The black lines show the production as a function of depth modelled from the concentration
profiles. The horizontal dotted lines indicate the sediment-water interface.

also revealed an effect of treatment and depth, but not of
treatment× depth (ANOVA:F2,36= 5.01,p = 0.01;F3,36=

21.6, p = 0.00; F6,36 = 1.9, p = 0.10). Even if a trend of
increasing abundance in presence of chironomids was ob-
served, it was only significant in the 2–4 cm layer, with a
factor of×8.5 (Fisher’s LSD test:p = 0.04).

4 Discussion

4.1 Ecology ofChironomus crassimanusin acidic
mining lakes

These first investigations of chironomid larva bioturbation in
acidic environment revealed that the ecological patterns of
these organisms are comparable to those described in other
ecosystems. Maximal densities of population measured in
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FIGURE 5 
 
 
 
 

 
 
 Fig. 5. Averaged content of the main solid chemical species in the first 7 cm of the sediment (0–1, 1–2, 2–4 and 4–7 cm layers) per sediment

volume at initial conditions (Control: C, grey bars) and after 16 days in the different treatments (Defaunated: D, black bars; with chironomids:
Chir, white bars). Means± SD (N = 4). For the averaged data, 42±7% of sediment samples are explained by the analysis. Same letters or
absence of letters on graphs indicate no significant difference between treatments.

the ML-111 are similar to mean values reported for chirono-
mids in lacustrine environments (Armitage et al., 1995). At
the 5 sampled transect sites, their presence was restricted to
shallow littoral zones (<4 m) with maximal abundances un-
der 2 m of water. Although chironomid larvae are known to
potentially colonize sediment in the profundal, this distribu-
tion pattern is characteristic for benthos in oligo-mesotrophic
lakes (Brinkhurst, 1974). The heterogeneous environment
offered by rooted plants as well as better oxygen supply and
a higher primary production by benthic algae in shallow bot-
toms probably favor the concentration of benthic organisms
in these areas. Moreover, in oligotrophic lakes, most of the
energy bound by photosynthesis in the upper water layers is
utilized by respiration processes in the water and the particles
deposited at the deep sediment surface are poor quality food
(Hakanson and Jansson, 1983). It has been effectively re-

ported that summer stratification of ML-111 leads to an oxy-
gen decrease from 4 m of water depth (Meier et al., 2004).
As well, the absence of predation and competition with other
macro-invertebrates is likely to contribute to the concentra-
tion of chironomids in the littoral zone of the lake.

Like other species of the genusChironomus, C. crassi-
manuswas observed to burrow permanent tubes with inter-
mittent pumping. However, roaming at the sediment surface
was poorly observed and larva stayed in their tubes. This
induced a low particle reworking in the upper 2–3 cm of sed-
iment which is typical for freshwater bioirrigators such as
chironomid larvae (Matisoff and Wang, 2000).

It should be noted, that chimney-like prolonging tubes
above the sediment surface were observed during sediment
sampling conducted for determination of chironomid densi-
ties in the lake. The chimneys were particularly numerous
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FIGURE 6 

Fig. 6. MPN of Fe-oxidizing bacteria (FeOB) and Fe-reducing bac-
teria (FeRB) in the first 7 cm of the sediment (0–1, 1–2, 2–4 and
4–7 cm layers) at initial conditions (Control: C, –1 –) and after
16 days in the different treatments (Defaunated: D, –• –; with chi-
ronomids: Chir, –◦ –). Means± SD (N = 4). Same letters indicate
no significant difference between treatments at each depth.

and extended (2–3 cm) in the sediment cores corresponding
to deepest sampling points (4 m of water depth). As demon-
strated by Stief et al. (2005), these sediment surface expan-
sions permit higher oxygen availability for the larvae under
hypoxic conditions. Under our laboratory conditions, the wa-
ter column was constantly well-aerated and the chironomid
tubes had only few millimeters of chimney-like expansions.

4.2 Influence of bioturbation on oxygen dynamics and
iron cycle

The oxygen measurements demonstrated the influence of
chironomid bioturbation on the global functioning of sedi-
ments. As previously described, the reduced oxygen pen-
etration and the increasing diffusive oxygen uptake (DOU)
are indicators of intense oxygen consumption through stim-
ulation of heterotrophic microbial communities. According
to respiration rates reported in the literature for chironomid
larvae (Grańeli, 1979), less than 15–20% of the increased
DOU can be accounted to larva metabolism requirements
in our study. This enhancement is clearly linked to influ-
ence of bioturbation on organic matter decay and microbial
metabolism (e.g. Svensson and Leonardson, 1996). The 3-
fold increase of DOU is of the same order of magnitude or
even higher than results obtained in previous works with the
same or lower densities ofChironomusspecies (e.g. Van de
Bund et al., 1994; Hansen et al., 1997; Stief and De Beer,
2002; Lagauz̀ere et al., 2009), indicating that the effect of
bioturbation on acidic sediments can not be neglected. The
PROFILE estimations demonstrated that the portion of DOU
linked to the oxidation of upward diffusing ferrous iron was
considerably reduced in presence of chironomids (from 79%
in D-cores to 26% in Chir-cores). Nevertheless, due to a
higher total DOU, this part accounted for the same absolute
rate in both undisturbed (10.4× 10−3 nmol O2 cm−3 s−1 in
D-cores) and bioturbated (11.3×10−3 nmol O2 cm−3 s−1 in
Chir-cores) sediments. Thus, chironomids increased aerobic
mineralization of organic matter but not iron oxidation.

The PROFILE modelling of iron profiles indicated a sink
of dissolved ferrous iron around 5 cm of sediment depth.
Since molecular oxygen penetrated only 3 mm deep into the
sediment the disappearance of ferrous iron cannot be ex-
plained by direct oxidation by oxygen. An oxygen supply to
the deeper sediment due to chironomid activity or tubes was
probably not relevant since the effect was most pronounced
in the chironomid-free treatment. There are two possible ex-
planations for the disappearance of ferrous iron in the sed-
iment: (i) precipitation of a ferrous/ferric iron mineral, and
(ii) oxidation of ferrous iron – by an oxidant other than oxy-
gen – and subsequent precipitation of ferric iron mineral.
Speciation calculations using PHREEQC showed that pore-
water was undersaturated with respect to the formation of
green rusts (i.e. combined Fe2+/Fe3+ hydroxides).

Once the mechanism of Fe2+ oxidation by Mn was es-
tablished, PHREEQC showed that porewater is saturated in
FeOOH, Fe(OH)3 and schwertmannite. Sulfide precipita-
tion can be ruled out since microbial sulphate reduction was
never observed in the acidic sediment of ML111 (Meier et
al., 2004). Theoretically ferrous iron can also be removed
from solution by the formation of mixed FeII /FeIII minerals
like magnetite or green rusts (Génin et al., 1998). The pore-
water, however, was strongly undersaturated with respect to
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Fe4(OH)8Cl and Fe6(OH)12SO4. Thus, it is unprobable that
precipitation of ferrous minerals occurred in our experiment.

Mn-oxides can oxidized iron (Postma and Appelo, 2000).
Considering that all initial manganese was in the form of
MnO2 and pe= 11.53 (pe= Eh/0.059 at 25◦C, Eh= 0.6803
Volts), PHREEQC calculations show that all the MnO2 was
dissolved and the speciation of Fe2+/Fe3+ coincides mostly
with the concentrations observed in our experiments. We
conclude that the vertical profiles of ferrous iron were proba-
bly not controlled by the precipitation of ferrous minerals but
by oxidation by manganese.

In the presence of chironomids the profile of ferrous iron
was more “stretched”. This was probably caused by the rapid
transport of Fe, Mn and organic matter (i.e. particle advec-
tion) from the top of sediment towards the bottom of tubes
(3 cm) and even deeper by displacement of larvae in sedi-
ment (6 cm).

Unlike us, Lewandoswki et al. (2007) observed a higher
diffusive flux of iron to the water in presence of chirono-
mids. To our knowledge, that study represents the only avail-
able reference of chironomid influence on iron cycle in the
literature. The authors suggested that bioturbation leads to
an intense iron cycle below the sediment-water interface and
in the burrow walls. Ferrous iron diffuses according to its
gradient from the sediment to the burrows and the overly-
ing water but oxygen diffuses on the opposite sense leading
to oxidation and subsequent precipitation of oxyhydroxides
of ferric iron. This redox reaction occurs close to the oxic-
anoxic boundary and iron is immobilized in the sediment or
deposits in particulate form at the sediment surface. From 2-
D-profiling of ion concentrations, Lewandoswki et al. (2007)
demonstrated that the burrow walls were surrounded by low
concentrations of dissolved Fe2+ and then contribute locally
to iron oxidation within the anoxic bulk sediment. Our DET
approach could not resolve this 2-D pattern and hides the hor-
izontal heterogeneity. As suggested by higher abundances
of Fe-oxidizing bacteria (FeOB) in sediment layers occu-
pied by chironomids, it can be assumed that oxidation effec-
tively occurred in burrows and that the turn-over was locally
higher. Indeed, besides a higher nutrient and oxygen avail-
ability, chironomid larvae yield also labile and fresh organic
matter (e.g. mucus, faeces) within sub-surface sediments that
make their burrows favorable habitats for certain microbial
communities (Stief and De Beer, 2002; Stief et al., 2005;
Gerbersdorf et al., 2008). Despite these considerations, inte-
grated rates of production/consumption of iron in the whole
sediment column were balanced and the global turn-over re-
mained unchanged.

To understand the influence of macro-invertebrate on the
distribution of metallic compounds, the two modalities of
bioturbation (e.g. particulate transport and solute transport)
should be considered because they induce different effects:
(i) the particulate transport carries associated metals through
different areas in the sediment, including the digestive tract
of organisms (deposit-feeders), (ii) the irrigation of burrows

Table 2. Effects of chironomid larvae on sediment biogeochemistry.

Parameter Effect

O2 consumption Increased
Organic matter oxidation Increased
NH+

4 flux Increased
Fe-turnover Lower rates of oxidation

and reduction Stimulation
of mineral transformations

Bacterial abundance Iron oxidizer abundance increased
Fe-flux No effect

transports metallic compounds, either dissolved or associated
to the organic matter, from the water to the sediment, often
leading to a gross flux through the sediment-water interface
and affecting the adsorption/desorption kinetics. As defined
by Gérino et al. (2003), chironomid larvae belong to the bio-
turbation functional group of bioirrigators and therefore have
limited effect on particulate transport. Their presence in-
duces a diffusive-like mixing in the top sediment surrounding
burrows, and an advective transport between the sediment-
water interface and the bottom of tubes due to organism dis-
placements and faecal ejections (“non-local transport”). Our
results are in accordance with these considerations as no dif-
ference of the particulate iron (as well as aluminium or man-
ganese) distribution was observed in presence of chironomid
larvae in the sediment (Fig. 6). On the other hand, although
the dissolved flux of iron at the sediment-water interface was
unchanged (i.e. absence of flux in all treatments; Fig. 4), the
concentration of total iron in the water tends to be higher
with chironomid larvae in the sediment (Fig. 2). Iron trans-
port over the sediment-water interface was obviously only by
advection. Several studies reported release of metals through
particle resuspension due to burrowing and faecal ejection
of chironomid larvae (e.g. De Haas et al., 2005), but in our
case this observation was probably limited by the concomi-
tant precipitation of iron at the sediment surface since the
water was well oxygenated. In conclusion, irrigation or ad-
vection by chironomid larvae did not result in a net transport
of iron from the sediment to the bottom water.

We observed a flux of sulfate from the sediment into the
water. It is well known that in the sediments of acidic
pit mine lakes the initially formed hydroxysulfates, jarosite
and schwertmannite, subsequently transformed into goethite
while releasing sulfate and protons (Regenspurg et al., 2004).
The release of sulfate from sediment containing schwertman-
nite has been observed by several authors such as Jönsson
et al. (2005) and Acero et al. (2006). In laboratory exper-
iments performed by Acero et al. (2006) a sulphate efflux
of 543 nmol cm−3 d−1 was observed (J̈onsson et al., 2005)
which is very similar to the fluxes observed in our study
(230–381 nmol cm−3 d−1). The effect was more pronounced
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in presence of chironomids (ANOVA:F2,9 = 24.1,p < 0.05;
Fisher’s LSD test:p < 0.05). Bioturbation obviously speeds
up the transformation of iron-hydroxosulfates and thus, may
stimulate sulfate and proton release from the sediment.

4.3 Consequences on sediment and water quality

Chironomid larva induced only moderate modifications of
their environment. The distribution of particulate elements
in the sediment surrounding burrows (upper 7 cm) was not
affected (Fig. 6). However, the data of water analyses per-
mitted to put in evidence some processes (Fig. 2). For all
measured parameters, concentrations increased during the
experiment indicating a flux out of the sediment in all treat-
ments and thus a non-steady state of the system. Differences
were significant between D- and Chir-treatments indicating
that the bioturbation of chironomid larvae tends to modify
the water quality by stimulating the release of nutrients and,
with a lower intensity, the release of metals. A portion might
account to excretion of phosphorus and ammonium by the
larvae (∼10–15%, based on equations from Fukuhara and
Yasuda, 1985, 1989). Therefore, the outward flux of solutes
from the sediment can be explained by a number of other
processes: (i) higher fluxes due to increasing sediment-water
interface area and pumping of water in and out of burrows
(i.e. bioirrigation), (ii) production of metabolites from in-
creased organic matter mineralization, and (iii) resuspension
of sediment particles due to burrowing activities or faecal
production and subsequent oxidation/dissolution of particle-
associated elements (e.g. Matisoff and Wang, 2000; De Haas
et al., 2005; Lewandowski et al., 2007). The stimulation
of mineral transformation as indicated by a higher sulfate
flux might have led to the mobilization of adsorbed phospho-
rous. The consequence of bioturbation on the phosphorous
flux remains a matter of controversy since both stimulation
(Krantzberg, 1985) and reduction (Lewandowski et al., 2007)
were observed.

5 Conclusions

This study provides the first observation of benthic macro-
invertebrate bioturbation in an acidic mining lake. Despite a
low biodiversity, the presence of an adapted pioneer species
like Chironomus crassimanushas an influence on the bio-
geochemistry of the sediment (Table 2). Taking all obser-
vations together, it seems that in the sediments of the acidic
Mining Lake 111 chironomids clearly stimulate the turnover
of organic matter but not of iron. Since complete Corg-
mineralisation to CO2 by O2 does not change the alkalin-
ity status of the system, bioturbation has little influence on
the acidity budget of the lake. While their influence on the
lakes carbon cycle cannot be ignored, chironomids obviously
have a minor influence on iron cycling in acidic pit mine
lakes. Contrary to our hypothesis, chironomids did not stim-

ulate iron cycling in the sediment. Bioturbation affected the
sediment internal cycling of iron but had little influence on
sediment-water exchange.

The presence of other benthic macro-invertebrate species
in acidic lakes is reported in the literature (Rodriguez and
Scharf, 2001). Some of them belong to taxa with known
bioturbation activity (e.g. Trichoptera, Ephemeroptera, Ple-
coptera, Megaloptera). The present study highlights that
their effects should be taken into account in further studies
dealing with biogeochemistry of acidic lakes.
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Jönsson, J., Persson, P., Sjöberg, S., and L̈ovgren, L.: Schwert-
mannite precipitated from acid mine drainage: phase transfor-
mation, sulphate release and surface properties, Appl. Geochem.,
20, 179–191, 2005.

Kajan, R. and Frenzel, P.: The effect of chironomid larvae on pro-
duction, oxidation and fluxes of methane in a flooded rice soil,
FEMS Microbiol. Ecol., 28, 121–129, 1999.

Kamjunke, N., Tittel, J., Krumbeck, H., Beulker, C., and Poer-
schmann, J.: High Heterotrophic Bacterial Production in Acidic,
Iron-Rich Mining Lakes, Microb. Ecol., 49, 425–433, 2005.

Klee, A. J.: A computer program for the determination of most
probable number and its confidence limits, J. Microbiol. Meth.,
18, 91–98, 1993.
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